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STRUCTURE ESTIMATION FOR DISCRETE GRAPHICAL
MODELS: GENERALIZED COVARIANCE MATRICES
AND THEIR INVERSES

BY PO-LING LOH!"2 AND MARTIN J. WAINWRIGHT?
University of California, Berkeley

We investigate the relationship between the structure of a discrete graph-
ical model and the support of the inverse of a generalized covariance matrix.
We show that for certain graph structures, the support of the inverse covari-
ance matrix of indicator variables on the vertices of a graph reflects the con-
ditional independence structure of the graph. Our work extends results that
have previously been established only in the context of multivariate Gaussian
graphical models, thereby addressing an open question about the significance
of the inverse covariance matrix of a non-Gaussian distribution. The proof
exploits a combination of ideas from the geometry of exponential families,
junction tree theory and convex analysis. These population-level results have
various consequences for graph selection methods, both known and novel,
including a novel method for structure estimation for missing or corrupted
observations. We provide nonasymptotic guarantees for such methods and
illustrate the sharpness of these predictions via simulations.

1. Introduction. Graphical models are used in many application domains,
running the gamut from computer vision and civil engineering to political science
and epidemiology. In many applications, estimating the edge structure of an un-
derlying graphical model is of significant interest. For instance, a graphical model
may be used to represent friendships between people in a social network [3] or
links between organisms with the propensity to spread an infectious disease [28].
It is a classical corollary of the Hammersley—Clifford theorem [5, 15, 21] that ze-
ros in the inverse covariance matrix of a multivariate Gaussian distribution indicate
absent edges in the corresponding graphical model. This fact, combined with var-
ious types of statistical estimators suited to high dimensions, has been leveraged
by many authors to recover the structure of a Gaussian graphical model when the
edge set is sparse (see the papers [8, 27, 31, 38] and the references therein). Re-
cently, Liu et al. [23] and Liu, Lafferty and Wasserman [24] introduced the notion
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of a nonparanormal distribution, which generalizes the Gaussian distribution by
allowing for monotonic univariate transformations, and argued that the same struc-
tural properties of the inverse covariance matrix carry over to the nonparanormal;
see also the related work of Xue and Zou [37] on copula transformations.

However, for non-Gaussian graphical models, the question of whether a gen-
eral relationship exists between conditional independence and the structure of the
inverse covariance matrix remains unresolved. In this paper, we establish a num-
ber of interesting links between covariance matrices and the edge structure of an
underlying graph in the case of discrete-valued random variables. (Although we
specialize our treatment to multinomial random variables due to their widespread
applicability, several of our results have straightforward generalizations to other
types of exponential families.) Instead of only analyzing the standard covariance
matrix, we show that it is often fruitful to augment the usual covariance matrix
with higher-order interaction terms. Our main result has an interesting corollary
for tree-structured graphs: for such models, the inverse of a generalized covari-
ance matrix is always (block) graph-structured. In particular, for binary variables,
the inverse of the usual covariance matrix may be used to recover the edge structure
of the tree. We also establish more general results that apply to arbitrary (nontree)
graphs, specified in terms of graph triangulations. This more general correspon-
dence exploits ideas from the geometry of exponential families [7, 36], as well as
the junction tree framework [21, 22].

As we illustrate, these population-level results have a number of corollaries
for graph selection methods. Graph selection methods for Gaussian data include
neighborhood regression [27, 40] and the graphical Lasso [12, 14, 31, 33], which
corresponds to maximizing an ¢1-regularized version of the Gaussian likelihood.
Alternative methods for selection of discrete graphical models include the classi-
cal Chow—Liu algorithm for trees [10]; techniques based on conditional entropy
or mutual information [2, 6]; and nodewise logistic regression for discrete graphi-
cal models with pairwise interactions [19, 30]. Our population-level results imply
that minor variants of the graphical Lasso and neighborhood regression methods,
though originally developed for Gaussian data, remain consistent for trees and the
broader class of graphical models with singleton separator sets. They also convey
a cautionary message, in that these methods will be inconsistent (generically) for
other types of graphs. We also describe a new method for neighborhood selection
in an arbitrary sparse graph, based on linear regression over subsets of variables.
This method is most useful for bounded-degree graphs with correlation decay, but
less computationally tractable for larger graphs.

In addition, we show that our methods for graph selection may be adapted to
handle noisy or missing data in a seamless manner. Naively applying nodewise lo-
gistic regression when observations are systematically corrupted yields estimates
that are biased even in the limit of infinite data. There are various corrections avail-
able, such as multiple imputation [34] and the expectation-maximization (EM) al-
gorithm [13], but, in general, these methods are not guaranteed to be statistically
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consistent due to local optima. To the best of our knowledge, our work provides
the first method that is provably consistent under high-dimensional scaling for es-
timating the structure of discrete graphical models with corrupted observations.
Further background on corrupted data methods for low-dimensional logistic re-
gression may be found in Carroll, Ruppert and Stefanski [9] and Ibrahim et al. [17].

The remainder of the paper is organized as follows. In Section 2, we provide
brief background and notation on graphical models and describe the classes of
augmented covariance matrices we will consider. In Section 3, we state our main
population-level result (Theorem 1) on the relationship between the support of
generalized inverse covariance matrices and the edge structure of a discrete graph-
ical model, and then develop a number of corollaries. The proof of Theorem 1 is
provided in Section 3.4, with proofs of corollaries and more technical results de-
ferred to the supplementary material [26]. In Section 4, we develop consequences
of our population-level results in the context of specific methods for graphical
model selection. We provide simulation results in Section 4.4 in order to confirm
the accuracy of our theoretically-predicted scaling laws, dictating how many sam-
ples are required (as a function of graph size and maximum degree) to recover the
graph correctly.

2. Background and problem setup. In this section, we provide background
on graphical models and exponential families. We then present a simple example
illustrating the phenomena and methodology underlying this paper.

2.1. Undirected graphical models. An undirected graphical model or Markov
random field (MRF) is a family of probability distributions respecting the structure
of a fixed graph. We begin with some basic graph-theoretic terminology. An undi-
rected graph G = (V, E) consists of a collection of vertices V ={1,2,..., p} and
a collection of unordered® vertex pairs E C V x V. A vertex cutset is a subset U
of vertices whose removal breaks the graph into two or more nonempty compo-
nents [see Figure 1(a)]. A clique is a subset C € V such that (s,?) € E for all
distinct s, ¢ € C. The cliques in Figure 1(b) are all maximal, meaning they are not
properly contained within any other clique. For s € V, we define the neighborhood
N(s):={t eV |(s,t) € E} to be the set of vertices connected to s by an edge.

For an undirected graph G, we associate to each vertex s € V a random
variable X taking values in a space X'. For any subset A C V, we define
X4 :={X;,s € A}, and for three subsets of vertices, A, B and U, we write
X4 1l Xp | Xy to mean that the random vector X 4 is conditionally independent
of Xp given Xy . The notion of a Markov random field may be defined in terms of
certain Markov properties indexed by vertex cutsets or in terms of a factorization
property described by the graph cliques.

3No distinction is made between the edge (s, ¢) and the edge (, s). In this paper, we forbid graphs
with self-loops, meaning that (s,s) ¢ E forall s € V.
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(b)

FI1G. 1. (@) lllustration of a vertex cutset: when the set U is removed, the graph breaks into two
disjoint subsets of vertices A and B. (b) lllustration of maximal cliques, corresponding to fully con-
nected subsets of vertices.

DEFINITION 1 (Markov property). The random vector X := (X1,..., X)) is
Markov with respect to the graph G if X4 1L Xp | Xy whenever U is a vertex
cutset that breaks the graph into disjoint subsets A and B.

Note that the neighborhood set N(s) is a vertex cutset for the sets A = {s}
and B=V \ {s UN(s)}. Consequently, X; 1L Xvy\(sun(s)} | Xn(s). This property
is important for nodewise methods for graphical model selection to be discussed
later.

The factorization property is defined directly in terms of the probability distri-
bution ¢g of the random vector X. For each clique C, a clique compatibility function
Y¥c 1s a mapping from configurations xc = {x;, s € V'} of variables to the positive
reals. Let C denote the set of all cliques in G.

DEFINITION 2 (Factorization property). The distribution of X factorizes ac-
cording to G if it may be written as a product of clique functions:

(2.1) q(xi1,....xp) o [] ¥elxe).

ceC

The factorization may always be restricted to maximal cliques of the graph, but
it is sometimes convenient to include terms for nonmaximal cliques.

2.2. Graphical models and exponential families. By the Hammersley—Clifford
theorem [5, 15, 21], the Markov and factorization properties are equivalent for any
strictly positive distribution. We focus on such strictly positive distributions, in
which case the factorization (2.1) may alternatively be represented in terms of an
exponential family associated with the clique structure of G. We begin by defin-
ing this exponential family representation for the special case of binary variables
(X ={0, 1}), before discussing a natural generalization to m-ary discrete random
variables.
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Binary variables. For a binary random vector X € {0, 1}”, we associate with
each clique C—both maximal and nonmaximal—a sufficient statistic
Ic(xc) :=[lsec Xs- Note that Ic(xc) =1 if and only if x; =1 for all s € C,
so it is an indicator function for the event {x; = 1, Vs € C}. In the exponential
family, this sufficient statistic is weighted by a natural parameter 6¢ € R, and we
rewrite the factorization (2.1) as

2.2) ot xp) =exp| T bl (o) - ).

ceC
where @ (0) :=10g >, c0.1yp eXP(Xcec Oclc(xc)) is the log normalization con-
stant. It may be verified (cf. Proposition 4.3 of Darroch and Speed [11]) that
the factorization (2.2) defines a minimal exponential family, that is, the statistics
{Ic(xc), C € C} are affinely independent. In the special case of pairwise interac-
tions, equation (2.2) reduces to the classical Ising model:

(2.3) qo(x1, ..., xp) = exp{ D Oxs+ D Ogxex, — cp(@)}.
seV (s,t)eE

The model (2.3) is a particular instance of a pairwise Markov random field.

Multinomial variables. In order to generalize the Ising model to nonbinary
variables, say, X = {0, 1, ..., m — 1}, we introduce a larger set of sufficient statis-
tics. We first illustrate this extension for a pairwise Markov random field. For each
node s € V and configuration j € Ay := X \ {0} ={1,2,...,m — 1}, we introduce
the binary-valued indicator function

19 lf Xs = j’
0, otherwise.

