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Abstract
We study goal-conditioned RL through the lens of generalization, but not in the
traditional sense of random augmentations and domain randomization. Rather,
we aim to learn goal-directed policies that generalize with respect to the horizon:
after training to reach nearby goals (which are easy to learn), these policies should
succeed in reaching distant goals (which are quite challenging to learn). In the
same way that invariance is closely linked with generalization is other areas of
machine learning (e.g., normalization layers make a network invariant to scale,
and therefore generalize to inputs of varying scales), we show that this notion
of horizon generalization is closely linked with invariance to planning: a policy
navigating towards a goal will select the same actions as if it were navigating to a
waypoint en route to that goal. Thus, such a policy trained to reach nearby goals
should succeed at reaching arbitrarily-distant goals. Our theoretical analysis proves
that both horizon generalization and planning invariance are possible, under some
assumptions. We present new experimental results and recall findings from prior
work in support of our theoretical results. Taken together, our results open the door
to studying how techniques for invariance and generalization developed in other
areas of machine learning might be adapted to achieve this alluring property.

1 Introduction
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Figure 1: Horizon generalization. A policy general-
izes over the horizon if performance for start-goal pairs
(s, g) separated by a small temporal distance d(s, g) < c
yields improved performance over more distant start-
goal pairs (s′, g′) with d(s′, g′) > c.

Reinforcement learning (RL) is appealing for
its potential to use data to solve long-horizon
reasoning problems. However, it is precisely
this horizon that makes solving the RL problem
difficult — the number of possible solutions to
a control problem often grows exponentially in
the horizon [36]. Indeed, the requirement of
collecting long horizon data precludes several
potential applications of RL (e.g., health care,
robotic manipulation). Thus, a desirable prop-
erty of an RL algorithm is the ability to learn
from short-horizon tasks and generalize to long-
horizon tasks. We call this property horizon gen-
eralization.

Horizon Generalization (informal statement,
see Definition 4): A goal-conditioned policy gener-
alizes over horizon if, after training to reach nearby goals within the state space, the policy is more successful
at reaching distant goals.

*Equal contribution.
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Prior work on generalization in RL almost exclusively focuses on either (i) perceptual changes
(e.g., changes in lighting conditions), (ii) simple randomizations of simulator parameters, or (iii)
mapping together states and actions with the same reward or value function. While these methods
show improved performance on perturbed datasets over the same horizon, they do not generalize
over horizon. In this paper, we formalize horizon generalization as a potential property of goal-
conditioned RL (GCRL) algorithms, prove that policies with horizon generalization exist, and
empirically demonstrate that certain algorithms enable horizon generalization in high-dimensional
settings. We do so in the context of goal-conditioned RL, where agents navigate towards a specific
goal in a reward-free setting.

A key mathematical tool for understanding horizon generalization is a form of temporal invariance
obeyed by optimal policies. In the same way that an image classification model that is invariant to
rotations will generalize to images of different orientations [15, 41], we prove that a policy invariant
to planning, under certain assumptions, will exhibit horizon generalization.

Planning Invariance (informal statement, see Definition 3): A goal-conditioned policy is invariant to
planning if it can reach distant goals with similar success when conditioned directly on the goal compared to
when conditioned on a series of intermediate waypoints. In other words, breaking up a complex task into a
series of simpler tasks confers no advantage to the policy.

The main takeaway from this paper is that there are rich notions of generalization over the horizon
unique to the goal-conditioned RL (GCRL) setting. We show that existing quasimetric methods [49,
79] already exhibit this form of generalization in high-dimensional settings. By theoretically and
empirically linking planning with this form of generalization, our work suggests practical ways (i.e.
quasimetric methods) to achieve powerful notions of generalization from short to long horizons.

2 Related Work

Our work builds upon prior work in goal-conditioned RL and generalization in RL. Section 5.5
returns to the discussion of prior work in light of our analysis.

Learning to Reach Goals. The problem of learning goal-reaching behavior dates to the early days of
AI research [38, 54]. This problem has received renewed attention in recent years through the study
of deep goal-conditioned reinforcement learning (GCRL) [10, 11, 16, 34, 46, 68, 83]. Goal-conditioned
RL relieves the burden of specifying rewards, as any state in the environment can provide a complete
task specification when used as a goal. Some of the excitement in goal-conditioned RL is a reflection
of the recent success of self-supervised methods in computer vision (e.g., stable diffusion [64])
and NLP (GPT-4 [56]): if these methods can achieve intriguing emergent properties [2, 6], might a
self-supervised approach to RL unlock emergent properties for RL?

Generalization in RL. Prior work on generalization in RL mostly focuses on variations in percep-
tion [14, 39, 72] (or, similarly, e.g., across levels of a game [23, 35, 55, 85]). Similarly, work on robust
RL (which measures a worst-case notion of generalization) usually randomly perturbs the physics
parameters [20, 31, 48, 57, 76]). Our paper will study a different form of generalization: without
changing the dynamics or the observations, can a policy trained on nearby goals succeed in reaching
distant goals?

State Abstractions for Decision-Making. Many approaches for learning improved state abstractions
for decision making have been proposed in recent years, including bisimulation [8, 24, 28, 84],
successor representations [3, 18], and information-theoretic representation learning objectives [1, 9,
25, 33, 63]. While prior work typically views generalization as a problem of handling shift between
MDPs with similar horizons, horizon generalization is about generalizing from short to long horizons.
This form of generalization (to our knowledge) has not been directly addressed by other state
abstraction methods. Prior work that has specifically looked at performing out-of-distribution long-
horizon tasks have made assumptions about the environment, such as access to external planners
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[50, 69, 70] or human demonstrations [47]. Our contribution is to tackle the problem of generalization
over the time-horizon in the context of modern, scalable deep RL methods without these additional
environment assumptions.

3 Planning Invariance and Horizon Generalization

Our analysis will focus on the goal-conditioned setting. We start by providing intuition for our key
formal definitions (planning invariance and horizon generalization), provide important preliminaries
on quasimetric methods, and then prove that these properties can be realized by quasimetric
methods.

3.1 Intuition

Many prior works have found that augmenting goal-conditioned policies with planning can signifi-
cantly boost performance [59, 67]: instead of aiming for the final goal, these methods use planning to
find a waypoint en route to that goal and aim for that waypoint instead. In effect, the policy chooses
a closer, easier waypoint that will naturally bring the agent closer to the final goal.

no planning invariance planning invariance

or

Figure 2: Visualizing planning invariance. Planning invariance
(Definition 3) means that a policy should take similar actions when
directed towards a goal (purple arrow and purple star) as when
directed towards an intermediate waypoint (brown arrow and
brown star). We visualize a policy with (Right) and without (Left)
this property via the misalignment and alignment of actions to-
wards the waypoint and the goal, where the optimal path is tan
and the suboptimal path is gray.

Invariance to planning (see Fig. 2) is
an appealing property for several rea-
sons. First, it implies that the pol-
icy realizes the benefits of planning
without the complex machinery typi-
cally associated with hierarchical and
model-based methods. Second, poli-
cies optimal over a space of tasks are,
by definition, planning-invariant over
the same space with respect to an op-
timal planner: invariance to planning
is a necessary but not sufficient condi-
tion for policy optimality, and can be
used as an inductive bias to achieve
policy optimality. Third, we show
that planning invariance, combined
with other assumptions, implies that
the policy will exhibit horizon gener-
alization: given that a policy success-
fully navigates short trajectories cov-
ering some state space S, it will suc-
ceed at performing long-horizon tasks over the same state space S (Fig. 1).

