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• Assistive agents typically assume humans 
are optimizing a reward (e.g., CIRL [1] 
setup)
‣ Learning rewards is hard
‣ Misspecified rewards can be very 

harmful
‣ Human objectives often not well-

modeled by rewards
• How can we create aligned agents without 

learning and maximizing a human reward?
• Key Idea: maximize an empowerment 

objective [2,3,4,5,6] to help the human 
have maximal control over the world
‣ We show how a scalable contrastive 

algorithm can estimate and maximize 
human empowerment
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Caption: We propose an algorithm training assistive agents to empower human users – the assistant should 
take actions that enable human users to visit a wide range of future states, and the human's actions should 
exert a high degree of influence over the future outcomes. Our algorithm scales to high-dimensional settings, 
opening the door to building assistive agents that need not directly reason about human intentions.
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Figure 1: We propose an algorithm training assistive agents to empower human users—the assistant
should take actions that enable human users to visit a wide range of future states, and the human’s
actions should exert a high degree of influence over the future outcomes. Our algorithm scales to
high-dimensional settings, opening the door to building assistive agents that need not directly reason
about human intentions.

than the case where we model the human actions as the outcome of some optimization procedure, as39

in IRL [7, 8] or PbRL [9].40

Prior work has studied many effective objectives for empowerment. For instance, Du et al. [6]41

approximates human empowerment as the variance in the final states of random rollouts. Despite42

excellent results in certain settings, this approach can be challenging to scale to higher dimensional43

settings, and does not necessarily enable human users to achieve the goals the want to achieve. By44

contrast, our approach exclusively empowers the human with respect to the distribution of (useful)45

behaviors induced by their current policy, and can be implemented through a simple objective derived46

from contrastive successor features, which can then be optimized with scalable deep reinforcement47

learning (Fig. 1). We provide a theoretical framework connecting our objective to prior work on48

empowerment and goal inference, and empirically show that agents trained with this objective can49

assist humans in the Overcooked environment [10] as well as the obstacle gridworld assistance50

benchmark proposed by Du et al. [6].51

Our core contribution is a novel objective for training agents that are intrinsically motivated to assist52

humans without requiring a model of the human’s reward function. Our objective maximizes the53

influence of the human’s actions on the environment, and, unlike past approaches for assistance54

without reward inference, is based on a scalable model-free objective that can be derived from learned55

successor features that encode which states the human is likely to want to reach given their current56

action. Our objective empowers the human to reach the desired states, not all states, without assuming57

a human model. We analyze this objective in terms of empowerment and goal inference, drawing58

novel mathematical connections between time-series representations, decision-making, and assistance.59

We empirically show that agents trained with our objective can assist humans in two benchmarks60

proposed by past work: the Overcooked environment [10] and an obstacle-avoidance gridworld [6].61

2 Related Work62

Our approach broadly connects ideas from contrastive contrastive representation learning and intrinsic63

motivation to the problem of assisting humans.64

Assistive Agents. There are two lines of past work on assistive agents that are most relevant.65

The first line of work focuses on the setting of an assistance game [2], where a robot (AI) agent66

tries to optimize a human reward of which it is initially unaware. Practically, inverse reinforcement67

learning (IRL) can be used in such a setting to infer the human’s reward function and assist the68
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• For policies ￼  and ￼  we define the human empowerment objective:

                          ￼  
• The mutual information term becomes:

￼

πH πR

The idea behind empowerment is to think about the changes that an agent can effect on a world; an119

agent is more empowered if it can effect a larger degree of change over future outcomes. Following120

prior work [25, 43, 42], we measure empowerment by looking at how much the actions taken now121

affect outcomes in the future. An agent with a high degree of empowerment exerts a high degree of122

control of the future states by simply changing the actions taken now. Like prior work, we measure123

this degree of control through the mutual information I(s+; aH) between the current action aH and124

the future states s+. Note that these future states might occur many time steps into the future.125

Empowerment depends on several factors: the environment dynamics, the choice of future actions,126

the current state, and other agents in the environment. Different problem settings involve maximizing127

empowerment using these different factors. In this work, we study the setting where a “human” agent128

and a “robot” agent collaborate in an environment; the robot will aim to maximize the empowerment of129

the human. This problem setting was introduced in prior work [6]. Compared with other mathematical130

frameworks for learning assistive agents [44], framing the problem in terms of empowerment means131

that the assistive agent need not infer the human’s underlying intention, an inference problem that is132

typically challenging [45, 46].133

Formally, we define the empowerment E(⇡H ,⇡R) as the mutual information between the human’s134

actions and the future states s+ while interacting with the robot:135

E(⇡H ,⇡R) = E
h 1X

t=0

�tI(aH
t
; s+ | st)

i
, (1)

where s+ is a future state sampled K ⇠ Geom(1 � �) steps into the future under the behavior136

policies ⇡H ,⇡R, and where the mutual information is defined as137

I(aH
t
; s+ | st) , E

st,st+k,a
H
t
,a

R
t

h
log

p(st+K = st+k | st = st, aH
t
= at)

p(st+K = st+k | st = st)

i
.