2.4) L. (xs) = {

We also introduce a vector 05 = {0, , j € Xy} of natural parameters associated
with these sufficient statistics. Similarly, for each edge (s, ) € E and configuration
(j,k)e X 2= Xy x Xp, we introduce the binary-valued indicator function Iy;. jx
for the event {x; = j, x;, = k}, as well as the collection 05, := {0y, jx, (j, k) € on}
of natural parameters. Then any pairwise Markov random field over m-ary random
variables may be written in the form

(25) CIQ(xl, "'7-x[7) :exp{Z<QS7I[S(xS)>+ Z (esty]lst(xm -xt)>_ QD(@)}’
seV (s,)€E

where we have used the shorthand (6, I(x,)) := Z’J’.:ll O, 15, j (x5) and (O,

Ir (x5, x7)) i= Z'J",::l] Ost: jklse: jk (x5, x7). Equation (2.5) defines a minimal expo-

nential family with dimension |V |(m — 1) + |E|(m — 1)2 [11]. Note that the fam-

ily (2.5) is a natural generalization of the Ising model (2.3); in particular, when

m =2, we have a single sufficient statistic [;.(xy) = x, for each vertex and a sin-
gle sufficient statistic Iy;.11(xs, x;) = x,x; for each edge. (We have omitted the
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additional subscript 1 or 11 in our earlier notation for the Ising model, since they
are superfluous in that case.)

Finally, for a graphical model involving higher-order interactions, we require
additional sufficient statistics. For each clique C € C, we define the subset of con-
figurations

=X x - x X ={(js,s €C) e X ji £0Vs e C],
—_—

C times

a set of cardinality (m — 1!, As before, C is the set of all maximal and nonmax-

imal cliques. For any configuration J = {j;,s € C} € XAC‘, we define the corre-
sponding indicator function

1, ifxc=J,
0, otherwise.

2.6) Ie.s (i) = {

We then consider the general multinomial exponential family

Go(x1, ... xp) = exp{2<ec,ﬂc> - @(9)}

2.7) cec
forx, e X ={0,1,...,m—1}

with (Oc, Ic(xc)) = ZJGX(‘)Cl Oc.jlc.;(xc). Note that our previous models—

namely, the binary models (2.2) and (2.3), as well as the pairwise multinomial
model (2.5)—are special cases of this general factorization.

Recall that an exponential family is minimal if no nontrivial linear combination
of sufficient statistics is almost surely equal to a constant. The family is regular if
{60:D(0) < oo} is an open set. As will be relevant later, the exponential families
described in this section are all minimal and regular [11].

2.3. Covariance matrices and beyond. We now turn to a discussion of the
phenomena that motivate the analysis of this paper. Consider the usual covari-
ance matrix ¥ = cov(X1, ..., X,). When X is jointly Gaussian, it is an immediate
consequence of the Hammersley—Clifford theorem that the sparsity pattern of the
precision matrix I' = X! reflects the graph structure—that is, I'y; = 0 whenever
(s,t) ¢ E. More precisely, I'y; is a scalar multiple of the correlation of X and X;
conditioned on X\ (s ;) (cf. Lauritzen [21]). For non-Gaussian distributions, how-
ever, the conditional correlation will be a function of X\ (s}, and it is unknown
whether the entries of I have any relationship with the strengths of correlations
along edges in the graph.

Nonetheless, it is tempting to conjecture that inverse covariance matrices might
be related to graph structure in the non-Gaussian case. We explore this possibility
by considering a simple case of the binary Ising model (2.3).
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X X
X X4 4 X o O Xy X
N
\
X X3  Xs X; X0  x, X,

(a) Chain (b) Single cycle  (c) Edge augmented  (d) With 3-cliques  (e) Dino

980 -359 0 0 5137 =537 —0.17 —5.37
Lo _|-359 3430 —477 0 Lo _| =537 5137 537 —0.17
chain =1 o _477 3430 -3.59 loop=1 _017 —-537 5137 -5.37
0 0 —3.59 9.80 —537 —0.17 —-537 5137

() (@

F1G. 2. (a)-(e) Different examples of graphical models. (f) Inverse covariance for chain graph
in (a). (g) Inverse covariance for single-cycle graph in (b).

EXAMPLE 1. Consider a simple chain graph on four nodes, as illustrated in
Figure 2(a). In terms of the factorization (2.3), let the node potentials be 6 = 0.1
for all s € V and the edge potentials be 6, = 2 for all (s, ) € E. For a multivariate
Gaussian graphical model defined on G, standard theory predicts that the inverse
covariance matrix I' = X ~! of the distribution is graph-structured: I'y; = 0 if and
only if (s, #) ¢ E. Surprisingly, this is also the case for the chain graph with binary
variables [see panel (f)]. However, this statement is not true for the single-cycle
graph shown in panel (b). Indeed, as shown in panel (g), the inverse covariance
matrix has no nonzero entries at all. Curiously, for the more complicated graph
in (e), we again observe a graph-structured inverse covariance matrix.

Still focusing on the single-cycle graph in panel (b), suppose that instead of
considering the ordinary covariance matrix, we compute the covariance matrix
of the augmented random vector (X1, X2, X3, X4, X1X3), where the extra term
X1X3 is represented by the dotted edge shown in panel (c). The 5 x 5 inverse of
this generalized covariance matrix takes the form

.15 -0.02 1.09 -0.02 -1.14
—-0.02 0.05 —-0.02 0 0.01

(2.8) Caug = 10° x| 1.09 —0.02 1.14 —0.02 —1.14
—0.02 0 —-0.02 0.05 0.01
—-1.14 001 -—-1.14 0.01 1.19

This matrix safely separates nodes 1 and 4, but the entry corresponding to the
nonedge (1,3) is not equal to zero. Indeed, we would observe a similar phe-
nomenon if we chose to augment the graph by including the edge (2, 4) rather
than (1, 3). This example shows that the usual inverse covariance matrix is not al-
ways graph-structured, but inverses of augmented matrices involving higher-order
interaction terms may reveal graph structure.

Now let us consider a more general graphical model that adds the 3-clique in-
teraction terms shown in panel (d) to the usual Ising terms. We compute the co-
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variance matrix of the augmented vector
V(X)) ={X1, X2, X3, X4, X1 X2, X2X3, X3X4,
X1X4, X1X3, X1X2X3, X1 X3X4) € (0, 1}

Empirically, one may show that the 11 x 11 inverse (cov[W (X D! respects as-
pects of the graph structure: there are zeros in position (@, 8), corresponding to
the associated functions Xy = [[;eq X5 and Xpg = [[;ep Xp, whenever o and
B do not lie within the same maximal clique. [E.g., this applies to the pairs

(a, B) = ({2}, {4}) and (e, B) = ({2}, {1,4}).]

The goal of this paper is to understand when certain inverse covariances do
(and do not) capture the structure of a graphical model. At its root is the principle
that the augmented inverse covariance matrix I' = X!, suitably defined, is always
graph-structured with respect to a graph triangulation. In some cases [e.g., the dino
graph in Figure 2(e)], we may leverage the block-matrix inversion formula [16],
namely,

(2.9) EZ}A =Taa— FA,BFE}BFB,A»

to conclude that the inverse of a sub-block of the augmented matrix (e.g., the or-
dinary covariance matrix) is still graph-structured. This relation holds whenever
A and B are chosen in such a way that the second term in equation (2.9) continues
to respect the edge structure of the graph. These ideas will be made rigorous in
Theorem 1 and its corollaries in the next section.

3. Generalized covariance matrices and graph structure. We now state
our main results on the relationship between the zero pattern of generalized (aug-
mented) inverse covariance matrices and graph structure. In Section 4 to follow, we
develop some consequences of these results for data-dependent estimators used in
structure estimation.

We begin with some notation for defining generalized covariance matrices,
stated in terms of the sufficient statistics previously defined (2.6). Recall that
a clique C € C is associated with the collection {Ic.;, J € XAQ} of binary-valued
sufficient statistics. Let S C C, and define the random vector

3.1) U(X;8) ={lc.;. J € X, Ces),

consisting of all the sufficient statistics indexed by elements of S. As in the previ-
ous section, the set C contains both maximal and nonmaximal cliques.

We will often be interested in situations where S contains all subsets of a given
set. For a subset A C V, let pow(A) denote the collection of all 214l — 1 nonempty
subsets of A. We extend this notation to S by defining

pow(S) := U pow(C).
CeS
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3.1. Triangulation and block structure. Our first main result concerns a con-
nection between the inverses of generalized inverse covariance matrices associated
with the model (2.7) and any triangulation of the underlying graph G. The notion
of a triangulation is defined in terms of chordless cycles, which are sequences of
distinct vertices {s1, ..., s¢} such that:

o (s;,5;+1)€ Eforalll <i</{—1,and also (s¢, s1) € E;
e no other nodes in the cycle are connected by an edge.

As an illustration, the 4-cycle in Figure 2(b) is a chordless cycle.

DEFINITION 3 (Triangulation). ~Given an undirected graph G = (V, E), a tri-
angulation is an augmented graph G = (V, E) that contains no chordless cycles of
length greater than 3.

Note that a tree is trivially triangulated, since it contains no cycles. On the other
hand, the chordless 4-cycle in Figure 2(b) is the simplest example of a nontrian-
gulated graph. By adding the single edge (1, 3) to form the augmented edge set
E=EU {(1, 3)}, we obtain the triangulated graph G = (v, E ) shown in panel (c).
One may check that the more complicated graph shown in Figure 2(e) is triangu-
lated as well.

Our first result concerns the inverse I" of the matrix cov(W (X; C~)), where C is
the set of all cliques arising from some triangulation G of G. For any two subsets
A, Be C. , we write ['(A, B) to denote the sub-block of I" indexed by all indica-
tor statistics on A and B, respectively. (Note that we are working with respect to
the exponential family representation over the triangulated graph G.) Given our
previously-defined sufficient statistics (2.6), the sub-block I'(A, B) has dimen-
sions d4 X dg, where

dy:=m—DA" and dp:=@m— 18

For example, when A = {s} and B = {t}, the submatrix I'(A, B) has dimension
(m — 1) x (m — 1). With this notation, we have the following result:

THEOREM 1 (Triangulation and block graph-structure). Consider an arbitrary
discrete graphical model of the form (2.7), and let C be the set of all cliques in
any triangulation of G. Then the generalized covariance matrix cov(V¥ (X; 5)) is
invertible, and its inverse I' is block graph-structured:

(a) For any two subsets A, B € C that are not subsets of the same maximal clique,
the block T' (A, B) is identically zero.