A high-level description of our proof is as follows: when a policy is invariant to planning, tasks
of length n and length 2n will be mapped to similar internal representations, as will tasks of
length 4n, and 8n, and so on (see Fig. 3). This reasoning also explains how a policy exhibiting
horizon generalization must solve problems: by recursion, the policy maps tasks of length n, length
n/2, and shorter lengths seen during training to the same internal representations. Our proofs
formally link these “forward-looking” and “backward-looking” perspectives, suggesting practical
planning-invariant methods like quasimetric methods to achieve horizon generalization.

With these motivations in hand, how do we actually construct methods that are planning invariant
and lead to horizon generalization? To answer this question, we build upon prior work on quasi-
metric neural network architectures [44, 77, 78] and show that policies defined greedily with respect
to a quasimetric, where latents obey the triangle inequality, are invariant to planning with respect to
the same quasimetric.
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Figure 3: Invariance to planning leads to horizon generalization. (Left) Invariance to planning maps
(s0, {s1, s2, s4}) together in latent space, which results in a shared optimal action. (Right) After successfully
reaching the closest waypoint s1 in 1 step, the next optimal action is also shared, meaning any trajectory of
length 2 is optimal. We can repeat this argument for trajectories of length 4, 8, . . . until the entire reachable state
space is covered.

4 Preliminaries

We consider a controlled Markov process M with state space S, action space A, and dynamics
p(s′ | s, a). The agent interacts with the environment by selecting actions according to a policy
π(a | s), which is a mapping from S to distributions over A. We further assume the state and action
spaces are compact. We define the discounted state occupancy measure with actions as

pπγ (sK = g | s0 = s, a) ≜
∞∑
t=0

γtpπ(st = g | s0 = s, a), (1)

where pπ(st = g | s0 = s, a) is the probability density that policy π visits state g after t time steps
when initialized at state s with action a.

Quasimetrics on states. We equipM with an additional notion of distance between states. We later
define planning operator PLAN and policy π greedily with respect to this distance. At the most basic
level, a distance d : S × S → R must be positive for all inputs (s, s′ ̸= s) and zero for all inputs (s, s)
(nonnegativity). We will denote the set of all distances as D:

D ≜ {d : S × S → R : d(s, s) = 0, d(s, s′) > 0 for each s, s′ ∈ S where s ̸= s′}. (2)

A desirable property for distances to satisfy is the triangle inequality. A distance satisfying this
property is known as a quasimetric, and we define the set of all quasimetric functions as

Q ≜ {d ∈ D : d(s, g) ≤ d(s, w) + d(w, g) for all s, g, w ∈ S}. (3)

If we were to restrict the distances to be symmetric (d(x, y) = d(y, x)), our quasimetric would become
a standard metric obeying nonnegativity, the triangle inequality, and symmetry. However, we wish
to use a quasimetric that allows for asymmetry over the interchange of the start and end states: the
navigation task s → g may be completely different from g → s, and the corresponding distance
function should reflect this degree of freedom.

An important property of quasimetrics is that they are invariant to the path relaxation operator from
Dijkstra’s algorithm.
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Definition 1 (Path relaxation operator). Let PATHd(s, g) be the path relaxation operator over quasimetric
d(s, g). For any triplet of states (s, w, g) ∈ S × S × S,

d(s, g)← PATHd(s, g) ≜ min
w
d(s, w) + d(w, g). (4)

Thus, invariance to the path relaxation operator is a form of self-consistency. Any triplet of distance
predictions should satisfy the following property:

d(s, g) ≤ d(s, w) + d(w, g)

which is the familiar triangle inequality. Quasimetrics naturally satisfy this property and, combined
with nonnegativity conditions, are invariant under the path relaxation operator.

Successor distances (a quasimetric). A particular quasimetric of note here is the successor state
distance [49], dγSD, defined as

d
γ
SD(s, g) ≜ min

π

[
log

pπγ (sK = g | s0 = g)

pπγ (sK = g | s0 = s)

]
, where K ∼ Geom(1− γ). (5)

The successor distance dγSD is a compelling choice of distance because minimizing the distance to the
goal dγSD(s, g) corresponds to optimal goal reaching with a discount factor γ.1 The related successor
distance with actions dγSD(s, a, g) [49] allows us to optimize this distance over actions:

d
γ
SD(s, a, g) ≜ min

π

[
log

pπγ (sK = g | s0 = g)

pπγ (sK = g | s0 = s, a)

]
, where K ∼ Geom(1− γ). (6)

Given temporal distances between states and state-action pairs, we can define a quasimetric policy
that greedily selects actions with respect to d(s, a, g):

Definition 2 (Quasimetric policy). We define the quasimetric policy as some policy πd(a | s, g) where

πd(a | s, g) ∈ argmin
a∈A

d(s, a, g).

Here, d(s, a, g) is the successor distance with actions (Eq. 6).

5 Introducing and Analyzing Horizon Generalization

Equipped with quasimetric definitions, we begin by formally defining planning invariance and
horizon generalization in deterministic and stochastic settings. Then, we show that quasimetric
policy πd(a | s, g) is planning invariant with respect to a planner defined over the same quasimetric.
Finally, we show that this invariance to planning implies horizon generalization. Taken together,
our analysis shows that horizon generalization exists and can be achieved by quasimetric methods.

5.1 Definitions of Planning Invariance and Horizon Generalization

To construct general definitions of planning invariance and horizon generalization, we will need to
define a planning operator which proposes waypoints at a given state to reach a target distribution
over goals. What does it mean to plan over an input distribution of goals? In nondeterministic set-
tings, actions are optimal in expectation. Thus, accurate planners must be able to take in distributions
over states and choose actions which induce that future state distribution.

1Formally, define an MDP with the goal-conditioned reward function rg(s) = δ(s,g), a Kronecker delta function which
evaluates to 1 if s = g and 0 otherwise. The d

γ
SD-minimizing policy is optimal for this MDP.
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We denote by
plan ≜ {PLAN : S × P(S) 7→ P(S)} (7)

the class of “planning functions” that given a state and goal distribution produces a distribution of
possible waypoints.

In the special case of deterministic actions, waypoints, and goals, we write

planFIX ≜ {PLANFIX : S × S 7→ S} ⊂ plan . (8)

Our analysis in the rest of this section will focus on the simpler “fixed” setting of PLANFIX ∈
planFIX . We will use w or wPLAN to denote the waypoint produced by PLANFIX(s, g). The proofs
and quasimetric objects in the stochastic setting are slightly more complicated, but carry the same
structure and takeaways as this simpler case; the general stochastic proofs and definitions are
presented in Appendix B. For notational brevity, we drop the label FIX in the rest of the analysis
section.

There are several different types of planning algorithms one might consider (e.g., Dijkstra’s algo-
rithm [19], A* [29], RRT [40]). Importantly, the constraints of a quasimetric (see Section 4) and the
related idea of path relaxations from Dijkstra’s algorithm provide clues for specifying our planning
operator later in our analysis. We use this planning operator in one of our key definitions (visualized
in Fig. 2):

Definition 3 (Planning invariance). Consider a deterministic MDP with states S, actions A, and goal-
conditioned Kronecker delta reward function rg(s) = δ(s,g). For any goal-conditioned policy π(a | s, g) where
g ∈ S, we say that π(a | s, g) is invariant under planning operator PLAN ∈ plan if and only if

π(a | s, g) = π(a | s, w), where w = PLAN(s, g). (9)

Note that planning invariance says nothing about whether the planner is good or bad. We will
primarily be interested in invariance under the optimal planner with respect to some quasimetric
d(s, g). We denote the class of quasimetric planning functions over quasimetric d(s, g) as

pland ≜ {PLAN ∈ plan | d(s, PLAN(s, g)) + d(PLAN(s, g), g) = d(s, g) for all (s, g) ∈ S × S}.

