Prove that this would imply that $P = NP$.

(b) Now suppose we change the check made by the verifier in (a)-ii. to checking the two queried bits are equal (instead of being unequal). Which languages can have such a PCP?

2. (a) For a simple, loopless, undirected graph $G = (V, E)$, define its “square” G^2 as follows. The vertices of G^2 consist of ordered pairs of vertices of G, i.e., the vertex set is $V \times V$. Two pairs (u_1, u_2) and (v_1, v_2) are adjacent in G^2 if and only if

$$(u_1, v_1) \in E \text{ or } (u_2, v_2) \in E.$$

Prove the following statement: For every (simple, loopless) undirected graph G, the size of the largest independent in G^2 is equal to the square of the size of the largest independent set in G.

(b) Suppose that there is a polynomial time algorithm \(A_{0.01} \) that on any input graph \(G \), finds an independent set of size at least 1% of the largest independent set in \(G \). Show how one can use \(A_{0.01} \) as a subroutine and design a polynomial time algorithm \(A_{0.99} \) that finds an independent set of size at least 99% of the largest independent set in any input graph.

Hint: Use the previous part.