(b) For almost all parameters 0, the entire block I'(A, B) is nonzero whenever
A and B belong to a common maximal clique.
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In part (b), “almost all” refers to all parameters 6 apart from a set of Lebesgue
measure zero. The proof of Theorem 1, which we provide in Section 3.4, relies on
the geometry of exponential families [7, 36] and certain aspects of convex analy-
sis [32], involving the log partition function & and its Fenchel-Legendre dual ®*.
Although we have stated Theorem 1 for discrete variables, it easily generalizes to
other classes of random variables. The only difference is the specific choices of
sufficient statistics used to define the generalized covariance matrix. This general-
ity becomes apparent in the proof.

To provide intuition for Theorem 1, we consider its consequences for specific
graphs. When the original graph is a tree [such as the graph in Figure 2(a)], it is
already triangulated, so the set Cis equal to the edge set E, together with singleton
nodes. Hence, Theorem 1 implies that the inverse I of the matrix of sufficient
statistics for vertices and edges is graph-structured, and blocks of nonzeros in I
correspond to edges in the graph. In particular, we may apply Theorem 1(a) to the
subsets A = {s} and B = {t}, where s and ¢ are distinct vertices with (s,?) ¢ E,
and conclude that the (m — 1) x (m — 1) sub-block I'(A, B) is equal to zero.

When G is not triangulated, however, we may need to invert a larger augmented
covariance matrix and include sufficient statistics over pairs (s,7) ¢ E as well.
For instance, the augmented graph shown in Figure 2(c) is a triangulation of the
chordless 4-cycle in panel (b). The associated set of maximal cliques is given by
C=1{(1,2),(2,3),(3,4), (1,4, 1,3)); among other predictions, our theory guar-
antees that the generalized inverse covariance I will have zeros in the sub-block

L({2}, {4}.

3.2. Separator sets and graph structure. In fact, it is not necessary to take suf-
ficient statistics over all maximal cliques, and we may consider a slightly smaller
augmented covariance matrix. (This simpler type of augmented covariance matrix
explains the calculations given in Section 2.3.)

By classical graph theory, any triangulation G gives rise to a junction tree rep-
resentation of G. Nodes in the junction tree are subsets of V corresponding to
maximal cliques of G, and the intersection of any two adjacent cliques C; and
C, is referred to as a separator set S = C1 N C,. Furthermore, any junction tree
must satisfy the running intersection property, meaning that for any two nodes of
the junction tree—say, corresponding to cliques C and D—the intersection C N D
must belong to every separator set on the unique path between C and D. The fol-
lowing result shows that it suffices to construct generalized covariance matrices
augmented by separator sets:

COROLLARY 1. Let S be the set of separator sets in any triangulation of G,
and let FNbe the inverse of cov(V (X; VUpow(S))). Then T" ({s}, {t}) = 0 whenever
(S’ t) ¢ E'
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Note that V U pow(S) C C~, and the set of sufficient statistics considered in
Corollary 1 is generally much smaller than the set of sufficient statistics consid-
ered in Theorem 1. Hence, the generalized covariance matrix of Corollary 1 has
a smaller dimension than the generalized covariance matrix of Theorem 1, which
becomes significant when we consider exploiting these population-level results for
statistical estimation.

The graph in Figure 2(c) of Example 1 and the associated matrix in equa-
tion (2.8) provide a concrete example of Corollary 1 in action. In this case, the sin-
gle separator set in the triangulation is {1, 3}, so when X = {0, 1}, augmenting the
usual covariance matrix with the additional sufficient statistic I13.11(x1, X3) = x1x3
and taking the inverse yields a graph-structured matrix. Indeed, since (2,4) ¢ E,
we observe that I'yyg(2,4) = 0 in equation (2.8), consistent with the result of
Corollary 1.

Although Theorem 1 and Corollary 1 are clean population-level results, how-
ever, forming an appropriate augmented covariance matrix requires prior knowl-
edge of the graph, namely, which edges are involved in a suitable triangulation.
This is infeasible in settings where the goal is to recover the edge structure of the
graph. Corollary 1 is most useful for edge recovery when G admits a triangulation
with only singleton separator sets, since then V U pow(S) = V. In particular, this
condition holds when G is a tree. The following corollary summarizes our result:

COROLLARY 2. For any graph with singleton separator sets, the inverse I' of
the covariance matrix cov(\W (X; V) of vertex statistics is graph-structured. (This
class includes trees as a special case.)

In the special case of binary variables, we have ¥(X; V) = (X1, ..., X)), so
Corollary 2 implies that the inverse of the ordinary covariance matrix cov(X) is
graph-structured. For m-ary variables, cov(W¥ (X; V)) is a matrix of dimensions
(m — 1)p x (m — 1) p involving indicator functions for each variable. Again, we
may relate this corollary to Example 1—the inverse covariance matrices for the
tree graph in panel (a) and the dino graph in panel (e) are exactly graph-structured.
Although the dino graph is not a tree, it possesses the nice property that the only
separator sets in its junction tree are singletons.

Corollary 1 also guarantees that inverse covariances may be partially graph-
structured, in the sense that I"({s}, {t}) = O for any pair of vertices (s, ¢) separable
by a singleton separator set, where I' = (cov(V¥ (X; V)))~L. This is because for
any such pair (s, ), we may form a junction tree with two nodes, one containing s
and one containing ¢, and apply Corollary 1. Indeed, the matrix I" defined over
singleton vertices is agnostic to which triangulation we choose for the graph.

In settings where there exists a junction tree representation of the graph with
only singleton separator sets, Corollary 2 has a number of useful implications for
the consistency of methods that have traditionally only been applied for edge re-
covery in Gaussian graphical models: for tree-structured discrete graphs, it suffices
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to estimate the support of (cov(WV(X; V)))~! from the data. We will review meth-
ods for Gaussian graphical model selection and describe their analogs for discrete
tree graphs in Sections 4.1 and 4.2.

3.3. Generalized covariances and neighborhood structure. Theorem 1 also
has a corollary, that is, relevant for nodewise neighborhood selection approaches to
graph selection [27, 31], which are applicable to graphs with arbitrary topologies.
Nodewise methods use the basic observation that recovering the edge structure of
G is equivalent to recovering the neighborhood set N(s) ={r € V:(s,t) € E} for
each vertex s € V. For a given node s € V and positive integer d, consider the
collection of subsets

S(s;d):={U CV\{s},|U|l=d}.

The following corollary provides an avenue for recovering N (s) based on the in-
verse of a certain generalized covariance matrix:

COROLLARY 3 (Neighborhood selection).  For any graph and node s € V with
deg(s) <d, the inverse T" of the matrix cov(V(X; {s} U pow(S(s; d)))) is s-block
graph-structured, that is, I'({s}, B) = 0 whenever {s} # B C N(s). In particular,
'({s}, {t}) =0 for all vertices t ¢ N (s).

Note that pow(S(s; d)) is the set of subsets of all candidate neighborhoods of s
of size d. This result follows from Theorem 1 (and the related Corollary 1) by
constructing a particular junction tree for the graph, in which s is separated from
the rest of the graph by N (s). Due to the well-known relationship between the rows
of an inverse covariance matrix and linear regression coefficients [27], Corollary 3
motivates the following neighborhood-based approach to graph selection: for a
fixed vertex s € V, perform a single linear regression of W(X; {s}) on the vector
W (X; pow(S(s; d))). Via elementary algebra and an application of Corollary 3,
the resulting regression vector will expose the neighborhood N (s) in an arbitrary
discrete graphical model; that is, the indicators W(X; {t}) corresponding to X;
will have a nonzero weight only if + € N(s). We elaborate on this connection in
Section 4.2.

3.4. Proof of Theorem 1. We now turn to the proof of Theorem 1, which is
based on certain fundamental correspondences arising from the theory of exponen-
tial families [4, 7, 36]. Recall that our exponential family (2.7) has binary-valued
indicator functions (2.6) as its sufficient statistics. Let D denote the cardinality of
this set and let I: X7 — {0, 1}? denote the multivariate function that maps each
configuration x € X'? to the vector [(x) obtained by evaluating the D indicator
functions on x. Using this notation, our exponential family may be written in the
compact form gy (x) = exp{(0, [(x)) — ®(0)}, where

(0,10)) = > (0c. Ic)= > > 0c;slc;s(xc).

ceC CeC jeqlc
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Since this exponential family is known to be minimal, we are guaranteed [11] that
VO(@) =Eg[I(X)] and VZ®(9) = covg[I(X)],

where [Eg and covg denote (resp.) the expectation and covariance taken under the
density gg [7, 36]. The conjugate dual [32] of the cumulant function is given by

O () = sup {{11.6) — D(©)).
fecRP

The function ®* is always convex and takes values in R U {4+-00}. From known re-
sults [36], the dual function ®* is finite only for 1 € R? belonging to the marginal

polytope

(3.2) M= {,u e R?

3 some density g s.t. Zq(x)ﬂ(x) = M}-
X

The following lemma, proved in the supplementary material [26], provides
a connection between the covariance matrix and the Hessian of ®*:

LEMMA 1. Consider a regular, minimal exponential family, and define
w=Eg[I(X)] for any fixed 6 € Q =1{6:P(0) < oo}. Then

(3.3) (cove[I(X)]) " = V20* ().

Note that the minimality and regularity of the family implies that covg [[(X)] is
strictly positive definite, so the matrix is invertible.