Our second key definition is horizon generalization (see Fig. 1):

Definition 4 (Horizon generalization). Let finite thresholds c > 0 and quasimetric d(s, g) over the
start-goal space S × S be given. In the single-goal, controlled (“fixed") case, a policy π(a | s, g) generalizes
over the horizon if optimality over nearby start-goal pairs Bc = {(s, g) ∈ S × S | d(s, g) < c} everywhere
implies optimality over the entire state space S.

We highlight the key base case assumption: optimality over shorter trajectories that cover the entire
desired state space S leads to horizon generalization. We assume this base case holds everywhere —
without additional assumptions about the symmetries of the MDP, it is beyond the scope of this work
to consider horizon generalization to completely unseen states.Rather, we analyze generalization to
unseen, long-horizon (s, g) state pairs.

5.2 Quasimetric Policies are (Nontrivially) Planning Invariant

With these notions of planning invariance and horizon generalization in hand, we will consider
nontrivial quasimetric planning algorithms PLANd ∈ pland that acquire a quasimetric d(s, g) and
output a single waypoint w ∈ S:

PLANd(s, g) = wPLAN ∈ argmin
w∈S

d(s, w) + d(w, g). (10)
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We highlight that this planning algorithm takes the form of the path relaxation operator (Definition 1).

By the triangle inequality, we have d(s, wPLAN) + d(wPLAN, g) = d(s, g). Our first result is that
quasimetric policies πd are invariant under planning operator PLANd.

Theorem 1 (Quasimetric policies are invariant under PLANd). Given a deterministic MDP with states
S , actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g), define quasimetric policy
πd(a | s, g) and quasimetric planner class pland. Then, for every quasimetric planner PLANd ∈ pland,
there always exists a policy πd(a | s, g) that is planning invariant:

πd(a | s, g) = πd
(
a | s, w for w = PLANd(s, g)

)
. (11)

The proof is in Appendix B.1. In practice, we measure planning invariance by comparing the relative
performance of algorithms with and without planning. For this condition, we do not necessarily
need πd(a | s, g) = πd(a | s, wPLAN); rather, the weaker condition d(s, πd(a | s, g), g) = d(s, πd(a |
s, wPLAN), wPLAN) is sufficient and necessary for planning invariance when there are no errors from
function approximation and noise. We extend this result to stochastic settings in Appendix B.3.

5.3 Quasimetric Policies Generalize over the Horizon

Our main result of this section is to prove that horizon generalization exists. We will do this via
quasimetric policies using induction, where the inductive step invokes planning invariance.

Theorem 2 (Horizon generalization exists). Consider a deterministic goal-conditioned MDP with states
S, actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g) where there are no states
outside of S. Let finite thresholds c > 0 and quasimetrics d(s, g) over the start-goal space S × S be given.
Then, a quasimetric policy πd(a | s, g) that is optimal over Bc = {(s, g) ∈ S × S | d(s, g) < c} is optimal
over the entire start-goal space S × S .

The idea of the proof is to begin with a ball of states Dc(s) = {s′ ∈ S | d(s, s′) < c} for some
arbitrary state s. We will use a proof by induction. As the base case, we assume policy πd(a | s, ·) is
optimal over Dc(s) for all s ∈ S . For the inductive step, we use planning invariance and the triangle
inequality to show that policy optimality over Dn(s) = {s′ ∈ S | d(s, s′) < c2n} implies optimality
over Dn+1(s), a ball with double the radius.

This proof shows that there exist planning-invariant goal-reaching policies that generalize over the
horizon: optimality over pairs of close states everywhere implies optimality over arbitrarily distant
pairs of states. The complete proof, extended to stochastic settings and thus applicable to the fixed
setting, is in Appendix B.4.

Importantly, if the base case does not hold everywhere (i.e. there exist states beyond S that are opti-
mal waypoints or goals), then the policy will not exhibit global optimality; considering generalization
to completely unseen states and waypoints is beyond the scope of this paper.

Finally, horizon generalization is not guaranteed for a goal-reaching policy that is not planning
invariant:

Remark 3 (Horizon generalization is nontrivial). Let finite c > 0 and goal-conditioned MDP with states
S, actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g) be given where there are
no states outside of S. For a policy that is not planning invariant, optimality over Bc = {(s, g) ∈ S × S |
d(s, g) < c} is not a sufficient condition for optimality over the entire start-goal space S × S .

To prove this remark, we construct non-planning invariant policies that are optimal over horizon H
but suboptimal over horizon H + 1. The complete proof is in Appendix B.5.

Combined, these results show that planning invariance and horizon generalization, as defined in
Section 5.1, exist in nontrivial forms via quasimetric policies.
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5.4 Limitations and Assumptions
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Figure 4: Approximate horizon generalization is still
useful. SUCCESS when there is horizon generalization.
When the success attenuation factor η ≥ 0.5, the REACH
goes to ∞. For a policy with no horizon generalization
(η = 0), its REACH = 1.

Despite our theoretical results proving that hori-
zon generalization exists, we expect that practi-
cal algorithms will not perfectly achieve horizon
generalization. This section highlights the as-
sumptions that belie our key results, and our
experiments in Section 6 will empirically study
the degree to which current methods achieve
these properties.

An important assumption in our inductive
proof is that horizon generalization exists as
a binary category. However, in practical algo-
rithms, horizon generalization likely exists on
a spectrum. As such, each application of the
inductive argument will incur some error, such
that the argument (and, hence, the degree of
generalization) will not extend infinitely.

To make this more concrete, define SUCCESS(c)
as the success rate for reaching goals in radius
c, and assume that we choose constant c0 small
enough that SUCCESS(c0) = 1. Then, let us
assume that each time the horizon is doubled
(c0 → 2c0 → 4c0 → · · · ), the success rate de-
creases by a factor of η. We will refer to η as the
horizon generalization parameter and later measure this parameter in our experiments (Section 6).
In addition, we assume that SUCCESS(c) is monotonically decreasing; goals further in time should
be harder to reach. We can now define the REACH as the sum of SUCCESS(c) over c ≥ c0. With the
above constraints on SUCCESS(c), in the worst case,

REACHwc = 1 + η(2− 1) + η2(4− 2) + η3(8− 4) + · · · =
{
1 + η 1

1−2η if 0 < η < 1/2

∞ if η ≥ 1/2
. (12)

When there is no horizon generalization, the Reach is 1. We can see this by integrating the Success
curve in Fig. 4, top. When the degree of horizon generalization has a low value of (say) η = 0.1
(i.e., it generalizes for only 1 out of every 10 goals), the Reach is 1.125, not much bigger than that
of a policy without horizon generalization. Once the degree of horizon generalization reaches
η = 1/2 (i.e., generalizes for 1 out of every two goals), the Reach is infinite. In short, the potential
reach of horizon generalization is infinite, even when each step of the recursive argument incurs a
non-negligible degree of error.

A second important assumption behind our analysis is that the base case holds everywhere: the policy
must succeed at reaching all nearby goals when initialized at all possible starting states. In practice,
this may translate to a coverage assumption on the training data. If the base case does not hold
(poor performance on easy goals) but planning invariance holds, then we should not expect to see
optimality over arbitrarily hard goals. We will observe this empirically with a random policy in our
experiments (Fig. 5): a random policy is invariant to planning (it always selects random actions,
regardless of the goal) yet its performance on nearby goals is mediocre, so the policy fails to exhibit
horizon generalization.

Finally, invariance under any arbitrary planner does not guarantee horizon generalization. Indeed,
our Theorem 2 states invariance under a planner that minimizes an asymmetric distance (quasimetric)
leads to horizon generalization. Thus, planning and invariance to planning with respect to, say, an
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arbitrary reward function does not necessarily lead to horizon generalization, even if a policy is
optimal within short horizons.

