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ABSTRACT
HVAC systems account for 38% of building energy usage.
Studies have indicated at least 5-15% waste due to unoccu-
pied spaces being conditioned. Our goal is to minimize this
waste by retrofitting HVAC systems to enable room-level

zoning where each room is conditioned individually based
on its occupancy. This will allow only occupied rooms to be
conditioned while saving the energy used to condition un-
occupied rooms. In order to achieve this goal, the effect of
opening or closing air vent registers on room temperatures
has to be predicted. Making such a prediction is complicated
by the fact that weather has a larger effect on room temper-
atures than the settings of air vent registers, making it hard
to isolate the influence of the HVAC system. We present a
technique for dynamically estimating the heat load due to
weather on room temperatures and subtracting it out in or-
der to predict the effect of the HVAC system more directly.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous; I.6.5 [Simulation
and Modeling]: Model Development---modeling method-

ologies

General Terms
Design, Experimentation, Measurement

Keywords
Building energy, energy, environment, sensing

1. INTRODUCTION
Buildings account for 75% [4] of the electricity and 43% of
the greenhouse gas emissions in the United States [9] and
the Heating, Ventilation, and Cooling (HVAC) system is
the single largest energy consumer in residential buildings,
accounting for 43% of the residential energy consumption in
the US [5], and over 60% in Canada [6] and the UK [12],
which have colder climates. This accounts for 38% of all

the building energy used in the United States and over 15%
of the total energy used in the U.S., making HVAC sys-
tems one of the nation’s largest energy consumers. Studies
have indicated that at least 5-15% of this waste is due to
the course-grained, manual configuration of thermostats by
users, whereby spaces are heated or cooled even if not needed
by the occupants. Much of this wasted energy is used to
heat or cool unoccupied spaces during long periods when
people use only a small fraction of a house, such as when
they work in an office or sleep in a bedroom. Our vision is
to minimize this energy wastage through room-level zoning,
where each room is conditioned individually based on its oc-
cupancy. This would allow most, if not all, of the energy
used by the HVAC system to be focused on maintaining oc-
cupied rooms at a comfortable temperature without wasting
any energy conditioning unoccupied rooms.

Many homes in the United States have centralized HVAC
systems that have a single compressor or furnace. Such sys-
tems have to be configured for zoning during installation if
homeowners want to minimize energy wastage. Most, if not
all, zoned HVAC systems are implemented in multi-story
houses where each floor is configured to be a separate zone.
Due to the room usage generally being separated by floor,
so that the bedrooms are on the upper floor and the living
spaces on the lower floor, a coarse-grained zoning schedule
can be manually configured for such a system allowing en-
ergy savings. For example, the system can be configured to
condition the upper floor only during the night, when the
bedrooms are in use, and the lower floor only during the day,
when the living spaces are most likely to be used. Such a
scheme cannot be used in a single-story house because the
night and day living spaces are adjacent to each other. Also,
the fact that rooms on a single floor are not as thermally iso-
lated as rooms on separate floors reduces the energy savings
that can be achieved through coarse-grained zoning within
a floor.

Our goal is to implement a system that can retrofit the cen-
tralized HVAC systems that are in most homes in the United
States so that air vents can be controlled individually and
room-level zoning can be achieved. Such a system would
require an automated controller that decides which rooms
have to be conditioned and dynamically alters the zones
based on occupancy and room temperature by opening and
closing air-vent registers in rooms. In order for such a con-
troller to be efficiently implemented, the affect of opening



or closing registers on the temperatures in the room have to
be predictable. Thus, in this paper we present and evalu-
ate techniques to learn and predict the effect of opening or
closing each vent register, in a set of R air vent registers, on
the temperature at each sensor, in a set of T temperature
sensors placed within a house.

The main challenge to modeling the thermal characteristics
of a house is the effect of weather on the indoor temperature.
For instance, wind, solar gain, and outdoor temperature
have a greater influence on indoor temperature than any in-
dividual air vent register. It is difficult to build a model that
completely captures the effect of weather on indoor tempera-
tures because outdoor weather conditions constantly change
and rarely repeat. The difficulty of attributing the influence
on weather conditions on indoor temperature makes it dif-
ficult to isolate the effect of the state of any particular air
vent register on the indoor temperature.

