

Policy Adaptation via Language Optimization Decomposing Tasks for Few-Shot Imitation

Motivation

Goal-conditioned policies robustly generalize across tabletop manipulation skills and don't require task annotations. Language is a more natural form of task specification for humans, though it is harder to learn. How can we get the benefits of goal-conditioned learning when following language instructions?

Language: less supervision, hard to learn

Goals: hindsight relabeling, better generalization

Setup

We perform 6 DoF control of a WidowX arm for languageconditioned tabletop manipulation.

We have a few language-annotated trajectories along with many **unlabeled** trajectories. We need a **semi-supervised** approach to use both sources of data.

Approach

Goal Representations for Instruction Following (GRIF)

Aligned Task Representations

Our approach aligns (start state, goal) pairs in the scene with language tasks using a contrastive loss. We learn a policy on top of these aligned representations using behavioral cloning.

With **hindsight relabeling**, we can use both unlabeled trajectories and language-annotated trajectories to train our policy. We also modify the **CLIP** architecture to leverage pretrained language knowledge.

Results

BC-Z

We outperform baseline and ablation appr on diverse unseen language instructions different scenes. In particular GRIF is bette to ground language instructions compared baselines while performing well at manipu

Summary

 f_1 f_2 f_3 $\begin{array}{c|cccc} h_1 & & & \\ h_1 \cdot f_1 & & h_1 \cdot f_2 & & h_1 \cdot f_3 \\ h_2 & & & h_2 \cdot f_1 & & h_2 \cdot f_2 & & h_2 \cdot f_3 \\ h_3 & & & h_3 \cdot f_1 & & h_3 \cdot f_2 & & h_3 \cdot f_3 \end{array}$

We train policies on language-annotated and **goal**-relabeled trajectories

Contrastive language-goal task alignment enables robust grounding

Our approach outperforms baselines on **unseen** instructions

nove the towel to the left "move the towel to the front move the towel next to the can move the towel next to th

\vdash					
	F				
).4	0.6	0.8			
ss Ra	te				
[.fP	R3M	BC-Z			
0.0	0.0	0.6			
).0) 2	0.0	0.0			
).3) ()	0.0	0.9			
).1	0.0	0.3			
).2	0.0	0.0			
0.0	0.0	0.1			
).3	0.0	0.0			
) 5	0.0	0.4			
).3	0.0	0.4			
0.0	0.0	0.2			
0	0.0	1.0			
0	0.0	1.0			
0.0	0.0	0.2			
).2	0.0	0.8			
		Se			
		50			
1					
		a			
		8			
E.					
		<i>s</i> ₀			
		g			
1 T					
ea Ir	nages				
	-				
20		300			
roacnes					
•					
in					
11 L					
er able					
-					
dto					
U	U				
-	1 . •				
11lation					
U.	uu	$\mathbf{O}\mathbf{I}\mathbf{I}$			