Nonetheless, planning invariance remains an alluring property for three reasons: (1) planning-
invariant policies potentially automatically get the benefits of planning, (2) optimal policies are
invariant under optimal planners, and, as we show in our analysis, (3) invariance to planners that
shorten quasimetric distances leads to horizon generalization (Theorem 2). In light of our analysis,
we discuss methods for planning invariance in the next section.

5.5 Which Practical Methods Might Exhibit Horizon Generalization?

In this section, we discuss how temporal difference methods, quasimetric architectures, RL algo-
rithms, and data augmentations that employ explicit planning can all achieve planning invariance
under some assumptions. Appendix C discusses several new directions for designing RL algorithms
that are invariant to planning. Appendix E recalls figures from prior works in search of evidence for
horizon generalization.

Dynamic programming and temporal difference (TD) learning. We expect that dynamic program-
ming and TD methods will achieve planning invariance in tabular settings. The intuition is that TD
methods “stitch” [87] together trajectories which is a natural route to obtain policies with horizon
generalization. Indeed, our definition of planning invariance is very closely tied with the optimal
substructure property [17, pp. 382-387] of dynamic programming problems, and likely could be
redefined entirely in terms of optimal substructure. Viewing horizon generalization and planning
invariance through the lens of machine learning allows us to consider a broader set of tools for
achieving invariance and generalization (e.g., special neural network layers, data augmentation).

Table 1: Summary of methods and modifications tested

Method Description Losses Critics

CRL Contrastive RL [22] {Lfwd,Lbwd,Lsym} {dℓ2 , dMLP}
SAC Soft Actor-Critic [27] {Lsac} {QMLP}
CMD-1 Contrastive metric distillation [49] {Lbwd} {dMRN}

(a) Losses

Lfwd InfoNCE loss: predict goal g from
current state-action (s, a) pair [71]

Lbwd Backward InfoNCE loss: pre-
dict current state and action (s, a)
from future state g [5]

Lsym Symmetric contrastive loss: com-
bine the forward and backward
contrastive losses [62]

Lsac Temporal difference loss [27]

(b) Architectures

dℓ2 L2-distance parameterized architec-
ture, uses ∥ϕ(s) − ψ(g)∥ as a dis-
tance/critic [21]

dMLP Uses multi-layer perceptron (MLP)
to parameterize the distance/critic
[7, 65]

dMRN Metric residual network, uses a
quasimetric architecture to parame-
terize the distance/critic [44]

QMLP MLP-parameterized Q-function [27]

Quasimetric Architectures (implicit planning). Prior methods that employ special neural networks
may have some degree of horizon generalization. For example, some prior methods [49, 61, 79] use
quasimetric networks to represent a distance function. As the correct distance function satisfies the
triangle inequality, it is useful to employ special quasimetric neural network architectures [44, 77, 78]
that are guaranteed to satisfy the same property before seeing any training data.
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However, prior work rarely examines the generalization or invariance properties of these quasimetric
architectures. One way of thinking about quasimetric architectures is that they are invariant to
path relaxation (d(s, g) ← minw d(s, w) + d(w, g) for any triplet s, w, g) [17, p. 609], an operation
that enforces a form of self-consistency through the triangle inequality (see Definition 1). Path
relaxation is exactly the notion of planning used in our theoretical construction (Theorem 1 and
Theorem 2). Thus, these architectures are, by construction, invariant to planning and theoretically
result in horizon generalization. We use these architectures in our experiments in Section 6.

While quasimetric architectures are invariant to path relaxation, other prior methods [43, 74] have
proposed architectures that perform value iteration internally and (hence) may be invariant to the
Bellman operator. Because Bellman optimality implies invariance to optimal planning (c.f. optimal
substructure), we expect that these value iteration networks may exhibit some degree of horizon
generalization as well.

Explicit planning methods. While our proof of planning used a specific notion of planning, prior
work has proposed RL methods that employ many different styles of planning: graph search
methods [4, 10, 67, 86], model-based methods [12, 45, 52, 73, 82], collocation methods [66], and
hierarchical methods [37, 53, 58, 60]. Insofar as these methods approximate the method used in
our proof, it is reasonable to expect that they may achieve some degree of planning invariance
and horizon generalization (see Fig. 10). Prior methods in this space are typically evaluated on
the training distribution, so their horizon generalization capabilities are typically not evaluated.
However, the improved generalization properties might have still contributed to the faster learning
on the training tasks: after just learning the easier tasks, these methods would have already solved
the complex tasks, leading to higher average success rates.

Data augmentation. Finally, prior work [10, 26] has argued that data augmentation provides another
avenue for achieving the benefits typically associated with planning or dynamic programming.

6 Experiments
The aim of our experiments is to provide intuition into what horizon generalization and planning
invariance are, why it should be possible to achieve these properties, and to study the extent to which
existing methods already achieve these properties. We also present an experiment highlighting
why horizon generalization is a useful notion even when considering temporal difference methods
(Section 6.2).

We start with a didactic, tabular navigation task (Fig. 11), connecting short horizon trajectories and
evaluating performance on long-horizon tasks. In our first experiment, we measure the empirical
average hitting time distance between all pairs of states. We define a policy that acts greedily with
respect to these distances, measuring performance of this “metric regression” policy in Fig. 5 (Top
Left). The degree of horizon generalization can be quantified by comparing its success rate on nearby
(s, g) pairs to more distant pairs. We compare to a “metric regression with quasimetric” method that
projects the empirical hitting times into a quasimetric by performing path relaxation updates until
convergence (d(s, g)← minw d(s, w) + d(w, g)). Fig. 5 (Top Left) shows that this policy achieves near
perfect horizon generalization. While this result makes intuitive sense (this algorithm is very similar
to Dijkstra’s algorithm), it nonetheless highlights one way in which a method trained on nearby
start-goal pairs can generalize to more distant pairs.

We study planning invariance of these policies by comparing the success rate of each policy (on
distant start-goal pairs) when the policy is conditioned on the goal versus on a waypoint. See
Appendix F for details. As shown in Fig. 5 (Top Right), the “metric regression with quasimetric”
policy exhibits stronger planning invariance, supporting our theoretical claim that (Theorem 1)
planning invariance is possible.

We next study whether these properties exist when using function approximation. For this experi-
ment, we adopt the contrastive RL method [22] for estimating the distances, comparing different
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Figure 5: Quantifying horizon generalization and invariance to planning. On a simple navigation task, we
collect short trajectories and train two goal-conditioned policies, comparing both to a random policy. (Top
Left) We evaluate on (s, g) pairs of varying distances, observing that metric regression with a quasimetric
exhibits strong horizon generalization. (Top Right) In line with our analysis, the policy that has strong horizon
generalization is also more invariant to planning: combining that policy with planning does not increase
performance. (Bottom Row) We repeat these experiments using function approximation (instead of a tabular
model), observing similar trends.

architectures and loss functions. The results in Fig. 5 (Bottom Left) show that both the architecture
and the loss function can influence horizon generalization, with the strongest generalization being
achieved by a CMD-1 [49]. Intuitively this makes sense, as this method was explicitly designed to
exploit the triangle inequality, which is closely linked to planning invariance. Fig. 5 (Bottom Right)
shows the degree of planning invariance for these policies. Supporting our analysis, the policy most
invariant to planning trained over short horizon tasks shows the strongest horizon generalization.

To better understand the relationship between planning invariance and horizon generalization,
we used the data from Fig. 5 (Bottom Left) to estimate the horizon generalization parameter η (see
Section 5.4), and used the data from the (Bottom Right) to compute the ratio of performance with and
without planning. Fig. 8 shows these data as a scatter plot.