For any u € int(M), let 6 () € RP denote the unique natural parameter 6 such
that VO (0) = w. It is known [36] that the negative dual function —®* is linked to
the Shannon entropy via the relation

(3.4) —®* () = H(qo (X)) =— Y qou(x)10gqagu) (x).
xeXxp

In general, expression (3.4) does not provide a straightforward way to compute
V2®d*, since the mapping i — 6(u) may be extremely complicated. However,
when the exponential family is defined with respect to a triangulated graph, ®* has
an explicit closed-form representation in terms of the mean parameters . Con-
sider a junction tree triangulation of the graph, and let (C, S) be the collection
of maximal cliques and separator sets, respectively. By the junction tree theorem
[20, 22, 36], we have the factorization

[lcezgce(xc)
[Tsesas(xs)

where g¢c and ¢gg are the marginal distributions over maximal clique C and sepa-
rator set S. Consequently, the entropy may be decomposed into the sum

(3.6)  H(@=- )Y qx)logqgx)=)_ Hc(qc)— Y Hs(gs).

xeXp ceC SeSs

(3.5) qx1,...,xp) =
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where we have introduced the clique- and separator-based entropies

Hs(gs):=— Y qs(xs)loggs(xs)
xseXxls|
and
He(ge):=— Y. qclxe)logge(xe).
xceXICl

Given our choice of sufficient statistics (2.6), we show that gc and gs may be
written explicitly as “local” functions of mean parameters associated with C and S.
For each subset A C V, let uas € (m — 1)|A‘ be the associated collection of mean
parameters, and let

Mpow(A) = {up |2 # B C A}
be the set of mean parameters associated with all nonempty subsets of A. Note
that ftpow(4) contains a total of Z}ﬁl (lfl)(m — 1)* = m!Al — 1 parameters, corre-
sponding to the number of degrees of freedom involved in specifying a marginal
distribution over the random vector x4. Moreover, ipow(4) uniquely determines
the marginal distribution g4:

LEMMA 2. For any marginal distribution g in the m'\-dimensional proba-
bility simplex, there is a unique mean parameter vector ipow(a) and matrix Ma
such that ga = Ma - [Lpow(A)-

For the proof, see the supplementary material [26].
We now combine the dual representation (3.4) with the decomposition (3.6),
along with the matrices {Mc, Mg} from Lemma 2, to conclude that

(3.7 —0*(w) =Y He(Mc(tpow(©)) — Y Hs(Ms(ipows)))-
ceC SeS

Now consider two subsets A, B € C that are not contained in the same maximal
clique. Suppose A is contained within maximal clique C. Differentiating expres-
sion (3.7) with respect to w4 preserves only terms involving gc and ggs, where
S 1s any separator set such that A € S € C. Since B C C, we clearly cannot have
B C §. Consequently, all cross-terms arising from the clique C and its associated
separator sets vanish when we take a second derivative with respect to up. Re-
peating this argument for any other maximal clique C’ containing A but not B, we
have %(M) = 0. This proves part (a).

Turning to part (b), note that if A and B are in the same maximal clique, the
expression obtained by taking second derivatives of the entropy results in an al-
gebraic expression with only finitely many solutions in the parameters p (conse-
quently, also 6). Hence, assuming the 6’s are drawn from a continuous distribution,
the corresponding values of the block I'(A, B) are a.s. nonzero.
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4. Consequences for graph structure estimation. Moving beyond the pop-
ulation level, we now state and prove several results concerning the statistical con-
sistency of different methods—both known and some novel—for graph selection
in discrete graphical models, based on i.i.d. draws from a discrete graph. For sparse
Gaussian models, existing methods that exploit sparsity of the inverse covariance
matrix fall into two main categories: global graph selection methods (e.g., [12, 14,
31, 33]) and local (nodewise) neighborhood selection methods [27, 40]. We divide
our discussion accordingly.

4.1. Graphical Lasso for singleton separator graphs. We begin by describ-
ing how a combination of our population-level results and some concentration in-
equalities may be leveraged to analyze the statistical behavior of log-determinant
methods for discrete graphical models with singleton separator sets, and suggest
extensions of these methods when observations are systematically corrupted by
noise or missing data. Given a p-dimensional random vector (X1, ..., X,) with
covariance X *, consider the estimator

4.1 O carg min{trace(i ®) —logdet(®) + A, |®s,|},
0>0 o

where ¥ is an estimator for £*. For multivariate Gaussian data, this program is
an £1-regularized maximum likelihood estimate known as the graphical Lasso and
is a well-studied method for recovering the edge structure in a Gaussian graphical
model [3, 14, 33, 39]. Although the program (4.1) has no relation to the MLE
in the case of a discrete graphical model, it may still be useful for estimating
©* := (£*)~!. Indeed, as shown in Ravikumar et al. [31], existing analyses of
the estimator (4.1) require only tail conditions such as sub-Gaussianity in order to
guarantee that the sample minimizer is close to the population minimizer. The anal-
ysis of this paper completes the missing link by guaranteeing that the population-
level inverse covariance is in fact graph-structured. Consequently, we obtain the
interesting result that the program (4.1)—even though it is ostensibly derived from
Gaussian considerations—is a consistent method for recovering the structure of
any binary graphical model with singleton separator sets.

In order to state our conclusion precisely, we introduce additional notation. Con-
sider a general estimate T of the covariance matrix £ such that

~ log p
@2 P[I8 = 2 2 0220 | < cep(-v . )
for functions ¢ and V¥, where || - ||max denotes the elementwise £~,-norm. In

the case of fully-observed i.i.d. data with sub-Gaussian parameter o2, where
Y= %Z?:] xixl.T — xxT is the usual sample covariance, this bound holds with

¢(5%) = 02 and ¥ (n, p) = ' log p.
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As in past analysis of the graphical Lasso [31], we require a certain mutual
incoherence condition on the true covariance matrix X* to control the correlation
of nonedge variables with edge variables in the graph. Let '* = ¥* @ ¥*, where
® denotes the Kronecker product. Then I'* is a p? x p? matrix indexed by vertex
pairs. The incoherence condition is given by

(4.3) man”FjS(Fj;S)‘l”1 <l-a,  ac(01],
eeS¢

where S := {(s,1):©}, # 0} is the set of vertex pairs corresponding to nonzero
entries of the precision matrix ®*, equivalently, the edge set of the graph, by our
theory on tree-structured discrete graphs. For more intuition on the mutual inco-
herence condition, see Ravikumar et al. [31].

With this notation, our global edge recovery algorithm proceeds as follows:

ALGORITHM 1 (Graphical Lasso).

. Form a suitable estimate %, of the true covariance matrix X.

2. Optimize the graphical Lasso program (4.1) with parameter A,, and denote the
solution by 0.

3. Threshold the entries of ® at level T, to obtain an estimate of ®*.

—

It remains to choose the parameters (1, 7,,). In the following corollary, we will
establish statistical consistency of ® under the following settings:

1 1
(4.4) hp = L [OEP rn=cz{c—1,/ ng+)»n},
o n [0 n

where « is the incoherence parameter in inequality (4.3) and ci, ¢ are univer-
sal positive constants. The following result applies to Algorithm 1 when X is the
sample covariance matrix and (A,, t,) are chosen as in equations (4.4):

COROLLARY 4. Consider an Ising model (2.3) defined by an undirected graph
with singleton separator sets and with degree at most d, and suppose that the
mutual incoherence condition (4.3) holds. With n >~ d*log p samples, there are
universal constants (c, ¢') such that with probability at least 1 — c exp(—c’log p),
Algorithm 1 recovers all edges (s, t) with |©F,| > T/2.

The proof is contained in the supplementary material [26]; it is a relatively
straightforward consequence of Corollary 1 and known concentration properties
of ¥ as an estimate of the population covariance matrix. Hence, if |®%| > 7/2 for
all edges (s,t) € E, Corollary 4 guarantees that the log-determinant method plus
thresholding recovers the full graph exactly.

In the case of the standard sample covariance matrix, a variant of the graphical
Lasso has been implemented by Banerjee, El Ghaoui and d’Aspremont [3]. Our
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analysis establishes consistency of the graphical Lasso for Ising models on single
separator graphs using n - d?log p samples. This lower bound on the sample size
is unavoidable, as shown by information-theoretic analysis [35], and also appears
in other past work on Ising models [2, 19, 30]. Our analysis also has a caution-
ary message: the proof of Corollary 4 relies heavily on the population-level result
in Corollary 2, which ensures that ®* is graph-structured when G has only sin-
gleton separators. For a general graph, we have no guarantees that ®* will be
graph-structured [e.g., see panel (b) in Figure 2], so the graphical Lasso (4.1) is
inconsistent in general.

On the positive side, if we restrict ourselves to tree-structured graphs, the es-
timator (4.1) is attractive, since it relies only on an estimate T of the population
covariance X* that satisfies the deviation condition (4.2). In particular, even when
the samples {x;}7_, are contaminated by noise or missing data, we may form a
good estimate ¥ of ¥*. Furthermore, the program (4.1) is always convex regard-
less of whether ¥ is positive semidefinite.

As a concrete example of how we may correct the program (4.1) to handle cor-
rupted data, consider the case when each entry of x; is missing independently with
probability p, and the corresponding observations z; are zero-filled for missing
entries. A natural estimator is

~ 1 & 1
45 S=(-Yu )+ M- ——zi",
(4.5) (n l.:lzlzl ) (1— ,o)2ZZ

where -+ denotes elementwise division by the matrix M with diagonal entries (1 —
p) and off-diagonal entries (1 — ,0)2, correcting for the bias in both the mean and
second moment terms. The deviation condition (4.2) may be shown to hold w.h.p.,
where ¢(X*) scales with (1 — p) (cf. Loh and Wainwright [25]). Similarly, we
may derive an appropriate estimator ¥ for other forms of additive or multiplicative
corruption.

Generalizing to the case of m-ary discrete graphical models with m > 2, we
may easily modify the program (4.1) by replacing the elementwise £1-penalty by
the corresponding group ¢1-penalty, where the groups are the indicator variables
for a given vertex. Precise theoretical guarantees follow from results on the group
graphical Lasso [18].

4.2. Consequences for nodewise regression in trees. Turning to local neigh-
borhood selection methods, recall the neighborhood-based method due to Mein-
shausen and Biihlmann [27]. In a Gaussian graphical model, the column
corresponding to node s in the inverse covariance matrix I' = £ ! is a scalar mul-
tiple of ,g = ZG}\ s 2\s,s» the limit of the linear regression vector for X; upon X\;.
Based on 7 i.i.d. samples from a p-dimensional multivariate Gaussian distribution,
the support of the graph may then be estimated consistently under the usual Lasso
scaling n 77 dlog p, where d = [N (s)|.
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Motivated by our population-level results on the graph structure of the inverse
covariance matrix (Corollary 2), we now propose a method for neighborhood se-
lection in a tree-structured graph. Although the method works for arbitrary m-ary
trees, we state explicit results only in the case of the binary Ising model to avoid
cluttering our presentation.

The method is based on the following steps. For each node s € V, we first per-
form £;-regularized linear regression of X against X\; by solving the modified
Lasso program

(4.6) pcarg min {lﬂTfﬁ ~7'B +An||ﬁ||1},
181 <bovk | 2

where by > ||ﬁ |l1 is a constant, (f, y) are suitable estimators for (B, \s0 D\s,s5)>

and A, is an appropriate parameter. We then combine the neighborhood estimates

over all nodes via an AND operation [edge (s, ) is present if both s and ¢ are

inferred to be neighbors of each other] or an OR operation (at least one of s or ¢ is

inferred to be a neighbor of the other).

