1. We defined the Church numerals in lecture as
\[
0 := \lambda f. \lambda x. x \\
1 := \lambda f. \lambda x. f x \\
2 := \lambda f. \lambda x. f (f x)
\]
and so on, with \(n \) corresponding to applying the function \(f \) iteratively \(n \) times on \(x \). CMU Professor Emeritus and 1976 Turing Award winner Dana Scott defined, in the 1960’s, numerals in the following alternate way:
\[
0 := \lambda f. \lambda x. x \text{ (the same as Church numeral)} \\
1 := \lambda f. \lambda x. f 0 \\
2 := \lambda f. \lambda x. f 1
\]
and so on.

(a) Write down a lambda expression that serves the role of the successor function \(\text{Succ} \) for the Scott numerals.

(b) The Scott numerals have the property that \(n \ E \ F = F \) if \(n = 0 \), and \(n \ E \ F = E m \) if \(n = m + 1 \). This has the advantage that the predecessor of a numeral can be defined readily. Can you specify a lambda expression for the predecessor function \(\text{Pred} \)?

(c) Verify that your lambda expressions above satisfy \(\text{Pred} (\text{Succ} n) = n \) for all integers \(n \geq 0 \).

(d) Give a lambda expression implementing the \(\text{isZero} \) function for Scott numerals, and argue why your expression satisfies \(\text{isZero} \ n \) is TRUE when \(n = 0 \) and FALSE when \(n > 0 \) (here TRUE and FALSE are the Boolean values defined in lecture).