These two quantities are well correlated, supporting Theorem 2’s claim that horizon generalization
is closely linked to planning invariance. Methods that use an L2-distance parameterized architecture
showed stronger horizon generalization and planning invariance than that which uses an MLP, sug-
gesting that some degree of planning invariance is possible even without a quasimetric architecture.
Intriguingly, these methods using the L2 architecture have a value of η ≈ 0.5, right at the critical
point between bounded and unbounded reach (see Section 5.4).

The CMD-1 method, which is explicitly designed to incorporate the triangle inequality, exhibits much
stronger planning invariance and horizon generalization (η ≈ 0.8 ≫ 0.5), well above the critical
point. Finally, note that the random policy is an outlier: it achieves perfect planning invariance (it
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Figure 6: Measuring horizon generalization in a high-dimensional (27D observation, 8DoF control) task.
(Left) We use an enlarged version of the quadruped “ant” environment, training all goal-conditioned RL methods
on (start, goal) pairs that are at most 10 meters apart. (Right) We evaluate several RL methods, measuring the
horizon generalization of each. These results reveal that (i) some degree of horizon generalization is possible; (ii)
the learning algorithm influences the degree of generalization; (iii) the value function architecture influences the
degree of generalization; and (iv) no method achieves perfect generalization, suggesting room for improvement
in future work. The ratio of success at 10m vs 5m and 20m vs 10m corresponds to η from Section 5.4. Results
are plotted with standard errors across random seeds.

(a) AntMaze
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Goal
η value

Distance CMD CRL

5m 1.00 1.00
15m 0.93 0.10
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Figure 7: Illustrating Horizon Invariance in Additional Environments. (Left) A large Ant maze environment
with a winding S-shaped corridor. (Right) A humanoid environment with a complex, high-dimensional
observation space. We evaluate the horizon generalization as measured by η for a quasimetric architecture
(CMD) and a standard architecture (CRL), quantifying the ratio of success rates when evaluating at 5m vs 10m,
15m vs 30m, and 25m vs 50m after training to reach goals within 10m. The largest η values in each row are
highlighted.

always takes random actions, regardless of the goal) yet poor horizon generalization. This random
policy highlights a key assumption in our analysis: that the policy always succeeds at reaching
nearby goals (in Fig. 5, note that the success rate on the easiest goals is strictly less than 1).

6.1 Studying Horizon Generalization in a High-dimensional Setting

Our next set of experiments study horizon generalization and planning invariance in the context
of a high-dimensional quadrupedal locomotion task (see Fig. 6). We start by running a series of
experiments to compare the horizon generalization of different learning algorithms (CRL [22] and
SAC [27]) and distance metric architectures (details in Appendix F). The results in Fig. 6 highlight that
both the learning algorithm and the architecture can play an important role in horizon generalization,
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Figure 9: Impact of horizon generalization on Bellman errors. (Left) Two goal-reaching methods exhibit
different horizon generalization. (Right) Despite neither method being trained with the Bellman loss, we observe
that the method with stronger horizon generalization has a lower Bellman loss. Thus, understanding horizon
generalization may be important even when using TD methods (which guarantee horizon generalization at
convergence).

while also underscoring that achieving high horizon generalization in high-dimensional settings
remains an open problem. See Table 1 for a summary of the methods used in these experiments.
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Figure 8: Quantifying horizon generalization (x-axis) and planning
invariance (y-axis).

These trends hold in more complex
environments as well: Fig. 7 shows
greater horizon generalization (as
measured by the η-value defined in
Section 5.4) for a CMD-1 architecture
compared to a CRL architecture in
both an AntMaze and a Humanoid
environment.

6.2 Impact
of Horizon Generalization
on Bellman Errors

Why should someone using a tempo-
ral difference method care about hori-
zon generalization, if TD methods are
supposed to provide this property for
free? One hypothesis is that methods
for achieving horizon generalization
will also help decrease the Bellman
error, especially for unseen start-goal
pairs. We test this hypothesis by measuring the Bellman error throughout training of the contrastive
RL method (same method as Fig. 5), with two different architectures. The results in Fig. 9 show that
the architecture that exhibits stronger horizon generalization (dℓ2) also has a lower Bellman error
throughout training. Thus, while TD methods may achieve horizon generalization at convergence
(at least in the tabular setting with infinite data), a stronger understanding of horizon generalization
may nonetheless prove useful for designing architectures that enable faster convergence of TD
methods.

7 Conclusion

The aim of this paper is to give a name to a type of generalization that has been observed before, but
(to the best of our knowledge) has never been studied in its own right: the capacity to generalize
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from nearby start-goal pairs to distant goals. Seen from one perspective, this property is trivial — it
is an application of the optimal substructure property, and the original Q-learning method [80]
already achieves this property. Seen from another perspective, this property may seem magical: how
can one guarantee that a policy trained over easy tasks can extrapolate from easy tasks to hard tasks?

We hope to provide a theoretical framework for understanding this property as a form of self-
consistency over model architecture, and show how we can obtain and measure this property in
practice. The experiments in Section 6 then connect these insights to concrete advice for structuring
the representation for goal-reaching:

1. Policies defined over metric architectures that measure state dissimilarity have planning invariance.
2. Planning invariance is a desirable feature that is correlated with the notion of horizon generalization.
3. Quasimetric architectures provide a realistic approach to achieve planning invariance and horizon

generalization.

In Appendix D, we discuss further implications of these notions of invariance on self-consistent
models for decision-making.

Limitations and Future Work. Future work should examine how the properties of planning invari-
ance and horizon generalization are conserved in more complex decision-making environments,
such as robotic manipulation and language-based agents. Which versions of the distance parame-
terizations in Table 1 are most effective at scale should be investigated with larger-scale empirical
experiments. We assume a goal-conditioned setting, but there are meany alternative forms of task
specification (rewards, language, preferences, etc.) that could similarly benefit from generaliza-
tion over long horizons. Future work should explore how planning-invariant geometry could be
extended or mapped onto these task spaces.
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A Definition of Path Relaxation

In this section, we formally define the general path relaxation operator in Definition 5. This definition
extends Definition 1 to allow for actions and environmental stochasticity.

Definition 5 (Path relaxation operator with actions). Let PATHd(s, a,G) be the path relaxation operator
over quasimetric d(s, a,G). For any triplet of state and state distributions (s,W,G) ∈ S × P(S)× P(S),

PATHd(s, a,G) ≜ min
W

d(s, a,W ) + d(W,G). (13)

In the controlled, fixed goal setting, define

PATHFIX
d (s, a, g) ≜ min

w
d(s, a, w) + d(w, g). (14)

The notation P(X) used here and throughout the appendix denotes the space of probability distri-
butions over set X .

B Formalizing Planning Invariance and Horizon Generalization

In this section, we prove results discussed in Section 5.2 and versions of results in Section 5 for the
general stochastic, distributional setting.

B.1 Planning Invariance Exists

Theorem 1 (Quasimetric policies are invariant under PLANd). Given a deterministic MDP with states
S , actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g), define quasimetric policy
πd(a | s, g) and quasimetric planner class pland. Then, for every quasimetric planner PLANd ∈ pland,
there always exists a policy πd(a | s, g) that is planning invariant:

πd(a | s, g) = πd
(
a | s, w for w = PLANd(s, g)

)
. (11)

Proof. Let s, g ∈ S and the action-free distance function be d(s, g) = mina d(s, a, g); this statement is
true for the constrastive successor distances (Eq. 5). Define the (deterministic) planned waypoint as

wPLAN ← PLANd(s, g) ∈ argmin
w∈S

d(s, w) + d(w, g). (15)

We can then construct the following policy:

πd(a | s, g) ∈ argmin
a∈A

d(s, a, g) (16)
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and later restrict the selection of equivalently optimal actions to obtain planning invariance, where
wPLAN ∈ argminw∈S d(s, w) + d(w, g). Applying this policy to (s, wPLAN), we have that

πd(a | s, wPLAN) ∈ argmin
a∈A

d(s, a, wPLAN)

= argmin
a∈A

d(s, a, wPLAN) + d(wPLAN, g)

= d(s, wPLAN) + d(wPLAN, g)

⊆ argmin
a∈A

d(s, a, g). (17)

Thus, for a given deterministic planning algorithm defined as in Eq. (15), there exists some deter-
ministic policy πd(a | s, g) = πd(a | s, wPLAN) ∈ argmina∈A d(s, a, wPLAN) ⊆ argmina∈A d(s, a, g) that
is planning invariant.