Note that the program (4.6) differs from the standard Lasso in the form of
the £1-constraint. Indeed, the normal setting of the Lasso assumes a linear model
where the predictor and response variables are linked by independent sub-Gaussian
noise, but this is not the case for X; and X\ in a discrete graphical model. Fur-
thermore, the generality of the program (4.6) allows it to be easily modified to
handle corrupted variables via an appropriate choice of (T, 7), as in Loh and Wain-
wright [25].

The following algorithm summarizes our nodewise regression procedure for re-
covering the neighborhood set N (s) of a given node s:

ALGORITHM 2 (Nodewise method for trees).

1. Form a suitable pair of estimators (f, y) for covariance submatrices (X\;,\s,
2:\s,s)~

2. Optimize the modified Lasso program (4.6) with parameter 1,, and denote the
solution by S. .

3. Threshold the entries of 8 at level t,,, and define the estimated neighborhood

set ]V(s\) as the support of the thresholded vector.

In the case of fully observed i.i.d. observations, we choose (f, y) to be the
recentered estimators

T
= =T X\SXS - =
—X\SX\S, n —XSX\S

@4.7) T.9) = (
and assign the parameters (A,, t,) according to the scaling

~ log p ~ log p
(4.3) A Z@lBl2 — T, <X ¢l Bll2 —
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where 5 = E\_Sl\s X\s,s and ¢ is some parameter such that (x;, u) is sub-Gaussian

with parameter ¢?|u ||2 for any d-sparse vector u, and ¢ is independent of u. The
following result applies to Algorithm 2 using the pairs (I', ) and (A,, 7,,) defined
as in equations (4.7) and (4.8), respectively.

PROPOSITION 1. Suppose we have i.i.d. observations {x;}}_, from an Ising

model and that n 7~ ¢ max{)\ Il Ex_l |||c2>o}d2 log p. Then there are universal

n(Zyx)’
constants (c,c’, ¢”) such that wzth probability greater than 1 — cexp(—c’log p),

for any node s € V, Algorithm 2 recovers all neighbors t € N(s) for which 1B =
2 1
"ol Bllay =2

We prove this proposition in the supplementary material [26], as a corollary of a
more general theorem on the £.,-consistency of the program (4.6) for estimating 3,
allowing for corrupted observations. The theorem builds upon the analysis of Loh
and Wainwright [25], introducing techniques for £~,-bounds and departing from
the framework of a linear model with independent sub-Gaussian noise.

REMARKS. Regarding the sub-Gaussian parameter ¢ appearing in Proposi-
tion 1, note that we may always take ¢ = Jd, since |xiTu| < lully < Vd|ull2
when u is d-sparse and x; is a binary vector. This leads to a sample complexity
requirement of n 2, d 3log p. We suspect that a tighter analysis, possibly combined
with assumptions about the correlation decay of the graph, would reduce the sam-
ple complexity to the scaling n =~ d 2log p, as required by other methods with fully
observed data [2, 19, 30]. See the simulations in Section 4.4 for further discussion.

For corrupted observations, the strength and type of corruption enters into the
factors (@1, ¢2) appearing in the deviation bounds (C.2a) and (C.2b) below, and
Proposition 1 has natural extensions to the corrupted case. We emphasize that al-
though analogs of Proposition 1 exist for other methods of graph selection based
on logistic regression and/or mutual information, the theoretical analysis of those
methods does not handle corrupted data, whereas our results extend easily with the
appropriate scaling.

In the case of m-ary tree-structured graphical models with m > 2, we may per-
form multivariate regression with the multivariate group Lasso [29] for neighbor-
hood selection, where groups are defined (as in the log-determinant method) as
sets of indicators for each node. The general relationship between the best linear
predictor and the block structure of the inverse covariance matrix follows from
block matrix inversion, and from a population-level perspective, it suffices to per-
form multivariate linear regression of all indicators corresponding to a given node
against all indicators corresponding to other nodes in the graph. The resulting vec-
tor of regression coefficients has nonzero blocks corresponding to edges in the
graph. We may also combine these ideas with the group Lasso for multivariate
regression [29] to reduce the complexity of the algorithm.
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4.3. Consequences for nodewise regression in general graphs. Moving on
from tree-structured graphical models, our method suggests a graph recovery
method based on nodewise linear regression for general discrete graphs. Note
that by Corollary 3, the inverse of cov(W(X; pow(S(s;d)))) is s-block graph-
structured, where d is such that |[N(s)| < d. It suffices to perform a single mul-
tivariate regression of the indicators W (X; {s}) corresponding to node s upon the
other indicators in W (X; V U pow(S(s; d))).

We again make precise statements for the binary Ising model (m = 2). In this
case, the indicators W (X; pow(U)) corresponding to a subset of vertices U of size
d’ are all 2¢" — 1 distinct products of variables X,,, for u € U. Hence, to recover
the d neighbors of node s, we use the following algorithm. Note that knowledge
of an upper bound d is necessary for applying the algorithm.

ALGORITHM 3 (Nodewise method for general graphs).

1. Use the modified Lasso program (4.6) with a suitable choice of (T, 7) and reg-
ularization parameter A, to perform a linear regression of X upon all products
of subsets of variables of X\, of size at most d. Denote the solution by .

2. Threshold the entries of /§ at level t,,, and define the estimated neighborhood
set N (s) as the support of the thresholded vector.

Our theory states that at the population level, nonzeros in the regression vector
correspond exactly to subsets of N (s). Hence, the statistical consistency result of
Proposition 1 carries over with minor modifications. Since Algorithm 3 is essen-
tially a version of Algorithm 4 with the first two steps omitted, we refer the reader
to the statement and proof of Corollary 5 below for precise mathematical state-
ments. Note here that since the regression vector has O(p?) components, 2¢ — 1
of which are nonzero, the sample complexity of Lasso regression in step (1) of
Algorithm 3 is O(2¢ log(p?)) = 024 log p).

For graphs exhibiting correlation decay [6], we may reduce the computational
complexity of the nodewise selection algorithm by prescreening the nodes of V' \ s
before performing a Lasso-based linear regression. We define the nodewise corre-
lation according to

re(s, 1) =Y |P(Xs =xy, X; = x;) — P(X; = x)P(X; = x,)|
XXt
and say that the graph exhibits correlation decay if there exist constants ¢,k > 0
such that
4.9) re(s,t) >k V(s,1) € E and rc(s, 1) <exp(—(r(s,t))

for all (s,7) € V x V, where r(s, t) is the length of the shortest path between s
and ¢. With this notation, we then have the following algorithm for neighborhood
recovery of a fixed node s in a graph with correlation decay:



3042 P-L. LOH AND M. J. WAINWRIGHT

ALGORITHM 4 (Nodewise method with correlation decay).

1. Compute the empirical correlations

Fo(s,t) =Y [P(Xy = x5, X; = x,) — P(X; = x)P(X; = x,)|

Xs, Xt

between s and all other nodes ¢t € V, where PP denotes the empirical distribution.

2. LetC:={t € V:rc(s,t) > k/2} be the candidate set of nodes with sufficiently
high correlation. (Note that C is a function of both s and « and, by convention,
s¢C.)

3. Use the modified Lasso program (4.6) with parameter A, to perform a linear
regression of X against Cg := W (X; V Upow(C(s;d))) \ {Xs}, the set of all
products of subsets of variables {X.:c € C} of size at most d, together with
singleton variables. Denote the solution by A.

4. Threshold the entries of /§ at level t,, and define the estimated neighborhood

set ﬁ(s\) as the support of the thresholded vector.

Note that Algorithm 3 is a version of Algorithm 4 with C = V \ s, indicating
the absence of a prescreening step. Hence, the statistical consistency result below
applies easily to Algorithm 3 for graphs with no correlation decay.

For fully observed i.i.d. observations, we choose (f, y) according to

_ xTx xT'x
.10) <nw=(‘fc—kﬁlc Wd@ﬁ
n

n

and parameters (X,, t,) as follows: for a candidate set C, let x¢; € {0, 1}/Cal
denote the augmented vector corresponding to the observation x;, and define
Yc :=Cov(xc,i,xc,i). Let B := Zc_l Cov(xc,, xs,i). Then set

log |Cd =~ [log|Cyl
-L'l’l = )

(4.11) ZellBl =olBl2

where (p is some function such that (x¢;,u) is sub-Gaussian with parameter
0 ||u ||2 for any 4 —1)- -sparse vector u, and ¢ does not depend on u. We have the
following consistency result, the analog of Proposition 1 for the augmented set of
vectors. It applies to Algorithm 4 with the pairs (f, 7) and (A, T,) chosen as in
equations (4.10) and (4.11).

COROLLARY 5. Consider i.i.d. observations {x;};_, generated from an Ising
model satisfying the correlation decay condition (4.9), and suppose

1 —12 } 2d>
_ 2 log |Cy4].
}\'min(EC) ”|oo g| dl

Then there are universal constants (c,c’,c”) such that with probability at least
1 — cexp(—c'log p), and for any s € V:

4.12) n <K2—|—<p2max{
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(i) The set C from step (2) of Algorithm 4 satisfies |C| < d108@#/)/¢
(i1) Algorithm 4 recovers all neighbors t € N (s) such that

5 5 [log|Cql
1B:1 = "pllBll2 pa—

The proof of Corollary 5 is contained in the supplementary material [26]. Due to
the exponential factor 2¢ appearing in the lower bound (4.12) on the sample size,
this method is suitable only for bounded-degree graphs. However, for reasonable
sizes of d, the dimension of the linear regression problem decreases from O (p?) to
ICal = O(IC|?) = O(d@10e@/€) /¢y which has a significant impact on the runtime
of the algorithm. We explore two classes of bounded-degree graphs with corre-
lation decay in the simulations of Section 4.4, where we generate Erdos—Renyi
graphs with edge probability ¢/p and square grid graphs in order to test the be-
havior of our recovery algorithm on nontrees. When m > 2, corresponding to non-
binary states, we may combine these ideas with the overlapping group Lasso [18]
to obtain similar algorithms for nodewise recovery of nontree graphs. However,
the details are more complicated, and we do not include them here. Note that our
method for nodewise recovery in nontree graphical models is again easily adapted
to handle noisy and missing data, which is a clear advantage over other existing
methods.

