Matrix representation of a graph:

- Adjacency matrix of graph $G = (V,E)$

$A \in \mathbb{R}_{0,1}^{V \times V}$

$A(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$

Can matrix-theoretic notions help shed light on the graph & its properties/structure?

Representations can be a powerful tool to work on an object, especially from a computational point of view.

(Recall FFT algo: coefficient representation \leftrightarrow evaluation)

Spectral graph theory: Eigenvalues of matrix encode valuable information about the graph.

- Useful for structural analysis
- Algorithmically powerful, since spectra of matrices can be computed efficiently

(Full course on Spectral Graph Theory offered regularly by Prof. Gary Miller including this semester)
Interlude on eigenvalues

A = real symmetric \(n \times n \) matrix

\[A(i,j) = A(j,i) \]

(Note: Adj matrix of an undirected graph is symmetric)

Defn \(\lambda \in \mathbb{R} \) is said to be an eigenvalue of a \(n \times n \) matrix \(M \) if \(\exists \vec{x} \in \mathbb{R}^n \), s.t. \(M \vec{x} = \lambda \vec{x} \)

Such an \(\vec{x} \) is called an eigenvector.

\[
\begin{bmatrix}
\lambda \\
M
\end{bmatrix} =
\begin{bmatrix}
\lambda \\
\vec{x}
\end{bmatrix}
\]

Standard Fact: Let \(A \) be an \(n \times n \) real symmetric matrix

1. Then \(A \) has \(n \) real eigenvalues (including repetitions): \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_n \)

2. There exist \(n \) eigenvectors \(v_1, v_2, \ldots, v_n \) s.t. \(A v_i = \lambda_i v_i \) for \(i = 1, 2, \ldots, n \), and

(i) The vectors \(\{v_i\} \) span \(\mathbb{R}^n \)

(ii) Eigenvectors corresponding to different eigenvalues are orthogonal.
\[
\begin{align*}
\text{Pf. of } \forall i, j \neq j: \\
Av_i &= \lambda_i v_i \\
Av_j &= \lambda_j v_j \\
\langle v_i, Av_i \rangle &= \langle v_i, (Av_i) \rangle = \langle v_i, \lambda_i v_i \rangle \\
\langle v_j, Av_i \rangle &= \langle v_j, (Av_i) \rangle = \langle v_j, \lambda_j v_i \rangle \\
\Rightarrow \lambda_i \langle v_j, v_i \rangle &= \lambda_j \langle v_j, v_i \rangle \\
\Rightarrow v_i \cdot v_i = 0 \Rightarrow v_i \text{ and } v_i \text{ are orthogonal}
\end{align*}
\]

Cor. Every vector \(v \in (\mathbb{R}^n) \) can be written as

\[
v = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n
\]
(As a linear combination of \(v_i \)s).

Lem.: Matrix \(A \) has eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) Then

\[
\lambda_1 = \max_{\langle x, x \rangle = 1} \frac{x^TAx}{x^Tx} \quad \text{(Rayleigh quotient)}
\]

Pf. Take \(x = v_1 \),

\[
\langle v_1, Av_1 \rangle = \lambda_1 \langle v_1, v_1 \rangle \\
\Rightarrow v_1^T(Av_1) = \lambda_1 (v_1^Tv_1)
\]

To prove \(\max \langle x, Ax \rangle \leq \lambda_1 \), take any \(x \),

\[
x = \sum a_i v_i \Rightarrow \frac{x^TAx}{x^Tx} = \frac{\sum a_i^2 \lambda_i}{\sum a_i^2} \leq \lambda_1.
\]
Ok back to graph theory!

Eigenvalues of adj. matrix A infor about graph G properties.

Theorem: Let G be connected. Then $\lambda_2 < 0$.

Let G is connected. Then $\lambda_n = -\lambda_1$ iff G is bipartite.

Examples of graph spectra:

K_n (complete graph on n vertices):

$\lambda_1 = n-1$

$\lambda_2 = \lambda_3 = \ldots = \lambda_n = -1$

$(4, -1, -1, -1, -1, -1)$

K_5

C_3

C_4

C_5

C_6

Paths:

P_2

P_3

P_5
d-regular graph := a graph where all vertex degrees = d.

All cycles are 2-regular.

3-regular gh

(Peterson graph)

Fact: For a d-regular graph, largest eigenvalue of its adj. matrix equals d.

Proof: $A \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow$ each row has exactly d 1's

$\Rightarrow d$ is an eigenvalue

Let x be eigenvector with eigenvalue λ_1.

Let u be s.t. $x(u)$ max. coordinate of x.

$\Rightarrow x = \begin{pmatrix} -1 \\ 2 \\ 1 \\ 4 \end{pmatrix}$

$u \rightarrow A \begin{pmatrix} x(u) \\ 1 \\ 1 \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} x(u) \\ 1 \\ 1 \\ 1 \end{pmatrix}$

$\Rightarrow (Ax)(u) = \sum_{(u,v) \in E} x(v) \leq d x(u)$.

$\Rightarrow \lambda_1 \leq d$.

Cu. DEE%
Theorem: For a d-regular graph G whose adjacency matrix has eigenvalues $d = \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$, G is connected if and only if $\lambda_2 < d$.

Proof: 1) G is not connected $\implies \lambda_2 = d$.

Both x & y are eigenvectors with eigenvalue d. Plus they are linearly independent. (In fact orthogonal.)

Thus there are at least 2 eigenvalues equal to d. $\implies \lambda_2 \geq d$ $\implies \lambda_2 = d$

2) $\lambda_2 = d \implies G$ is disconnected

Call (5 vectors)

$\lambda_2 = d \implies \exists \vec{x} \in \mathbb{R}^n, \vec{y}, \vec{z}, \vec{t}$ such that $\vec{x} - \vec{z} - \vec{y} - \vec{t} = 0$, $\vec{x} \cdot \vec{z} = 0$, $\sum_{u \in V} x(u) = 0$.

\[(\vec{x} = 0) \]
Suppose G is connected.

We'll prove all entries of \overline{z} have to be equal, which contradicts $\sum x(u) = 0 \quad \forall u \in V$.

Let $x(v)$ be max value in vector \overline{z}.

$$x(v) = \max_{u \in V} x(u)$$

$$d \cdot x(v) = (A \overline{z})(v) = \sum_{w \sim v} x(w) \leq d \cdot x(v)$$

Only way equality holds is if $x(w) = x(v)$ for all nbrs w of v.

Continuing this argument, because we assured G to be connected, we eventually reach every vertex $u \in V$, and show $x(w) = x(v)$.

[Diagram of a tree structure]

More generally, (in a regular graph) t eigenvalues equal to d.

There are easier ways to check connectivity (of course, but this spectral)
perspective allows one to define more quantitative aspects of connectivity.

\(\lambda_2 \) is much smaller than \(d \) \(\implies \) \(G \) is very well connected?

No bottlenecks

\(\lambda_2 \) is an (expanding graph)

very few edges cross two big halves of graph

"Sparse cut"

If \(\lambda_2 \approx d \) \(\implies \) Is there a sparse cut?

Yes! Further such a cut can be found using the second eigenvector \(v_2 \) corresponding to \(\lambda_2 \).

"Spectral partitioning algorithm"

- very popular heuristic
- very useful in divide and conquer algo.