B.2 Quasimetric Over Distributions

Definition 6 (Quasimetric over distributions). Let the goal-conditioned MDPM be given.

Given quasimetric dQM defined over start-goal space S × S , we define the quasimetric over distributions as

dQMD(P,Q) = inf
γ∈Π(P,Q)

∫
S×S

dQM(p, q)γ(p, q) dp dq, (18)

which is the asymmetric Wasserstein Distance with quasimetric cost function dQM (p, q).

We can interpret this object as the minimum cost to convert distribution P to Q, where the cost
function is some quasimetric between individual states.

We show Definition 6 is a valid quasimetric. Because dQMD is an asymmetric Wasserstein distance
and cost function dQM(p, q) is a quasimetric, this proof is an extension of a well-known result [13]
that drops the metric symmetry condition. We include the proof here for completeness.

Proof. We check the conditions of a quasimetric for dQMD(P,Q) with quasimetric cost function
dQM(p, q).

Non-negativity: By definition of γ(p, q) and dQM(p, q), we have dQMD(P,Q) ≥ 0 for all P,Q.

We show that dQMD(P,Q) = 0 if and only if P = Q, beginning with the forward direction:

dQMD(P, P ) = inf
γ∈Π(P,P )

∫
S×S

dQM(p, q)γ(p, q) dp dq

≤
∫
S×S

dQM(p, q)γD(p, q) dp dq (set γ as diagonal matrix γD)

=

∫
S
dQM(p, p)µ(p) dp (where µ(p) = γD(p, p))

= 0 (dQM (p, p) = 0)

For the other direction, we have that dQMD(P,Q) = 0 implies γ(p, q) = 0 for all p ̸= q. However,
because γ(p, q) is a probability distribution, this must mean P = Q.

Asymmetry: We have that dQMD(P,Q) is not necessarily symmetric because the quasimetric dQM(p, q)
is not necessarily symmetric.
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Triangle inequality: Let P,Q,R be three probability measures. Let γ∗1,2 and γ∗2,3 be minimizers of
dQMD(P,Q) and dQMD(Q,R) respectively. We can construct some γ1,2,3(p, q, r) such that∫

S
γ1,2,3(p, q, r) dr = γ∗1,2∫

S
γ1,2,3(p, q, r) dp = γ∗2,3∫

S
γ1,2,3(p, q, r) dq = γ1,3

where γ1,3 is not necessarily the optimal joint distribution to minimize dQMD(P,R). Then, we have:

dQMD(P,R) ≤
∫
S×S

dQM(p, r)γ1,3(p, r) dp dr

=

∫
S×S×S

dQM(p, r)γ1,2,3(p, q, r) dp dq dr

≤
∫
S×S×S

(dQM(p, q) + dQM(q, r)) γ1,2,3(p, q, r) dp dq dr (dQM satisfies△-ineq)

=

∫
S×S×S

dQM(p, q)γ1,2,3(p, q, r) dp dq dr +

∫
S×S×S

dQM(q, r)γ1,2,3(p, q, r) dp dq dr

= dQMD(P,Q) + dQMD(Q,R)

as desired. Therefore, dQMD is a quasimetric and we are done.

B.3 Quasimetrics, Path Relaxation, Policies, and Planning Invariance in
Stochastic Settings

We extend the definitions of quasimetrics, path relaxation, policies, and planning invariance to the
setting of general stochastic MDPs.
Definition 7 (Quasimetric over actions in general stochastic setting). Let the quasimetric over distri-
butions dQMD (Definition 6) be given. Let S′

s,a = p(s′ | s, a) be the distribution over next-step states after
taking action a from starting state s. We define the stochastic-setting quasimetric over actions as

dQMD(s, a,G) ≜ dQMD(s, S
′
(s,a)) + dQMD(S

′
(s,a), G).

Definition 8 (Quasimetric policy in general stochastic setting). Given goal-conditioned MDPM with
states S, actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g) and quasimetric
over distributions dQMD (Definition 6), we extend the quasimetric policy to stochastic settings:

πd(a | s,G) ∈ argmin
a

dQMD(s, a,G). (19)

We can also generalize the planning class to take in states, actions, and state distributions as inputs:

plan ≜ {PLAN : S ×A× P(S) 7→ P(S)}. (20)

This planner chooses a waypoint distribution conditioned on a given start state, action taken from
this state, and a desired future goal distribution.
Definition 9 (Quasimetric planner class in general stochastic setting). Given goal-conditioned MDP
M and quasimetric over distributions dQMD (Definition 6), we extend the quasimetric planning class to
stochastic settings:

pland ≜{PLAN ∈ plan | dQMD(s, a,W ) + dQMD(W,G) = dQMD(s, a,G)

for all (s, a,G) ∈ S ×A× P(S) where PLAN(s, a,G) =W}.
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The existence of planning invariance in stochastic settings follows from these quasimetric definitions.

Lemma 4 (Quasimetric policies are planning invariant in general stochastic settings). Given an
MDP with states S, actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g), define
quasimetric policy πd(a | s,G) and quasimetric planner class pland. Then, for every planning operator

PLANd(s, a,G) =WPLAN ∈ argmin
W∈P(S)

(dQMD(s, a,W ) + dQMD(W,G)),

there exists a quasimetric policy πd(a | s,G) such that

πd(a | s,G) = πd(a | s,WPLAN)

which is planning invariance.

Proof. For any start-goal distribution (s,G) ∈ S × P(S) pair,

min
a
dQMD(s, a,G) = min

a
dQMD(s, S

′
(s,a)) + dQMD(S

′
(s,a), G) (by definition (Definition 6))

= min
a

min
W

dQMD(s, S
′
(s,a)) + dQMD(S

′
(s,a),W ) + dQMD(W,G) (△-ineq)

= min
a

min
W

dQMD(s, a,W ) + dQMD(W,G) (21)

From Definition 8, let quasimetric policy π be

πd(a | s,G) ∈ argmin
a∈A

dQMD(s, a,G).

Now, applying this policy to state-waypoint distribution pair (s,WPLAN) ∈ S × P(S),

π(a|s,WPLAN) ∈ argmin
a∈A

dQMD(s, a,WPLAN)

= argmin
a∈A

dQMD(s, a,WPLAN) + dQMD(WPLAN, G)

⊆ argmin
a∈A

dQMD(s, a,G) (22)

as desired. Thus, for any quasimetric planner PLANd(s, a,G), there exists some quasimetric policy

πd(a | s,G) = πd(a | s,WPLAN) ∈ argmin
a∈A

dQMD(s, a,WPLAN)

⊆ argmin
a∈A

d(s, a,G), (23)

as desired.

B.4 Horizon generalization exists

Theorem 2 (Horizon generalization exists). Consider a deterministic goal-conditioned MDP with states
S, actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g) where there are no states
outside of S. Let finite thresholds c > 0 and quasimetrics d(s, g) over the start-goal space S × S be given.
Then, a quasimetric policy πd(a | s, g) that is optimal over Bc = {(s, g) ∈ S × S | d(s, g) < c} is optimal
over the entire start-goal space S × S .

