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Learning to Assist Humans without Inferring Rewards
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Learning Empowerment

* We use a time-contrastive objective [7,8] to estimate empowerment:
predict past from future

Vivek Myers, Evan Ellis, Sergey Levine, Benjamin Eysenbach, Anca Dragan

Objective: Empowering Humans

e Assistive agents typically assume humans

e For policies 7;; and 7 we define the human empowerment objective: |
predict future from present
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Train our approach with a human model and no knowledge of the true human objective

Overcooked [9]

What does empowerment do when the human is optimizing a scalar reward?
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Theorem 3.1. Under Assumption 3.1 and Assumption 3.2, for sufficiently large v and any 3 > 0,

Assistive Gridworld [2]

* Two agents interact in an MDP
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