4.4. Simulations. In this section we report the results of various simulations
we performed to illustrate the sharpness of our theoretical claims. In all cases,
we generated data from binary Ising models. We first applied the nodewise linear
regression method (Algorithm 2 for trees; Algorithm 3 in the general case) to the
method of ¢;-regularized logistic regression, analyzed in past work for Ising model
selection by Ravikumar, Wainwright and Lafferty [30]. Their main result was to es-
tablish that, under certain incoherence conditions of the Fisher information matrix,
performing £;-regularized logistic regression with a sample size n >~ d>log p is
guaranteed to select the correct graph w.h.p. Thus, for any bounded-degree graph,
the sample size n need grow only logarithmically in the number of nodes p. Un-
der this scaling, our theory also guarantees that nodewise linear regression with
£1-regularization will succeed in recovering the true graph w.h.p.

In Figure 3 we present the results of simulations with two goals: (i) to test the
n & log p scaling of the required sample size; and (ii) to compare £1-regularized
nodewise linear regression (Algorithms 3 and 4) to ¢;-regularized nodewise lo-
gistic regression [30]. We ran simulations for the two methods on both tree-
structured and nontree graphs with data generated from a binary Ising model, with
node weights 6; = 0.1 and edge weights 6;; = 0.3. To save on computation, we
employed the neighborhood screening method described in Section 4.3 to prune
the candidate neighborhood set before performing linear regression. We selected
a candidate neighborhood set of size |2.5d] with highest empirical correlations,
then performed a single regression against all singleton nodes and products of sub-
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success prob vs. sample size for Erdos—Renyi graph
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FI1G. 3.  Comparison between {1 -regularized logistic vs. linear regression methods for graph re-
covery. Each panel plots of the probability of correct graph recovery vs. the rescaled sample size
n/log p; solid curves correspond to linear regression (method in this paper), whereas dotted curves
correspond to logistic regression [30]. Curves are based on average performance over 500 trials.
(a) Simulation results for two-dimensional grids with d = 4 neighbors, and number of nodes p vary-
ing over {64, 144, 256}. Consistent with theory, when plotted vs. the rescaled sample size n/log p, all
three curves (red, blue, green) are well aligned with one another. Both linear and logistic regression
transition from failure to success at a similar point. (b) Analogous results for an Erdds—Renyi graph
with edge probability 3/ p. (c) Analogous results for a chain-structured graph with maximum degree
d=2.

sets of the candidate neighborhood set of size at most d, via the modified Lasso
program (4.6). The size of the candidate neighborhood set was tuned through re-
peated runs of the algorithm. For both methods, the optimal choice of regulariza-
log p

tion parameter A, scales as , and we used the same value of A, in comparing
logistic to linear regression. In each panel we plot the probability of successful

graph recovery versus the rescaled sample size o>, with curves of different col-
gp

ors corresponding to graphs (from the same family) of different sizes. Solid lines
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correspond to linear regression, whereas dotted lines correspond to logistic regres-
sion; panels (a), (b) and (c) correspond to grid graphs, Erdos—Renyi random graphs
and chain graphs, respectively. For all these graphs, the three solid/dotted curves
for different problem sizes are well aligned, showing that the method undergoes a
transition from failure to success as a function of the ratio 1oZp- In addition, both
linear and logistic regression are comparable in terms of statistical efficiency (the
number of samples 7 required for correct graph selection to be achieved).

The main advantage of nodewise linear regression and the graphical Lasso over
nodewise logistic regression is that they are straightforward to correct for corrupted

or missing data. Figure 4 shows the results of simulations designed to test the be-

success prob vs. sample size for dino graph with missing data success prob vs. sample size for chain graph, rho =0, 0.1, 0.2
1 ; ; .

0.81 0.81

0.61 0.61

0.4 0.4

—rho=0

rho = 0.05

—rho=0.1 ||

—rho=0.15

—rho=0.2 §

0 100 200 300 400 500 0 50 100 150 200 250
n/log p n/log p

0.2r

success prob, avg over 1000 trials
success prob, avg over 1000 trials

(a) Dino graph with missing data (b) Chain graph with missing data
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FIG. 4. Simulation results for global and nodewise recovery methods on binary Ising models, al-
lowing for missing data in the observations. Each point represents an average over 1000 trials.
Panel (a) shows simulation results for the graphical Lasso method applied to the dinosaur graph
with the fraction p of missing data varying in {0,0.05,0.1,0.15,0.2}. Panel (b) shows simulation
results for nodewise regression applied to chain graphs for varying p and p. Panel (c) shows simula-
tion results for nodewise regression applied to star graphs with maximal node degree d =log p and
varying p.
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havior of these corrected estimators in the presence of missing data. Panel (a)
shows the results of applying the graphical Lasso method, as described in Sec-
tion 4.1, to the dino graph of Figure 2(e). We again generated data from an Ising
model with node weights 0.1 and edge weights 0.3. The curves show the probabil-
ity of success in recovering the 15 edges of the graph, as a function of the rescaled
sample size 10217 for p = 13. In addition, we performed simulations for differ-
ent levels of missing data, specified by the parameter p € {0, 0.05,0.1, 0.15, 0.2},
using the corrected estimator (4.5). Note that all five runs display a transition
from success probability 0 to success probability 1 in roughly the same range,
as predicted by our theory. Indeed, since the dinosaur graph has only singleton
separators, Corollary 2 ensures that the inverse covariance matrix is exactly graph-
structured, so our global recovery method is consistent at the population level.
Further note that the curves shift right as the fraction p of missing data increases,
since the recovery problem becomes incrementally harder.

Panels (b) and (c) of Figure 4 show the results of the nodewise regression
method of Section 4.2 applied to chain and star graphs, with increasing numbers of
nodes p € {32, 64, 128} and p € {64, 128, 256}, respectively. For the chain graphs
in panel (b), we set node weights of the Ising model equal to 0.1 and edge weights
equal to 0.3. For the varying-degree star graph in panel (c), we set node weights
equal to 0.1 and edge weights equal to %, where the degree d of the central hub
grows with the size of the graph as [log p|. Again, we show curves for different
levels of missing data, p € {0, 0.1, 0.2}. The modified Lasso program (4.6) was op-
timized using a form of composite gradient descent due to Agarwal, Negahban and
Wainwright [1], guaranteed to converge to a small neighborhood of the optimum
even when the problem is nonconvex [25]. In both the chain and star graphs, the
three curves corresponding to different problem sizes p at each value of the miss-
ing data parameter p stack up when plotted against the rescaled sample size. Note

n

that the curves for the star graph stack up nicely with the scaling Zlogp’ rather than

the worst-case scaling n < d> log p, corroborating the remark following Proposi-
tion 1. Since d = 2 is fixed for the chain graph, we use the rescaled sample size
i ng in our plots, as in the plots in Figure 3. Once again, these simulations corrob-
orate our theoretical predictions: the corrected linear regression estimator remains
consistent even in the presence of missing data, although the sample size required

for consistency grows as the fraction of missing data p increases.

S. Discussion. The correspondence between the inverse covariance matrix
and graph structure of a Gauss—Markov random field is a classical fact with nu-
merous consequences for estimation of Gaussian graphical models. It has been an
open question as to whether similar properties extend to a broader class of graph-
ical models. In this paper, we have provided a partial affirmative answer to this
question and developed theoretical results extending such relationships to discrete
undirected graphical models.



STRUCTURE ESTIMATION FOR DISCRETE GRAPHS 3047

As shown by our results, the inverse of the ordinary covariance matrix is graph-
structured for special subclasses of graphs with singleton separator sets. More gen-
erally, we have considered inverses of generalized covariance matrices, formed by
introducing indicator functions for larger subsets of variables. When these sub-
sets are chosen to reflect the structure of an underlying junction tree, the edge
structure is reflected in the inverse covariance matrix. Our population-level results
have a number of statistical consequences for graphical model selection. We have
shown that our results may be used to establish consistency (or inconsistency) of
standard methods for discrete graph selection, and have proposed new methods
for neighborhood recovery which, unlike existing methods, may be applied even
when observations are systematically corrupted by mechanisms such as additive
noise and missing data. Furthermore, our methods are attractive in their simplicity,
in that they only involve simple optimization problems.

Acknowledgments. Thanks to the Associate Editor and anonymous reviewers
for helpful feedback.

SUPPLEMENTARY MATERIAL

Supplementary material for “Structure estimation for discrete graph-
ical models: Generalized covariance matrices and their inverses” (DOI:
10.1214/13-A0OS1162SUPP; .pdf). Due to space constraints, we have relegated
technical details of the remaining proofs to the supplement [26].
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APPENDIX A: PROOFS OF SUPPORTING LEMMAS FOR
THEOREM 1

In this section, we supply the proofs of Lemmas 1 and 2, which are used
in the proof of Theorem 1.

A.1. Proof of Lemma 1. By Proposition B.2 of Wainwright and Jor-
dan [8] (cf. Theorems 23.5 and 26.3 of Rockafellar [7]), we know that the
dual function ®* is differentiable on the interior of the marginal polytope
M defined in equation (3.2), in particular with

(A1) VO (1) = (VO) () for all p € int(M).

Also, by Theorem 3.4 of Wainwright and Jordan [8], for any u € int(M),
the negative dual function takes the form ®*(u) = —H (qp(p)), where 6(u) =
(V) (n).

By relation (A.1), we have

(VO)(VP* (1)) = 1 for all p € M.

Since this equation holds on an open set, we may take derivatives; employing
the chain rule yields

(V2@)(VO* (1)) - (V2" (1)) = IpxD-
Rearranging yields the relation V2®*(u) = (V2®(6))~! lo—=6(u)> as claimed.

A.2. Proof of Lemma 2. We induct on the subset size. For sets of
size 1, the claim is obvious. Now suppose the claim holds for all subsets
up to some size k > 1, and consider a subset of size k + 1, which we write
as C = {1,...,k + 1}, without loss of generality. For any configuration
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J e X(l)c‘, the marginal probability gc(xc = J) is equal to puc,s, by con-
struction. Consequently, we need only specify how to determine the proba-
bilities go(xc = J) for configurations J € X ‘C‘\X(‘)C‘. By the definition of
XACI, each j € J has j; = 0 for at least one s € {1,...,k+ 1}.