Our approach to overcoming this problem is to model the
indoor temperature in two stages. In the first stage, we mea-
sure the rate of heat gain or loss due exclusively to outdoor
weather conditions. This stage is modeled with data col-
lected when the HVAC system is off using a linear function
of current temperature. Then, when the HVAC system is
turned on, we measure the change in the rate of heat gained
or lost in a room due to the conditioned air provided by
the HVAC system. We expect this change to be constant
throughout the year because the HVAC system always out-
puts the same amount of conditioned air. Thus, we isolate
the HVAC effects by learning and subtracting out a dynamic
estimate of weather effects over long periods of time.

In this paper, we present three iterations of a thermal model
and analyze its accuracy in terms of predicting the effect of
opening and closing various combinations of registers with a
centralized HVAC system. An analysis of the HVAC system
itself is beyond the scope of this paper. Performing ten-fold
cross validation over three weeks of data sampled over three
months, we demonstrate that even with the simplest model
we can predict temperatures to within two degrees 30 min-
utes into the future. We focus on a 30 minute time window
because longer time windows are not beneficial when making
HVAC control decision. We also demonstrate that even the
simplest of the three models we present in this paper is able
to provide this level of accuracy allowing temperature pre-
diction to be incorporated into an HVAC zoning controller
easily and without much computation overhead.

2. BACKGROUND
Heating, Ventilation, and Air Conditioning (HVAC) control
systems are devised in order to maintain comfort within an
enclosed space. In addition to meeting a desired tempera-
ture, this comfort is maintained by achieving a certain level
of humidity, pressure, radiant energy, air motion, and air
quality within a building [2]. The testbed in this study
utilizes a centralized heat pump air conditioner. This is
the most common method of residential air conditioning in
the United States. Centralized HVAC systems do not per-
mit fine-grained room-level control of the HVAC equipment
beyond opening and closing air-vent registers that feed air
into rooms. Thus, knowing the affect of opening or closing
dampers is critical to the efficient retrofitting of a central-

ized HVAC system to enable room-level zoning.

2.1 Centralized HVAC System
The framework for the HVAC system is the air handling
unit. The main responsibility of the air handling system
is to deliver conditioned air throughout the building, while
removing exhaust air and carbon dioxide (CO2) from the
rooms. Most of the equipment is hidden from occupants,
being located outside and in ducts within the building [2].

The air handling system may include fans, compressors, heat-
ing/cooling coils, and ducts, in addition to system controllers.
The air handling process works in the following way: First,
outdoor air is mixed with the return air of the system. The
pressure of this air is determined by the supply air fan. The
air is then heated/cooled to a preset temperature, and is
released into specific spaces through the dampers. The ex-
haust air from the room is sent into the ducts according to
the exhaust fan speed, and it is returned to begin the process
again.

The damper is a mechanical device that allows for a variable
amount of supply air to be released into a room. It consists
of a thin metal sheet, rotated on an axis by an actuator. If
the damper is set at 90 degrees, or 0% open, the damper
is fully shut and no air is supplied to the room. When the
damper is set to 0 degrees, or 100% open, the maximum
amount of air is released [2].

2.2 System Logic
A centralized HVAC system can run in four possible states
when heating/cooling: Float; Hold; Heat/Cool 1; and, Heat/Cool
2. Float causes the HVAC system to turn off, and hold tells
the system to remain at the same temperature. Heat/Cool
1 corresponds to running the system at 67%, which provides
a lower level of heating/cooling that can supply a base level
of conditioned air throughout the day. Heat/Cool 2 turns
on when temperature needs to be changed by a significant
amount, and the system runs at 100%. The system in our
testbed runs stage 2 conditioning if the current tempera-
ture is more than two degrees above/below the current set-
point [13].

2.3 Zoning
Most of the energy wasted by HVAC systems go towards
heating or cooling unoccupied spaces during long periods
when people use only a small fraction of a house. For in-
stance, at night the bedrooms are used while the rest of
the house is unoccupied and during the day the living room
and kitchen maybe used with the bedrooms being unused for
long periods of time. Zoning systems attempt to exploit this
fact, and save energy for homeowners, by dividing a building
into two or more zones that are controlled by separate ther-
mostats, so that the occupants can schedule each zone to be
heated or cooled separately. However, zoning systems are
expensive, and are, therefore, typically only used for very
course-grained zoning of the house: a typical configuration
can condition the first floor living spaces separately from the
second floor sleeping quarters for example. Such systems are
both spatially and temporally course grained allowing large
areas, in this case floors of a building, to be zoned separately
and scheduled with a low frequency, for example switching
between the living and sleeping areas only twice a day.



