The FFT algorithm gives a way to evaluate a polynomial $f(x)$ of degree $(n-1)$, where n is a power of 2, at all n’th roots of unity, using $O(n \log n)$ (complex) operations. But what if we want to evaluate the polynomial $f(x)$ at n arbitrary input points $u_0, u_1, \ldots, u_{n-1}$ (assume to be integers)? The naive approach of computing each $f(u_i)$ separately will take $O(n^2)$ operations. This exercise shows how one can also do this task in near-linear time.

To do so, we shall use the result (which we will assume without proof) that given two input polynomials $A(x), B(x)$ of degree $< n$ in the coefficient representation, one divide $A(x)$ by $B(x)$ and compute the remainder polynomial (in coefficient representation) using $O(n \log n)$ operations. For example, the remainder of $4x^3 + x^2 - 2x + 3$ when divided by $x^2 + x + 2$ is

$$ (4x^3 + x^2 - 2x + 3) \mod (x^2 + x + 2) = -7x + 9. $$

That is, as with polynomial multiplication, polynomial division with remainder, can also be computed in $O(n \log n)$ complexity.

Using the above, show how one can evaluate an input degree $(n-1)$ polynomial $f(X)$, given in coefficient representation, at any set of n input points $\{u_0, u_1, \ldots, u_{n-1}\}$ using $O(n (\log n)^2)$ operations.

Hint: If you define $f_0(x) = f(x) \mod ((x - u_0)(x - u_1) \cdots (x - u_{n/2-1}))$ and $f_1(x) = f(x) \mod ((x - u_{n/2})(x - u_{n/2+1}) \cdots (x - u_{n-1}))$, then $f(u_i) = f_0(u_i)$ if $i < n/2$, and $f_1(u_i)$ if $i \geq n/2$. Use this to give a divide-and-conquer algorithm, and carefully account for the time to compute the product polynomials such as $(x - u_0)(x - u_1) \cdots (x - u_{n/2-1})$ that arise in the recursion.