We show how to express the remaining marginal probabilities sequentially,
inducting on the number of positions s for which j; = 0. Starting with the
base case in which there is a single zero, suppose without loss of generality
that jy.1 = 0. For each ¢ € {1,2,...,m — 1}, let J* be the configuration
such that Jf = J; for all i # k + 1 and J£+1 = (. Defining D := C\{k + 1},
we then have

m—1
(A2) go(ve =J)=qplep =J) = > _ qolzc =J"),

=1
where J' € X* is the configuration defined by Jl=J foralli=1,2,... k.
Since |D| = k, our induction hypothesis implies that ¢p(zp = J') is a

linear function of the specified mean parameters. Moreover, our starting
assumption implies that J¢ € th)c‘ for all £ ={1,2,...,m — 1}, so we have
qc(xc = J*) = pe.ge. This establishes the base case.

Now suppose the sub-claim holds for all configurations with at most ¢
nonzeros, for some ¢t > 1. Consider a configuration J with ¢+ 1 zero entries.
Again without loss of generality, we may assume ji11 = 0, so equation (A.2)
may be derived as before. This time, the configurations J¢ are not in X[l)c‘
(since they still have ¢ > 1 zero entries); however, our induction hypothesis
implies that the corresponding probabilities may be written as functions of
the given mean parameters. This completes the inductive proof of the inner
claim, thereby completing the outer induction, as well.

APPENDIX B: PROOFS OF POPULATION-LEVEL COROLLARIES

In this Appendix, we prove Corollaries 1 and 3. (As previously noted,
Corollary 2 is an immediate consequence of Corollary 1.)

B.1. Proof of Corollary 1. Recall that C denotes the set of all cliques
in the triangulation G. The covariance matrix in Theorem 1 is indexed by
C, and our goal is to define appropriate blocks of the matrix and then apply
the matrix inversion lemma [3]. Consider the collection pow(S). We define
the collection of singleton subsets V' = {{1},{2},...,{p}}, and introduce
the disjoint partition

¢= (pow(S) U v) U (5\{pow(5) U V}) .

u w
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The following property of the collection W is important:

LEMMA 3. For each maximal clique C' € C, define the set collection
F(C) =pow(C)\U. For any A € W, we have A € F(C) for exactly one C.

Proor. We first establish existence. Since W C 5, any set A € W is
contained in some maximal clique Cy4. Since A ¢ U, we clearly have A €
F(Ca).

To establish uniqueness, consider a set A belonging to the intersection
C1 N Cy of two maximal cliques. If these cliques are adjacent in the junction
tree, then A belongs to the separator set C1NC5, so A cannot belong to W, by
definition. Even when C} and Cy are not adjacent, the running intersection
property of the junction tree implies that C; N Cy must belong to every
separator set on the unique path between C7 and C5 in the junction tree,
implying that A ¢ W, as before. This is a contradiction, implying that the
maximal clique C'4 is unique. O

Define I' = (cov(¥(X; 5)))71 By the block-matrix inversion formula [3],
we may write

(B.1)
0 = (cov (W(X;U)))"" = TU,U) — TU,W)(TOV, W) T(W,U).

We need to show that ©(A, B) = 0 for any members A, B € U that do not
belong to the same maximal clique. By Theorem 1(a), we have I'(4, B) =0
whenever A and B do not belong to the same maximal clique, so it remains
to show that T'(A,W)(T(W,W)) ' T(W, B) = 0.

We begin by observing that the matrix I'(W, W) is block-diagonal with
respect to the partition {F(C) : C' € C} previously defined in Lemma 3. (In-
deed, consider two sets D, E € W with D € F(C) and E € F(C") for distinct
maximal cliques C' # C’. Two such sets cannot belong to the same maximal
clique, so Theorem 1(a) implies that I'(D, E) = 0.) Since block-diagonal
structure is preserved by matrix inversion, the inverse YT = (T(W,W))~!
shares this property, so for any two members A, B € U, we may write

L(A,W)(T(W,W))"'T(W, B)
(B.2)
= Y T(AF(O)Y(FC), FIC)I(F(C), B).
F(O),ceC

We claim that each of these terms vanishes. For a given maximal clique C’,
suppose A is not contained within C’; we first claim that T'(A, F(C")) = 0
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or equivalently, for any set D € F(C"), we have I'(4, D) = 0. From Theo-
rem 1(a), it suffices to show that A and D cannot be contained within the
same maximal clique. From Lemma 3, we know that A belongs to a unique
maximal clique C. Any set D € F(C") is contained within C’; if it were also
contained within C, then D would be contained in C N C’. But as argued in
the proof of Lemma 3, this implies that D is contained within some separator
set, whence it cannot belong to F(C’). We thus conclude that T'(A4, D) = 0,
as claimed.

Taking any two subsets A and B that are not contained in the same maxi-
mal clique, we see that for any clique C, we must either have T'(A, F(C)) =0
or I'(F(C), B) = 0. Hence, each term in the sum (B.2) indeed vanishes, com-
pleting the proof.

B.2. Proof of Corollary 3. This corollary follows by a similar ar-
gument as in the proof of Corollary 1. As before, let C denote the set of
all cliques in the triangulation G, and let V' = {{1},{2},...,{p}}. Define
U =pow(S(s;d)) UV and W = C\U.

Let Cs := s U N(s), and consider a disjoint partition of W defined by
F1 = pow(Cs)\U and Fy := W\Fi. Note that C; is the unique maximal
clique in c containing s. By construction, every clique in F3 does not contain
s and has more than d elements, whereas every clique in F7 is contained in
Cy, with |Cs| < d+ 1. Tt follows that no two cliques A € F; and B € F, can
be contained in the same maximal clique. Denoting I' := (cov(¥(X;C))) ™2,
we conclude via Theorem 1(a) that I'(W, W) is block-diagonal.

We now use the block matrix-equation formula (B.1). As before, Theo-
rem 1(a) implies that I'(U,U) is graph-structured according to G. In partic-
ular, for any B € U with B C Cy, we have I'({s}, B) = 0. (The elements of
U that are subsets of Cy are exactly {s} and the nonempty subsets of N(s).)
Hence, it remains to show that I'({s}, W)(T' (W, W))~'T'(W, B) = 0.

Analogous to equation (B.2), we may write

2
T ({s}, W)T(W,W)"'T(W, B) = > _T({s}, )Y (Fi, Fi)T(F, B),

i=1

where Y := (I'(W,W))~!. Applying Theorem 1(a) once more, we see that
I'(F,B) = 0, since B C Cy and I'({s},F2) = 0. Therefore, the matrix
O = (cov(¥(X;U)))~! appearing in equation (B.1) is indeed s-block graph-
structured.
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APPENDIX C: PROOF OF PROPOSITION 1

In this section, we provide a proof of our main nodewise recovery result,
Proposition 1. For proofs of supporting technical lemmas and all corollaries
appearing in the text, see Appendix D.

C.1. Main argument. We derive Proposition 1 as a consequence of
a more general theorem. Suppose we have i.i.d. observations {(x;, )},
with z; € RP and y; € R, and we wish to estimate the best linear predictor
B = %1 Cov(x;,y;), when 3 is k-sparse. Loh and Wainwright [5] formulated
a modified version of the Lasso based on possibly corrupted observations;
however, they assume the linear regression model

(C.1) yi =l B + e,

where ¢; is sub-Gaussian noise and ¢; L x;. Although the model (C.1) holds
in the case where y; is a sample from a single node and z; is a sample from all
other nodes in a Gaussian graphical model, the model (C.1) does not hold
in a general discrete graphical model. Nonetheless, we show that essentially
the same Lasso estimator provides an estimator for B that is consistent for

support recovery. Suppose the pair (I, 7) in the Lasso program (4.6) satisfies
the following deviation bounds:

~~ lo
(C.20) IP8 = Flloo < 11/ 2L,

~ klo
(C2b) [T = Zo)oll < pollvllooy/ —F Vo € By(8k) N Boo(1),

for some 1, 3. Also suppose T satisfies the lower-restricted eigenvalue (RE)
condition:

(C.3) vITw > alv Vo st o)y < VE[vll.

Then we have the following technical result:

~

THEOREM 2. Suppose the pair (I',7) satisfies the deviation conditions
(C.2a) and (C.2b), as well as the lower-RE condition (C.3). Also suppose

o2 2 IIx—1]12 log
n max{m,g% |||Ez |||Oo}krlogp and Ay 7 p1y/ =2, Then any

~

optimum [ of the Lasso program (4.6) satisfies

18 = Blloo < 420 122l -
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The proof of Theorem 2 is provided in Appendix C.2. In order to prove
Proposition 1, we first establish that the deviation conditions (C.2a) and
(C.2b) of Theorem 2 hold w.h.p. with (¢1,p2) = (cp||BH2, ©), and the lower-
RE condition holds with o = %)\min(Ex).

Note that

(C.4) ITB = Ao < 1T = £2)Bllow + | Cov (i, yi) — Al oo-

Furthermore,

1T~ 22)Bllo <

XTx ~ ~
(52X -Ewa)) 5|+l - 2B
and

+ 1172 — E(yi) E(24)l|oo-

o

XTy
’— — E(yiz:)
n

| Cov(ai, i) — Flloe < ‘

As in the analysis of inequality (E.1) below, we may disregard the two second
terms involving empirical means, since they concentrate at a fast rate. Since
xl'B is sub-Gaussian with parameter ?||3||3 by assumption, and e;fpa:i and
y; are clearly sub-Gaussian with parameter 1, the deviation condition (C.2a)
follows with @1 = ¢||5||2 by standard concentration bounds on an i.i.d. aver-
age of products of sub-Gaussians (cf. Lemma 14 of Loh and Wainwright [5]).

For the second deviation bound, we will verify the bound over a more

tractable set via the following lemma:

LEMMA 4. For any constant ¢y > 0, we have
Bi(cok) NBoo(1) C (1 4 ¢o) cl{conv{By(k) N Boo(1)}}.