Proof. We prove the more general result for policies πd(a | s,G) defined over start-goal distribution
pairs (s,G). See earlier sections in Appendix B.3 for quasimetric, policy, and planning definitions
over distributions.
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Lemma 5. For a goal-conditioned MDP with states S, actions A, and goal-conditioned Kronecker delta
reward function rg(s) = δ(s,g). Let finite thresholds c > 0 and quasimetrics dQMD(s,G) over the start-
goal distribution space S × P(S) be given. Then, a quasimetric policy πd(a | s,G) that is optimal over
Bc = {(s,G) ∈ S × P(S) | d(s,G) < c} is optimal over the entire start-goal distribution space S × P(S).

Note that we can recover the fixed, deterministic action and goal setting (“fixed” setting) by letting
goal-distribution G be a Dirac delta function at a single goal g.

We prove Lemma 5 using induction. Assume optimality over Bn = {(s,G) ∈ S × P(S) | d(s,G) <
c2n} for arbitrary n ∈ Z+. Without loss of generality, consider arbitrary state s ∈ S and all goal
distributions Dn(s) = {G ∈ P(S) | d(s,G) < c2n}.
We can consider the space of distributions Dn(G) that are c2n distance away from goal distribution
G ∈ Dn(s):

Dn(G) = {S′ ∈ P(S) | d(G,S′) < c2n, G ∈ Dn(s)}
= {S′ ∈ P(S) | d(s, S′) < c2n+1}
= Dn+1(s) (24)

where we correspondingly define the ball of start-goal distribution pairs drawn from Dn(G) as

B′n = {(s, S′) ∈ S × P(S) | S′ ∈ Dn(G), G ∈ Dn(s)}
= {(s, S′) ∈ S × P(S) | S′ ∈ Dn+1(s)}
= Bn+1. (25)

Invoking the definition of the quasimetric policy πd(a | s, S′), for some waypoint distribution
WPLAN ∈ argminW∈Dn+1(s)(dQMD(s, a,W ) + dQMD(W,G)) and goal distribution G ∈ Dn+1(s):

πd(a | s,G) ∈ argmin
a∈A

dQMD(s, a,WPLAN).

To show that there always exists some planned waypoint distribution WPLAN within the region of
assumed optimality Dn from the inductive assumption, we consider the case WPLAN /∈ Dn(s) and
show that there exists some WPLAN, IN ∈ Dn such that

dQMD(s, a,WPLAN, IN) + dQMD(WPLAN, IN, G) = dQMD(s, a,G).

We drop the QMD subscript on quasimetric d for readability. By the triangle inequality,

d(s, a,G) = min
W∈Dn+1(s)

(d(s, a,W ) + d(W,G))

= d(s, a,WPLAN) + d(WPLAN, G)

= min
WOUT∈Dn+1(s)\Dn(s)

d(s, a,WOUT) + d(WOUT, G)

= min
WOUT∈Dn+1(s)\Dn(s)

min
WIN∈Dn

(
d(s, a,WIN) + d(WIN,WOUT)

)
+ d(WOUT, G)

= min
WIN∈Dn(s)

min
WOUT∈Dn+1(s)\Dn(s)

d(s, a,WIN) +
(
d(WIN,WOUT) + d(WOUT, G)

)
= min

WIN∈Dn(s)
d(s, a,WIN) + d(WIN, G) (△-ineq)

= d(s, a,WPLAN, IN) + d(WPLAN, IN, G), (26)

for all s ∈ S. Thus, there always exists an optimal state-waypoint distribution pair within the
assumed optimality region Bn; we can thus restrict (s,WPLAN) ∈ Bn.
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Therefore, with the previously defined quasimetric policy πd(a | s,G),

πd
(
a | (s,WPLAN) ∈ Bn

)
∈ argmin

a∈A
d(s, a,WPLAN) (inductive assumption)

⊆ argmin
a∈A

d(s, a,G), , (Lemma 4: planning invariance)

so, the policy πd(a | s,G) is optimal over Bn+1 following the inductive assumption. Since we assume
the base case holds everywhere, Theorem 2 follows.

B.5 Horizon generalization is nontrivial

We observe that planning invariance and horizon generalization can be arbitrarily violated for
general policies and MDPs.

Remark 3 (Horizon generalization is nontrivial). Let finite c > 0 and goal-conditioned MDP with states
S, actions A, and goal-conditioned Kronecker delta reward function rg(s) = δ(s,g) be given where there are
no states outside of S. For a policy that is not planning invariant, optimality over Bc = {(s, g) ∈ S × S |
d(s, g) < c} is not a sufficient condition for optimality over the entire start-goal space S × S .

Proof. We restrict our proof to the fixed, controlled setting and let quasimetric d(s, g) be the successor
distance dSD(s, g) [49] — this assumption lets us directly equate the optimal horizonH to the distance
dSD(s, g), but note that similar arguments can be applied by treating d(s, g) as a generalized notion
of horizon.

Consider goal-conditioned policy π∗,H(a | s, g) that is optimal for (s, g) pairs over some horizon H .
Assume there is at least one goal g′ that is optimally H + 1 actions away from s, and that there exists
some optimal waypoint s′ on the way to g′ reachable via actions A′ ⊂ A (where A \ A′, the set of
suboptimal actions, is nonempty).

We can then construct a policy πH+1 where (1) πH+1(a | s, g′) returns an action in the suboptimal set
A \ A′ and (2) πH+1 restricted to start-goal pairs horizon H apart is equivalent to π∗,H . Therefore,
an arbitrary, non-planning invariant goal-reaching policy does not necessarily exhibit horizon
generalization.

C New Methods for Planning Invariance

While the aim of this paper is not to propose a new method, we will discuss several new directions
that may be examined for achieving planning invariance.

Representation learning. As shown in Fig. 2, planning invariance implies that some internal
representation inside a policy must map start-goal inputs and start-waypoint inputs to similar
representations. What representation learning objective would result in representations that, when
used for a policy, guarantee horizon generalization?2 The fact that plans over representations
sometimes correspond to geodesics [21, 75] hints that this may be possible.

Flattening hierarchical methods. While hierarchical methods often achieve higher success rates
in practice, it remains unclear why flat methods cannot achieve similar performance given the
same data. While prior work has suggested that hierarchicies may aid in exploration [51], it may
be the case that they (somehow) exploit the metric structure of the problem. Once this inductive
bias is identified, it may be possible to imbue it into a “flat” policy so that it can achieve similar
performance (without the complexity of hierarchical methods).

2The construction in our proof is a degenerate case of this, where the internal representations are equal to the output
actions.
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Policies that learn to plan. While explicit planning methods may be invariant to planning, recent
work has suggested that certain policies can learn to plan when trained on sufficient data [10, 42].
Insofar as neural networks are universal function approximators, they may learn to approximate
a planning operator internally. The best way of learning such networks that implicitly learn to
perform planning remains an open question.

MDP reductions. Finally, is it possible to map one MDP to another MDP (e.g., with different
observations, with different actions) so that any RL algorithm applied to this transformed MDP
automatically achieves the planning invariance property?

D Self-Consistent Models
In machine learning, we usually strive for consistent models: ones that faithfully predict the train-
ing data. Sometimes (often), however, a model that is consistent with the training data may be
inconsistent with other yet-to-be-seen training examples. In the absence of infinite data, one way
of performing model selection is to see whether a model’s predictions are self-consistent with one
another. This is perhaps most easily seen in the case of metric learning, as studied in this paper. If
we are trying to learn a metric d(x, y), then the properties of metrics tell us something about the
predictions that our model should make, both on seen and unseen inputs. For example, even on
unseen inputs, our model’s predictions should obey the triangle inequality. Given many candidate
models that are all consistent with the training data, we may be able to rule out some of those models
if their predictions on unseen examples are not “logically” consistent (e.g., if they violate the triangle
inequality). One way of interpreting quasimetric neural networks is that they are architecturally constrained
to be self-consistent. We will discuss a few implications of this observation.

