
Key idea: predict representations instead of observations. 
● How should these representations be learned so they retain 

bits relevant to prediction and planning? 
● Avoid reconstruction methods (e.g., seq. VAE [Zhao '17]), which 

are computationally expensive. 
There's already exists a method in the literature that does this!

1. Applications to various time series datasets? 
2. Can the assumptions always be satisfied? 
3. How to extend this to large video/audio/text datasets? 
4. Contrastive learning across multiple datasets (e.g., text ←→ videos ←→ audio) 
5. How does this relate to dynamic programming? 
6. Might it inherit some TD-like properties (e.g., combinatorial generalization, shorter paths)?

Prediction/forecasting: 

Planning/inpainting:

Key IdeaQ: Inference in high-dimensional time series?
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Code and paper!

future stateobservation
???

future stateobservation

waypoint

…

Theoretical Results

Setup and  assumptions

Assumption 1: (Bayes-optimal classifier) [4]

Assumption 2: (Pushforward measure is Gaussian) [5]

such that expected 
representation norm is small:

Objective: (Symmetric) InfoNCE, with a quadratic energy function:
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Temporal Contrastive Learning [1,2,3]
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Explains observation from prior work [6]

Planning via interpolation:

Application: Planning via (warped) interpolation

Visualizing the plans (TSNE)

Corollary 3.1 (Special Case of Multi-Step Planning): If ￼  is large and ￼  
is a rotation matrix, intermediate representations are a simple convex 
combination of initial and final representations.
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Theorem 1 (Prediction): Representation of a future state is 
Normally distributed, with mean that is a linear function of the 
current state representation.

Theorem 2 (Planning): Representation of a intermediate state is 
Normally distributed, with mean that is a linear function of the 
current and final state representations.

Theorem 3 (Multi-Step Planning): Joint distribution of representations 
is a Gaussian Markov chain, so intermediate representations are linear 
functions of initial and final representations.
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