Note that this objective resembles an RL objective: we do not just want to maximize this objective138

greedily at each time step, but rather want the assistive agents to take actions now that help the human139

agent reach states where it will have high empowerment in the future.140

(a) State marginal polytope (b) Mutual information (c) Maximizing empowerment

Figure 2: The Information Geometry of Empowerment, illustrating the analysis in Sec. 3.3. (Left)

For a given controlled Markov process, each policy induces a distribution over states. In a 3-state
MDP, we can represent each policy as a vector lying on the 2-dimensional probability simplex. We
refer to the set of all possible state distributions as the state marginal polytope. (Center) Mutual
information corresponds to the distance between the center of the polytope and the vertices that are
maximally far away. (Right) Empowerment corresponds to maximizing the size of this polytope. For
example, when an assistive agent moves an obstacle out of a human user’s way, the human user can
spend more time at desired state.

3.2 Assistive Agents Maximize Coverage141

Intuitively, the assistive agent should aim to maximize the size of this set of possible measures. We142

can formalize this intuition by employing a result from Eysenbach et al. [47, Lemma 6.2], which says143

that a human maximizing mutual information will only select those skills z that are maximally far144

away from the prior145
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Objective: Empowering Humans

Train our approach with a human model and no knowledge of the true human objective

Analysis

Discounted return under 
human’s objective

Robot empowerment 
objective

empowerment yields a provable lower bound on the average-case reward achieved by the human for
suffiently long-horizon empowerment (i.e., ω → 1).

For constructing the formal bound, we suppose the human is Boltzmann-rational [53, 54] with respect
to some reward function R ↑ R and rationality coefficient ε. The distribution R could be interpreted
as a prior over the human’s objective, a set of skills the human may try and carry out, or a population
of humans with different objectives that the agent could be interacting with. Our quantity of interest,
the average-case reward achieved by the human with our empowerment objective, is given by

J
ω

εR
(ϑH) = ER→R

s0→p0

[
V εH,εR

R,ω
(s0)

]
(5)

where V εH,εR

R,ω
(s0) is the value function of the human policy ϑH under the reward function R when

interacting with ϑR. Recalling Eq. (2), we will express the overall empowerment objective we are
trying to relate to Eq. (5) as

Eω(ϑH,ϑR) = E
[∑↑

t=0
ωtI(s+; aH

t
| s̃t)

]
. (6)

This notation is formalized in Appendix B.
The two key assumptions used in our analysis are Assump-
tion 3.1, which states that the human will optimize for
behaviors that uniformly cover the state space, and As-
sumption 3.2, which simply states that with infinite time,
the human will be able to reach any state in the state space.
Assumption 3.1 (Skill Coverage). The rewards R ↑ R

are uniformly distributed over the scaled |S|-simplex !|S|

such that:

(
R+ 1

|S|
)(

1
1↓ω

)
↑ Unif

(
!|S|) = Dirichlet(1, 1, . . . , 1︸ ︷︷ ︸

|S| times

).

Assumption 3.2 (Ergodicity). For some ϑH,ϑR, we have

PεH,εR(s+ = s | s0) > 0 for all s ↓ S, ω ↓ (0, 1).

Our main theoretical result is Theorem 3.1, which shows
that under these assumptions, maximizing empowerment
yields a lower bound on the (squared) average-case reward
achieved by the human for sufficiently large ω. In other
words, for a sufficiently long empowerment horizon, the
empowerment objective Eq. (2) is a meaningful proxy for
reward maximization.
Theorem 3.1. Under Assumption 3.1 and Assumption 3.2,

for sufficiently large ω and any ε > 0,

Eω(ϑH,ϑR)1/2 ↔ (ε/e)J
ω

εR
(ϑH).

The proof is in Appendix B.1 To the best of our knowl-
edge, this result provides the first formal link between em-
powerment maximization and reward maximization. This
motivates us to develop a scalable algorithm for empower-
ment maximization, which we introduce in the following
section.

4 Estimating and Maximizing Empowerment with Contrastive
Representations

Directly computing Eq. (2) would require access to the human policy, which we don’t have. There-
fore, we want a tractable estimation that still performs well in large environments which are more
difficult to model due to the exponentially increasing set of possible future states. To better-estimate
empowerment, we learn contrastive representations that encode information about which future states
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The proof is in Appendix B.1 To the best of our knowledge, this result provides the first formal
link between empowerment maximization and reward maximization. This motivates us to develop a
scalable algorithm for empowerment maximization, which we introduce in the following section.