3. PROBLEM DEFINITION
Our problem is defined by a set of air vent dampers D and
a set of temperature sensors T that are dispersed across a
house (Figure 2). The dampers can be opened or closed,
determining if conditioned air is delivered directly into a
room. Due to the lack of thermal isolation between rooms,
even if the air vent dampers of a room are closed, its tem-
perature could still be affected by the HVAC system due to
leakage from neighboring rooms. The temperature sensors
monitor the temperatures at different points throughout the
house. Figure 1 shows the readings at the twelve tempera-
ture sensors in our deployment during a day with all air
vent dampers open. As the figure shows, the HVAC sys-
tem being off (blue) causes drops in temperature while the
HVAC system being on (red) usually causes temperature in-
creases. We are attempting to learn and predict these effects
on the temperature sensors when different sets of air vent
dampers are opened and closed. In other words, we want to
answer the question ‘‘What effect does each register being

open have on the reading of each temperature sensor?’’ Be-
ing able to make such a prediction allows us to implement
a fine-grained automated zoning controller that can dynam-
ically alter zones within a single floor to maintain occupied
rooms at a comfortable temperature while allowing unoccu-
pied rooms to drift. Yet, answering this question is difficult
due to the effect of the weather on the internal tempera-
ture of houses. Wind, solar gain, outdoor temperature, and
other weather conditions have a much greater influence on
indoor temperature than the conditioned air provided by an
HVAC system. These weather conditions constantly change,
and rarely repeat, therefore including it as part of a model
is impossible without greatly increasing the complexity of
the model. But, ignoring the effect of weather on internal
temperature makes it impossible to isolate the effect of a par-
ticular register on a temperature sensor. Thus, a secondary
question we are attempting to answer is ‘‘Can we learn the

effect of dampers on temperature sensors without knowing

the weather during the training phase?’’ In other words,
we are attempting to capture the effect of the weather on
the temperature sensor readings while ignoring the actual
weather conditions, such as the external temperature or the
position of the sun.

There have been a number of approaches proposed for learn-
ing the thermal response of buildings in order to control
HVAC systems efficiently [7, 3, 11, 8, 10, 1]. Yet, these
approaches require a large amount of data or sophisticated
sensors that will hinder our goal of developing a cheap and
easy to install retrofit to enable room-level zoning of existing
centralized HVAC systems.

4. EXPERIMENTAL SETUP
The room-level zoning system described has been deployed
in a single-story, 8-room, 1,200-square-foot residential build-
ing. A model of the home is shown in Figure 2. The hallway
and porch are depicted, but not included within our analy-
sis because of the inability to actuate temperature within
these regions. The HVAC system setup is overlaid in or-
der to show the position of vents, ducts, and the central air
handler.

Figure 2 shows the deployment from which data for this
paper was collected. We used twelve temperature sensor

Figure 2: The residential testbed used for this study.
Red and blue overlays show an example of two room-
level zones, the green ducts terminate in air vent
registers that can be opened or closed, and the red
circles show the locations of the twelve temperature
sensors with the sensor IDs indicated.

deployed across the house and air vent registers that are
remotely actuatable and collected data over a three month
period. Three weeks of the collected data was used for the
analysis presented in this paper.

4.1 Temperature Detection
Sensors deployed throughout the building allow us to moni-
tor the temperature and HVAC status within each room/zone.
We collect temperature data at a fine granularity using tem-
perature sensors placed at various points along the walls. In
order to ensure the scalability of this system, we use 12 stan-
dard, off-the-shelf temperature sensors manufactured by La
Crosse Technology [13].

One challenge with sensing temperature in this way is that
temperatures are not uniform throughout the rooms/zones
and along the walls. This can present problems when trying
to determine the true temperature of each room. As shown
in Figure 3, the placement of wall sensors has a large impact
on the variability of the temperatures detected. While the
sensors on the internal wall vary within the temperature
range dictated by the return duct, the sensors on the ex-
ternal wall are subject to large temperature swings. This is
because the external wall sensors pick up temperatures from
outside of the building through windows, doors, and the wall
itself. This is also compounded by the fact that most vents
are placed on external walls, making these sensors subject
to direct air from the duct [13].

Thus, we use two methods to ensure accuracy within our
temperature data collection. The first is to only place sen-
sors along the interior walls of the rooms. The second is to
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Figure 1: The effect on temperature sensors, within a 24-hour period, of the HVAC system being on (red)
and off (blue) when heating with all air vent dampers open. The locations of the twelve sensors are presented
in Figure 2

record the temperature as an average of these sensors, help-
ing to detect the temperature more uniformly throughout
the room.