Do self-consistent models know what they know? What if we assume that quasimetric networks
can generalize? That is, after learning that (say) s1 and s2 are 5 steps apart, it will predict that similar
states s′1 and s′2 are also 5 steps apart. Because the model is architecturally constrained to be a
quasimetric, this prediction (or “hallucination”) could also result in changing the predictions for
other s-g pairs. That is, this new “hallucinated” edge s′1 −→ s′2 might result in path relaxation for
yet other edges.

What other sorts of models are self-consistent? There has been much discussion of self-consistency
in the language-modeling literature [30, 32]. Many of these methods are predicated on the same
underlying as self-consistency in quasimetric networks: checking whether the model makes logically
consistent predictions on unseen inputs. Logical consistency might be used to determine that a
prediction is unlikely, and so the model can be updated or revised to make a different prediction
instead.

There is an important difference between this example and the quasimetrics. While the axiom used
for checking self-consistency in quasimetrics was the triangle inequality, in this language modeling
example self-consistency is checked using the predictions from the language model itself. In the
example of quasimetrics, our ability to precisely write down a mathematical notion of consistency
enabled us to translate that axiom into an architecture that is self-consistent with this property. This
raises an intriguing question: Can we quantify the rules of logic in such a way that they can be translated
into a logically self-consistent language model? What makes this claim seem alluringly tangible is that
there is abundant literature from mathematics and philosophy on quantifying logical rules [81].

E Evidence of Horizon Generalization and Planning Invariance
from Prior Work

Not only do the experiments in Section 6 provide evidence for horizon generalization and planning
invariance, but we also can find evidence of these properties in the experiments run by prior work.
This section reviews three such examples, with the corresponding figures from prior work in Fig. 10:
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Figure 10: Evidence of Horizon Generalization and Planning Invariance from Prior work. (a) Prior work has
observed that if policies are trained in an online setting and perform planning during exploration, then those
policies see little benefit from doing planning during evaluation. This observation suggests that these policies
may have learned to be planning invariant. While results are not stratified into training and testing tasks, we
speculate that the faster learning of that method (relative to baselines, not shown) may be explained by the
policy generalizing from easy tasks (which are learned more quickly) to more difficult tasks. (b) Prior work
studies how data augmentation can facilitate combinatorial generalization. While the notion of combinatorial
generalization studied there is slightly from horizon generalization, a method that performs combinatorial
generalization would also achieve effective horizon generalization.

1. Zhang et al. [86] propose a method for goal-conditioned RL in the online setting that performs
planning during exploration. While not the main focus of the paper, an ablation experiment in
that paper hints that their method may have some degree of planning invariance: after training,
the policy produced by their method is evaluated both with and without planning, and achieves
similar success rates. This experiment hints at another avenue for achieving planning invariance:
rather than changing the architecture or learning rule, simply changing how data are collected
may be sufficient.

2. Ghugare et al. [26] propose a method for goal-conditioned RL in the offline setting that performs
temporal data augmentation. Their key result, reproduced above, is that the resulting method
generalizes better to unseen start-goal pairs, as compared with a baseline. While this notion of
generalization is not exactly the same as horizon generalization (unseen start-goal pairs may still
be close to one another), the high success rates of the proposed method suggest that method
does not just generalize to nearby start-goal pairs, but also exhibits horizon generalization by
succeeding in reaching unseen distant start-goal pairs.

F Experiment Details

The following subsections discuss the environment details for the figures in the main text.
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F.1 Didactic Maze: Figure 2

This task is a maze with walls shown as in Fig. 2. The dynamics are deterministic. There are 5
actions, corresponding to the cardinal directions and a no-op action.

For this plot, we generated data from a random policy, using 1000 trajectories of length 200. We
estimated distances using Monte Carlo regression. The left two subplots were generated by selecting
actions uses these Monte Carlo distances. We computed the true distances by running Dijkstra’s
algorithm. The right two subplots show actions selected using Dijkstra’s algorithm.

F.2 Tabular Maze Navigation: Figure 5 (Top)

This plot used the same environment as described in Appendix F.1. For this plot, we generated 3000
trajectories of length 50 using a random policy. Only 14% of start-goal pairs have any trajectory
between them, meaning that the vast majority of start-goal pairs have never been seen together
during training. Thus, this is a good setting for studying generalization.

We first estimated distances using Monte Carlo regression. We select actions using a Boltzmann
policy with temperature 0.1 (i.e., π(a | s, g) ∝ e−0.1d(s,g)). Evaluation is done over 1000 randomly-
sampled start-goal pairs. The X axis is binned based on the shortest path distance. The data are
aggregated so that start-goal pairs with distance between (say) 20 and 30 get plotted at x = 30. The
“metric regression + quasimetric” distances are obtained by performing path relaxation on these
Monte Carlo distances until convergence. The corresponding policy is again a Boltzmann policy
with temperature 0.1.

For the Top Right subplot, we perform planning using Dijkstra’s algorithm. We first identify a set
of candidate midpoint states where d(s, w) and d(w, g) are both within one unit of half the shortest
path distance. We then randomly sample a midpoint state. This planning is done anew at every
timestep.

F.3 Learned Maze Navigation: Figure 5 (Bottom)

This plot used the same environment as described in Appendix F.1. The CRL method refers to [22]
and CMD refers to [49]. We used a representation dimension of 16, a batch size of 256, neural
networks with 2 hidden layers of width 32 and Swish activations, γ = 0.9, and Adam optimizer
with learning rate 3 · 10−3. The loss functions and architectures are based on those from [5].

For the Bottom Right subplot, we performed planning in the same way as for the Top Right subplot.

F.4 JaxGCRL Benchmark Environments

Ant (Figure 6): For this task we used a version of the Ant environment from Bortkiewicz et al. [5]
modified to have variable start positions and distances to the goal. All other hyperparameters are
kept as the defaults from that paper. Training is done for 100M steps

AntMaze and Humanoid (Figure 7): Both environments are modified versions of the AntMaze
and Humanoid environments from Bortkiewicz et al. [5]. The CMD-1 and CRL methods (with the
backward infoNCE loss and ℓ2 distance parameterization) were evaluated at the listed distances and
twice as far, and the ratio of the two success rates was used to compute η.

F.5 Long Maze: Figure 9

For this experiment we used an S-shaped maze, shown in Fig. 11.3 The dynamics are the same as
those of Fig. 2.

3We used this maze in preliminary versions of other experiments, but opted for the larger maze in the other paper
experiments because the results were easier to visualize.
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Figure 11: Long S-shaped maze.

We collected 3000 trajectories of length 10 and
applied CRL with a representation dimension
of 16, a batch size of 256, neural networks with
2 hidden layers of width 32 and Swish activations, the backward NCE loss [5], γ = 0.9, using the
Adam optimizer with learning rate 3 · 10−3. We measured the Bellman error as follows, where
x0, x1, xT are the current, immediate next, and future states:

1 pdist = metric_fn.apply(params, x0[:, None], xT[None])
2 pdist_next = metric_fn.apply(params, x1[:, None], xT[None])
3 td_target = (1 - gamma) * (x1 == xT[None, :, 0])
4 + gamma * jax.nn.softmax(pdist_next, axis=1)
5 bellman = optax.kl_divergence(
6 td_target, jax.nn.softmax(pdist, axis=1)
7 ).mean()

For the success rates in the Left subplot, we stratify goals into “easy” (less than 100 steps away,
under an optimal policy) and “distant” (more than 100 steps away).

We repeated this experiment 10 times for generate the standard errors shown in both the Left and
Right subplots.
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