4 Estimating and Maximizing Empowerment with Contrastive
Representations

Directly computing Eq. (2) would require access to the human policy, which we don’t have. There-
fore, we want a tractable estimation that still performs well in large environments which are more
difficult to model due to the exponentially increasing set of possible future states. To better-estimate
empowerment, we learn contrastive representations that encode information about which future states
are likely to be reached from the current state. These contrastive representations learn to model
mutual information between the current state, action, and future state, which we then use to compute
the empowerment objective.

4.1 Estimating Empowerment

To estimate this empowerment objective, we need a way of learning the probability ratio inside the
expectation. Prior methods such as Du et al. [6] and Salge et al. [14] rollout possible future states
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Figure 2: The Information Geometry of Empowerment, illustrating the analysis in Sec. 3.3. (Left)

For a given controlled Markov process, each policy induces a distribution over states. In a 3-state
MDP, we can represent each policy as a vector lying on the 2-dimensional probability simplex. We
refer to the set of all possible state distributions as the state marginal polytope. (Center) Mutual
information corresponds to the distance between the center of the polytope and the vertices that are
maximally far away. (Right) Empowerment corresponds to maximizing the size of this polytope. For
example, when an assistive agent moves an obstacle out of a human user’s way, the human user can
spend more time at desired state.
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• Two agents interact in an MDP 
                           
‣Human H
‣Assistive agent (“robot”) R

• Two policies 
• Dynamics 
‣ random variables represent state at 

time ￼
‣ future state is a random with

human in achieving their goals [3]. The key challenge with this approach is that it requires modeling69

the human’s reward function. This can be difficult in practice, especially if the human’s behavior70

is not well-modeled by the reward architecture. Slightly mispecified reward functions can lead to71

catastrophic outcomes (i.e., directly harmful behavior in the assistance context) [11–13]. By contrast,72

our approach does not require modeling the human’s reward function.73

The second line of work focuses on empowerment-like objectives for assistance and shared autonomy.74

Empowerment generally refers to a measure of an agent’s ability to influence the environment [14, 15].75

In the context of assistance, Du et al. [6] show one such approximation of empowerment (AvE) can76
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are likely to be reached from the current state. These contrastive representations learn to model
mutual information between the current state, action, and future state, which we then use to compute
the empowerment objective.

4.1 Estimating Empowerment

To estimate this empowerment objective, we need a way of learning the probability ratio inside the
expectation. Prior methods such as Du et al. [6] and Salge et al. [42] rollout possible future states
and compute a measure of their variance as a proxy for empowerment, however this doesn’t scale
when the environment becomes complex. Other methods learn a dynamics model, which also doesn’t
scale when dynamics become challenging to model [27]. Modeling these probabilities directly is
challenging in settings with high-dimensional states, so we opt for an indirect approach. Specifically,
we will learn representations that encode two probability ratios. Then, we will be able to compute the
desired probability ratio by combining these other probability ratios.

Our method learns three representations:

1. ω(s, aR, aH)— This representation can be understood as a sort of latent-space model,
predicting the future representation given the current state s and the human’s current action
aH as well as the robot’s current action aR.

2. ω→(s, aR)— This representation can be understood as an uncontrolled model, predicting
the representation of a future state without reference to the current human action aH. This
representation is analogous to a value function.

3. ε(s+)— This is a representation of a future state.

We will learn these three representations with two contrastive losses, one that aligns ω(s, aR, aH) →
ε(s+) and one that aligns ω→(s, aR) → ε(s+)
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We have colored the index j for clarity. At convergence, these representations encode two probability
ratios [24], which we will ultimately be able to use to estimate empowerment (Eq. 2):

ω(s, aR, aH)Tε(g) = log

[
P(st+K = g | st = s, aH

t
= aH, aR

t
= aR)

C1 P(st+K = g)

]
(8)

ω→(s, aR)Tε(g) = log

[
P(st+K = st+k | st = st, aRt = aR)

C2 P(st+K = g)

]
. (9)

Note that our definition of empowerment (Eq. 2) is defined in terms of similar probability ratios. The
constants C1 and C2 will mean that our estimate of empowerment may be off by an additive constant,
but that constant will not affect the solution to the empowerment maximization problem.

4.2 Estimating Empowerment with the Learned Representations

To estimate empowerment, we will look at the difference between these two inner products:
ω(st+K , aR, aH)Tε(g)↑ ω(st+K , aR)Tε(g)

= log P(st+K | s, aH)↑ logC1 ↑!!!!!!log P(st+K)↑ log P(st+K | s) + logC2 +!!!!!!log P(st+K)

= log
P(st+K | s, aH)

P(st+K | s)
+ log

C2

C1
.