Hence, it is sufficient to establish the deviation inequality (C.2b) over
the set Bo(k) N Boo(1). We proceed via a discretization argument. Suppose
{v1,...,uap} is a %—covering of the unit /s-ball in R¥ in its own metric. By
standard results on metric entropy, we know that such a covering exists with
M < ¢*. Writing ¢(v) = ||(T — £,)0]|o, we know that there exists v; such
that [|v — v < 3. Let Av =10 — v;. Then

~ 1
d() = [(T=2e)(vj+A0)[loc < P(v)+9(Av) < sup W(vj)+5 sup (v),
1<j<M olloo <1

simply by rescaling. Taking the sup over {||v[|loc < 1} on the LHS and
rearranging then yields

sup <2 sup (vj).
[lvlloo <1 1<j<M
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Hence, it suffices to establish the bound for a given v € Bi(cok) N Boo(1),
then take a union bound over the M < ¥ elements in the discretization and
the (Z) < p" choices of the support set.
For a given k-sparse v, note that #7 v has sub-Gaussian parameter ¢?||v||3
by assumption, and
lol3 < llollillvlles < VE[ol2lvlloos

so z] v is sub-Gaussian with parameter ¢?k||v||%,. Since e] ; is sub-Gaussian

with parameter 1, it follows from the same recentering techniques as in
inequality (E.1) that

I(F = Sa)v]loc = max |ef (T = So)o| <,

702nt2

with probability at least 1—c¢q exp (W

) . Taking a union bound over the

klogp
n

discretization and setting t = covVE[|[v]| 0o then implies the deviation

bound (C.2b) with @9 = ¢, under the scaling n = ©?k? log p.

The lower-RE condition (C.3) may be verified analogously to the results
in Loh and Wainwright [5]. The only difference is to use the fact that z1v
is sub-Gaussian with parameter (?||v||3 in all the deviation bounds. Then
the lower-RE condition holds with probability at least 1—c; exp(—c2klog p),
under the scaling n = ¢?klog p.

We may take A\, = ¢|| 821/ k’% in Theorem 2 to conclude that w.h.p.,
18 = Blloo Z @lBll2y/ ——-
n

Finally, note that the vector E is a scalar multiple of column s of the inverse
covariance matrix I, as a straightforward consequence of block matrix inver-
sion. Hence, combining Corollary 1 and Theorem 2 implies that thresholding
succeeds w.h.p. for neighborhood recovery in a tree graph.

C.2. Proof of Theorem 2. We begin by establishing ¢1- and /5- error
bounds, which will be used in the sequel:

LEMMA 5. Suppose the deviation condition (C.2a) holds and T satisfies

the lower-RE condition (C.3). Also suppose A, 72 ©11/ 10%. Then any global
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optimum B of the Lasso program (4.6) satisfies the bounds

(C.5) 1B - Bll. < SLPWY

(67
(C.6) I8~ Bl < 22 {1\/10” Mn).

We now argue that for suitable scaling n 7~ klog p, any optimum B lies in
the interior of By (bgvk):

LEMMA 6. Suppose 3 is an optimum of the Lasso program (4.6). Then

2
i - (—e
under the scaling n 2 (a(boﬂlﬁllz)) klog p, we have

B ¢ 0By (boVk).

By Lemma 6, we are guaranteed that ,73’\ is an interior point of the feasible
set. Consequently, by Proposition 2.3.2 of Clarke [2], we are guaranteed that
0 is a generalized gradient of the objective function at 5. By Proposition
2.3.3 of Clarke [2], there must exist a vector 2 € 9|51 |ﬁ:§ such that

TB—7+ A2 =0.
Denoting the loss function £(5) = %BTfﬁ —ATB, we have VL(B) = rg— ¥,
SO
VL(B) = VLB) = VLB) + Az =T8 -5+ M2.
Then
(C.7) VL) = VLBl < I8 =Flloo + Anll2lloe < ITF = Alloo + An-
Using the deviation bound (C.2a) again, we have

log p
n

T8 = Alloe < 1

It follows from equation (C.7) that if A\,, > ¢ lorglp , then

(C.8) IVL(B) — VLB o < 2An.
Finally, we lower-bound
IVL(B) — VLB |loo = [T7]0o
> [Z20]loe — [T = Z2)P o
_ —1 |~ = ~
(C.9) > szlmoo ||V||oo - ”(F - Ez)VHoo-
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Now note that ||7]; < 8Vk||P||2, as shown in Loh and Wainwright [5], so we
have
1213 < 1ZllolPlh < 8VE[D]oolP]]2,

so |7ll2 < 8VE|P|leo. In particular, ||7]j1 < 8k|P|le. Applying inequal-
ity (C.2b) tov = m then gives

N R . klogp
1T = 207l < csozllvlloo\/T~

Combining this with inequality (C.9), we have

~ . 1 klogp
(C.10) IT7lo0 = [[7]loo <_7 — cpayf —) :
122" "

so when n 5 ¢3 |||E;1|||io klogp, we have

I [
IT2lloe > 5o
T2

Finally, combining with inequality (C.8) yields the result of the theorem.

APPENDIX D: PROOF OF SUPPORTING LEMMAS TO
PROPOSITION 1

D.1. Proof of Lemma 4. We denote the left-hand set by A and the
right-hand set by B. It suffices to show that ¢ 4(z) < ¢p(z) for all z, where
 is the support function.

For a given z, let S be the set of indices of coordinates of z with highest
absolute value. We may write

wAa(z) =sup(l, z)
0cA

= sup(fg, zs) + (0ge, zse)

0cA
(D.1) < llzslli + cokllzse[loc;
since
(0s, 23) < [|0sllcllzsllt < [10lloollzsllt < ll2sll1
and

(Oge, zge) < [|0se][1]|zs¢]lo0 < cokllzse]lo

for § € A. Furthermore, k|/zs¢||oo < ||zs]]1. Hence, inequality (D.1) becomes

pa(z) < (1+co)ll2slh-
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Finally, note that

vp(2) =(1+co) max sup Oy, zu) = (1+ co)llzsl1,
U<k 10y [|oo <1

establishing the desired result.

D.2. Proof of Lemma 5. The proof is essentially the same as in the
case of a standard linear model [5]. From the fact that g is feasible and NB
is optimal, we obtain a basic inequality. Furthermore, defining 7 = B\ - B,
we may verify the cone condition ||7|; < e¢vk|7||2. We will not repeat the
arguments here.

D.3. Proof of Lemma 6. Note that
1B = Blls = 181l = 181 = 18I — VI8l
Hence, if E € OB (boVk), we have
(D.2) 18 = Bl = bovk — [|Bll2Vk = (bo — [|B]l2) V.

On the other hand, Theorem 1 in Loh and Wainwright [5] guarantees that
under deviation condition (C.2a) and the lower-RE condition (C.3), we have
the ¢1-bound

cprk [logp
(0% n

(D.3) 1B =Bl <

Combining inequalities (D.2) and (D.3) gives

(bo — |1Bla)VE < 218, [lo8P,
(6] n

2
contradicting the assumption that n > (L¥> klog p.
a(bo—8l2)

APPENDIX E: PROOFS OF SAMPLE-BASED COROLLARIES

Here, we provide proofs for the remaining corollaries involved in sample-
based approaches to graph selection.
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E.1. Proof of Corollary 4. As noted by Liu et al. [4], the proof of
this corollary hinges only on the deviation condition condition (4.2) being
satisfied w.h.p.; the rest of the proof follows from the analysis of Ravikumar
et al. [6]. We verify inequality (4.2) with ¢(X*) = ¢; and ¥(n,p) = ¢ logp.

Note that

“ 1 — .
||E — EHmax = H (E ZQE,LZE? — .’EZL'T> -
i=1

1 n
i=1

max

(E.1) < +[|Z7" — E(z)E(z:)" |

max ’

max

where we have used the triangle inequality and the fact that 3 = E(xeZT) —
E(z;)E(z;)" in the second line. Noting that [|Y|lmax = max;[e] Yeg| for a
matrix Y, and the random variables eiji are i.i.d. Bernoulli (sub-Gaussian
parameter 1) for each fixed j, we conclude by standard sub-Gaussian tail
bounds (cf. Lemma 14 in Loh and Wainwright [5]) that the first term is

bounded by 4/ loip , with probability at least 1 — cexp(—c'logp). For the
second term, we may further bound

1z2" — E(@)E(zi) |max < 1(Z = E(@)(Z — E(2:))" [lmax
+ 2|E(zi)[[oo |7 — E(2)]| oo,

by way of the triangle inequality. Note that e?(f — E(z;)) is an average
of i.i.d. sub-Gaussian variables with parameter 1, hence has sub-Gaussian
parameter % Therefore, we have the even tighter bound %\/ 10% for this
term. Combining the bounds for the two terms in inequality (E.1) establishes
the deviation condition (4.2).

By the machinery of Ravikumar et al. [6], we then have the elementwise
bound R

]P)[”@ - @*Hmax > Tn] < Cexp(_cl Ing)'

The statement about thresholding O to obtain a consistent estimate of ©*
follows immediately.

E.2. Proof of Corollary 5. The analysis borrows techniques from
the paper [1]. We first prove that under the scaling n = x%logp, we have
Irc(s,t) —ro(s,t)] < § for all (s,t) € V x V, with probability at least
1—cy exp(—calog p). First fix a pair (s,t) and a corresponding pair of values
(zs, ). By a simple application of Hoeffding’s inequality, we have

P (“P(Xs =z5, Xt = 14) — I/P\)(Xs =5, Xy = 24)| > 6) < cexp(—cln62),
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and similarly for the marginal deviations |[P(X, = z,) — ]TD(XS = z,)| and

~

|]P)(Xt = l‘t) — ]P(Xt = .Tt)l Note that

Irc(s,t) —ro(s,t)] < Z <|IP>(XS =24, Xy = 1) — P(X, = 24, X; = 1)

Ts, Tt

(X, = 23)P(X: = 21) — B(X, = 2)P(X; m).

Furthermore,

~

IP(X, = 25)P(X; = 3)—P(X, = 2)P(X; = a4)|
< |P(X, = 2,) — P(X, = z5)| - P(X; = 2)

~ ~

+ |P(Xt = .I‘t) — ]P(Xt — It)| . P(Xs = .Ts)
< 2e,

so taking a union bound over all pairs (s,t) and all values (xg,x), we
have |ro(s,t) — ro(s,t)] < 3m2e for all (s,t) € V x V, with probability
at least 1 — cm?p? exp(—c/ne?). Finally, taking e = 19 and using the
fact that n = x%logp gives the desired bound, with probability at least
1 — ¢1 exp(—calogp).

In particular, it follows that

N(s)QCQ{tGV:rC(s,t)zg},

with probability at least 1 — ¢; exp(—c2 log p). Since the last subset has car-
log(4/r)
dinality at most d ¢ by the correlation decay condition, we also have
log(4/r)
IC] <d ¢, as claimed.

The remainder of the proof is identical to the proof of Proposition 1, and
is a consequence of Theorem 2.
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