4.2 HVAC Status Detection
The HVAC system used in this study can run in four possible
states when heating/cooling: Float; Hold; Heat/Cool 1; and,
Heat/Cool 2. Data on these system states are collected by
interfacing with a standard internet-controlled thermostat
manufactured by BAYweb. These stages are described in
detail in the following section.

5. MODEL OF TEMPERATURE DYNAM-

ICS
The parameters of the model include the position of the
damper, temperature, system status, and time. These val-
ues are recorded through a wireless sensor network deployed
in the testbed and stored in a database. The temperature
values are measured in degrees Fahrenheit, and the damper
positions take one of two values: 0 (closed) or 1 (open 100%).
The system status allows us to see whether the system is in
off, heat/cool 1, or heat/cool 2 mode. An example of the
damper, temperature, and system status for one room is
shown in Figure 3.

In analyzing this system, we explore a number of different
models. Three iterations of our final model are shown in the
following sections. Each is a dynamic, linear model that is
developed in two stages. The first stage aims to estimate

the effects of heating/cooling due to external factors such
as solar radiation, wind, and cloud coverage. This effect is
calculated when the system is turned off, and the values are
then used to develop the model when the system turns back
on. This two-stage approach allows us to compensate for
external factors without having to measure them directly.
Furthermore, the results allow us to predict temperature
dynamics due to the HVAC configuration with greater ac-
curacy.

dTk/dt = αT + βD (1)

The models we discuss follow the same format (Equation 1)
in which the temperature of a specific room Tk over time
t is a result of external factors (calculated through α), and
the current damper configuration, D. The three iterations
of this model differ in the way that the external factor coef-
ficient, α, is calculated. These differences are as follows: 1)
The first iteration calculates a universal α value by pooling
the data when the system is off. 2) The second iteration
calculates a constantly changing α value when the system is
off, and uses this constantly calculated α value in the model
when the system turns on. 3) The third iteration adds to
the model complexity by using universal α values for all
neighbors T1, ..., Tn of the temperature in room k, Tk.

5.1 Static Alpha
The first iteration of the model we describe is one in which
the α values, which estimate the temperature change due
to weather patterns, are constant throughout the day. In
order to calculate these values, we pool the data from times



Figure 3: The system status (on/off), temperature (◦F), and damper position (open/closed) for one room in
our testbed over the period 11/30/2011-12/04/2011.

when the system is off together and fit one α value across all
timesteps for each of the n rooms. This value is calculated
through linear regression, and assumes that the heat load
due to weather remains relatively constant throughout the
day.

5.2 Dynamic Alpha
In the second iteration, we explore the idea that the heat
load due to weather conditions may be changing continu-
ously throughout the day. In order to do this, we calculate
a dynamically changing α value for each off segment, and
include that value in the on segment that directly follows
it. This method aims to compensate for weather by assum-
ing that the heat load due to weather changes significantly
throughout the day, but by very little between one cycle of
the system.

5.3 Adjacency Model
The third iteration increases the complexity of the first by
including the other n rooms into the model. This assumes
that the current temperature of the room is affected not
only by its own weather conditions, but also by the tem-
perature dynamics within the other rooms of the building.
This model also calculates the α values universally through
linear regression. The form of this room adjacency model is
as follows:

dTk/dt = α1T1 + α2T2 + · · ·+ αnTn + βD (2)

6. RESULTS
We compare the three iterations of our model described in
section 5 using 21 days worth of data tested with 10-fold
cross validation which involves randomly dividing the 21
days of data into ten equal sets, training the model using
nine of those sets, and testing with the remaining set. All
combinations of nine sets for training and one set for testing
are used. The 21 days we have selected for model develop-
ment and testing have been sampled from 3 months worth
of data between October and December 2011. Using the
training data, we develop the β values for the model. We
then use these values with the α value scheme dictated by
the model iteration in order to predict temperatures when
the system turns on.