Note that the expected value of the first term is the conditional mutual information I(st+K ; aH | s).
Our empowerment objective corresponds to averaging this mutual information across all the visited
states. In other words, our objective corresponds to an RL problem, where empowerment corresponds
to the expected discounted sum of these log ratios:

E(ϑH,ϑR) = EϑH,ϑR

[ ↓∑
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t

| st)
]
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Learning Empowerment

Assistive Gridworld [2]

(a) Obstacle Gridworld (b) Cramped Room (c) Coordination Ring

Figure 4: (a) The modified environment from Du et al. [6] scaled to N = 7 blocks, and (b, c) the two
layouts of the Overcooked environment [10].

Figure 5: In Coordination Ring, our ESR agent learns to wait for the human to add an onion to the pot,
and then adds one itself. There is another pot at the top which is nearly full, but the empowerment
agent takes actions to maximize the impact of the human’s actions, and so follows the lead of the
human by filling the empty pot.

5 Experiments

We seek to answer two questions with our experiments. First, does our approach enable assistance in
standard cooperation benchmarks? Second, does our approach scale to harder benchmarks where
prior methods fail?

Our experiments will use two benchmarks designed by prior work to study assistance: the obstacle
gridworld [6] and Overcooked [10]. Our main baseline is AvE [6], a prior empowerment-based
method. Our conjecture is that both methods will perform well on the lower-dimensional grid-
world task, and that our method will scale more gracefully to the higher dimensional Overcooked
environment. We will also compare against a naïve baseline where the assistive agent acts randomly.

5.1 Do contrastive successor representations effectively estimate empowerment?

We test our approach in the assistance benchmark suggested in Du et al. [6]. The human (orange)
is tasked with reaching a goal state (green) while avoiding the obstacles (purple). The AI assistant
can move blocks one step at a time in any direction [6]. While the original benchmark used N = 2
obstacles, we will additionally evaluate on harder versions of this task with N = 5, 7, 10 obstacles.
We show results in Fig. 3. On the easiest task, both our method and AvE achieve similar asymptotic
reward, though our method learns more slowly than AvE. However, on the tasks with moderate and
high degrees of complexity, our approach (ESR) achieves significantly higher rewards than AvE,
which performs worse than a random controller. These experiments support our claim that contrastive
successor representations provide an effective means for estimating empowerment, and hint that ESR
might be well suited for solving higher dimensional tasks.
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Figure 4: (a) The modified environment from Du et al. [6] scaled to N = 7 blocks, and (b, c) the two
layouts of the Overcooked environment [10].
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Figure 5: In Coordination Ring, our ESR agent learns to wait for the human to add an onion to the pot,
and then adds one itself. There is another pot at the top which is nearly full, but the empowerment
agent takes actions to maximize the impact of the human’s actions, and so follows the lead of the
human by filling the empty pot.
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Algorithm 1: Empowerment via Successor Representations (ESR)
Input: Human policy ωH(a | s)
Randomly initialize assistive agent policy ωR(a | s), and representations ε(s, aR, aH), ϑ(s, aT ), and ϑ(g).
Initialize replay buffer B.
while not converged do

Collect a trajectory of experience with human policy and assistive agent policy, store in replay buffer B.
Update representations ε(s, aR, aH), ϑ(s, aT ), and ϑ(g) with the contrastive losses in Eq. (10).
Update ωR(a | s) with RL using reward function r(s, aR, aH) = (ε(s, aR, aH)→ ε→(s, aR))Tϑ(g).

Return: Assistive policy ωR(a | s).

4.3 Algorithm Summary

We propose an actor-critic method for learning the assistive agent. Our method will alternate between
updating these contrastive representations and using them to estimate a reward function (Eq. (13))
that is optimized via RL. We summarize the algorithm in Algorithm 1. In practice, we use SAC [55]
as our RL algorithm. In our experiments, we will also study the setting where the human user updates
their policy alongside the assistive agent.
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Figure 3: We apply our method to the benchmark proposed in prior work [6], visualized in Fig. 4a.
The four subplots show variant tasks of increasing complexity (more blocks), (±1 SE). We compare
against AvE [6], the Goal Inference baseline from [6] which assumes access to a world model, and
Reward Inference [56] where we recover the reward from a learned q-value. These prior approaches
fail on all except the easiest task, highlighting the importance of scalability.
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‣ Increasing human empowerment optimizes a lower bound on the 
average-case reward

What does empowerment do when the human is optimizing a scalar reward?
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