6.1 Prediction
Our predictions assume that temperature grows linearly when
the system turns on as a result of the current damper configu-
ration and the previous weather patterns estimated through
α. Though temperature dynamics within a building are of-
ten nonlinear, we find a reasonable estimate by predicting
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Figure 4: An example of a prediction made for tem-
perature up to 30 minutes into the future after the
system turns on. The solid blue line shows the ac-
tual temperature when the system is off; the dashed
blue line shows the actual temperature when the
system is on; and the dashed red line shows tem-
perature predicted after the system has just turned
on.

temperature linearly into the future. This is because the
temperature and airflow of the system operate within a nar-
row regime, making it reasonable to approximate change
with a linear model. An example of a prediction 30 minutes
into the future is shown in Figure 4. Here, the blue lines
represent the actual temperatures and the red line plots our
prediction. The solid blue line shows the temperature when
the system is off, and the red/blue dashed lines show the pre-
dicted/actual temperatures when the system has just turned
on.

6.2 Error Metric
One difficulty in determining the effectiveness of these mod-
els is that we aim to use them to predict temperatures at
more than one timestep into the future. This involves calcu-
lating predictions at each point that the system is on, up to
t minutes into the future until the system turns off again.

The error metric that we have chosen for this comparison
is to determine the distribution of prediction error as we
predict t minutes into the future. For each minute, t, we
calculate the mean and standard deviation of the prediction
errors t minutes away from the initial time. The results from
these analyses for the static α, dynamic α, and adjacency
model are shown in Figure 5, Figure 6, and Figure 7 respec-
tively. These results are calculated on a per-sensor basis for
each of the 12 sensors in the 7 rooms of the building.
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Figure 5: Error distribtuions for the static α model, up to 30 minutes into the future. The locations of the
twelve sensors are presented in Figure 2
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Figure 6: Error distributions for the dynamic α model, up to 30 minutes into the future. The locations of
the twelve sensors are presented in Figure 2
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Figure 7: Error distributions for the adjacency model, up to 30 minutes into the future. The locations of the



Visually examining the error distributions highlights a few
important things about the model. One is that the variance
of the errors tends to increase as we predict further into
the future. The error can get quite large in some places,
particularly in the dynamic α model. However, most of
the values for each model remain within 2 degrees for the
30 minute prediction. This is a reasonable interval with
which to enable the control of the system that we aim to
accomplish.

The results from this analysis also indicate that the simple,
pooled α model performs better than the dynamic model.
This may be counterintuitive since weather tends to change
significantly throughout the day. However, because of the
window we are looking at and the narrow range of tempera-
ture change, it is reasonable that this model should perform
well. It also has the added benefit of being computable and
easy to implement within a control setting.

7. WORK-IN-PROGRESS
An observation we made with the model presented in this
paper is that its linear nature fails to capture the mixing
period experienced when the HVAC system first turns on.
As Figure 4 shows, the temperature measured at a sensor
continues to drop for about twenty minutes after the HVAC
system is turned on before it begins warming up. This could
be caused by the time taken for the conditioned air to suffi-
ciently mix with the cold air in the room before the increase
in temperature is detectable by a sensor and the absorption
of heat by the structure of the room, such as walls and floors,
as well as objects in the room such as furniture before the air
get heated because these objects have a higher heat capacity
than air. In order to capture this mixing period, we modify
the thermal model by introducing a variable γ that varies
with time and influences the effect the conditioned air from
the HVAC has on the temperature sensor.

We estimate values of γ by creating a set of equations, such
as the following, at various times from the time the HVAC
turns on until 30 minutes into the future:

T1 − T0 = α+ γ1βD (3)

T2 − T0 = α+ γ2βD (4)

T3 − T0 = α+ γ3βD (5)

Solving these equations for historical temperature data and
HVAC state provides a set of γ values. Using these γ values
a new iteration of the model can be specified as follows:

dTk/dt = αT + γkβD (6)

We are currently in the process of training and evaluating
this model.

8. CONCLUSIONS
We have presented our residential testbed, studied the char-
acteristics of the dual stage HVAC, identified and analyzed
mathematical models of the system, and discussed the im-
pact of our results. The two-stage, dynamic model that we
have developed provides an accurate way to predict the tem-
perature in a zone based on a few, accessible parameters in
the system. It also allows the calculation of highly variable
terms, such as the heat load due to solar radiation, wind,

and cloud coverage, without the need to explicitly measure
these terms.

These results will be used in future work in order to develop
a new, energy efficienct control scheme for the system. The
model gives us better insight into the dynamics of the control
scheme and allows for a more efficient design. This control
scheme may then be used to create a more energy efficient
design for similar HVAC units. This type of work is a crucial
step in the developing the type of energy-agile systems that
can ultimately be used to quell our dependency on fossil
fuels.
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