Coping with Intractability: (Fast) Exponential algorithms

3SAT is NP-complete

(Vertex Cover, 3-color, Subset Sum, Hamilton-Path)

If NP \neq P, don’t expect efficient (polynomial time) algorithms for these in worst case.

OTOH, many of these problems do have to be solved. e.g. SAT solving

Cope with intractability:

- Approximation algorithms
- Average-case complexity/random instance
- Heuristics (can’t prove guaranteed performance, but work well on real-world instance)
 \rightarrow SAT solving

- Faster than trivial algo.
 \rightarrow (fast) exponential algorithms

3SAT \notin P (i.e. P \neq NP)

Actually, it’s conjectured that 3SAT is much harder.
Exponential Time Hypothesis (ETH)

3SAT requires $2^{\alpha n}$ time to solve (on n-variable instances) for some $\alpha > 0$ (e.g., $n = 2^{\log n}$ time algorithm).

Naïve brute force alg.: $2^n \text{ poly}(n)$ time.
(try all 2^n assignments to n vars)

Such brute force (try all solutions) approach applies to vertex cover, 3-coloring, etc.

Often there's some structure which allows one to save on vanilla brute force
(e.g., pruning some branches, clever local search, etc.)

Why? $2^{n/2}$ vs. 2^n makes a difference

- Interesting algorithmic idea

Ultimate dream: (for a problem of interest like 3SAT)
- Algorithm with runtime c^n ($c > 1$)
- Hardness of solving in $(c - \varepsilon)^n$
 for any $\varepsilon > 0$

ETH says such c exists for 3SAT.

- We have no clue what it might be

Fine-grained complexity:
- Poly time vs not poly time — coarse classification.
- n^3 vs not subcubic time — fine-grained classification.

Today: Fast exponential algo for 2SAT (which beat 2^n).

3SAT: instance: x_1, x_2, \ldots, x_n Boolean vars

2CNF formula: with m clauses.

$\Phi = (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_2 \lor \overline{x}_4 \lor \overline{x}_5) \land (x_3 \lor \overline{x}_2 \lor \overline{x}_9) \land \ldots$

Goal: Find a 0-1 assignment to the x_i's that makes formula true.

(All clauses have width 3.)
\(x_i, \overline{x_i} \) - literals

Beating brute force:

Alg 1: Branching also:

IDEA: \(\overline{\Phi} = (x_1 \vee \overline{x_2} \vee \overline{x_5})) \land \overline{\Phi}' \)

Branch on \(x_1 = 1 \)

\(x_3 = 1 \)

\(x_5 = 0 \)

Resulting formula on \((n-1)\) vars

\[T(n) \leq 3 T(n-1) + \text{poly}(n) \]

\[T(n) \leq 3^n \text{ poly}(n) \]

(Worse than brute force)
\[T(n) \leq T(n-1) + T(n-2) + T(n-3) + \text{poly}(n) \]

Solve for \(T(n) \leq (1.84) \text{poly}(n) \)

Local Search

Suppose we knew an assignment \(A \) that is close to a satisfying assignment \(A^* \) (in Hamming dist) (don't know this) (say \(A \) & \(A^* \) differ on \(r \) vars)

1. Start with assignment \(A_j \) \(j = 0 \)
2. While \(\exists \) at least one unsatisfied clause in \(A \) and \(i \leq r \)
 a) Pick an arbitrary unsatisfied clause, say \(l_1 \lor l_2 \lor l_3 \)
 b) \(i+1 \) Branch on each of the possibilities,
 \[A \leftarrow A_1 l_1 = 1 \]
 \[A \leftarrow A_2 l_2 = 1 \]
 \[A \leftarrow A_3 l_3 = 1 \]
- Branching tree
- At each node, if you are a cat's assignment, output it & halt.

Claim. If algo didn't terminate before exploring to depth \(r \), then one of the leaves must be \(A \).

Really just the first silly algo, but exploring only to depth \(r \).

How do pick starting assignment \(A \)?
Try $A = 0^n$, and $A = 1^n$.

One of these is within distance $\leq \frac{n}{2}$ from A^*.

Runtime: $3^n \text{poly}(n) = (1.73)^n \text{poly}(n)$

Note: Picking random A also works, but gives some guarantee.

Improvement:

Pick many more starting assignments A; the radius r can be taken smaller.

Picking $\frac{2^n}{\binom{n}{r}} \text{poly}(n)$ random values of A will ensure A^* is within distance r of one of them.

Exercise: Prove this!

Runtime: $\frac{2^n}{\binom{n}{r}} \cdot 3^r \text{poly}(n)$
Optimize in \(r \) (details skipped):

\[r = \frac{n}{4} \] is best choice.

Leads to \((1.5)^n \poly(n) \) time.

Random walk algorithm (Schöning 1999)

Fact: Randomized algo that succeeds with probability \(c^{-n} \) (say \((\frac{2}{3})^n \))

\[\Rightarrow \] By repeating it \(c^n \poly(n) \) times, we get an algo of runtime \(c^n \poly(n) \) that succeeds with high prob. \(\approx (1 - 2^{-n}) \)

Random walk algo:

1. Pick a random initial assignment \(A \)
2. While there is at least one unsatisfied clause in \(A \) & haven't run for \(\geq n \) steps
 a) Pick an arbitrary unsatisfied clause
 b) Flip \((> 3n) \)
b) Flip the value of a random variable in that clause.

\[\text{Prob [also succeed]} \geq \frac{1}{2} \]

Observation. If \(\text{dist}(A, A^*) = r \), then also succeed with

\[\text{Prob} \geq \left(\frac{1}{3}\right)^r \]

Proof: Fix \(r \) steps, pick correct literal to flip (to go to \(A^* \)) with

\[\text{Prob [also succeed]} \geq \sum_{r=0}^{n} \binom{n}{r} \left(\frac{1}{2}\right)^r \cdot \left(\frac{1}{3}\right)^r \]

\[= 2^{-n} \sum_{r=0}^{n} \binom{n}{r} \left(\frac{1}{3}\right)^r \]

Prob [dist(A, A^*) = r]

Lower bound on success from \(\text{dist}(A, A^*) = r \).
$$= \left(\frac{2^n}{n} \left(1 + \frac{1}{3} \right)^n = \frac{1}{2^n} \cdot \left(\frac{4}{3} \right)^n \approx \left(\frac{2}{3} \right)^n \right)$$

\Rightarrow Algorithm with runtime $\left(\frac{3}{2} \right)^n \text{poly}(n)$

An improved algorithm:

Small change: Run loop for $3n$ steps instead of n steps.

Analysis: Instead of a deadline from A to A^*

Analyze the chance of making at most r incorrect steps in the first $3r$ steps.

(in this case also will succeed!)

This prob. is \geq Prob. of exactly r incorrect steps in the first $3r$ steps.

$$= \binom{3r}{r} \left(\frac{2}{3} \right)^r \left(\frac{1}{3} \right)^{2r}$$

$$\text{Pr}[\text{algo success}] \geq \sum_{r=0}^{n} \binom{n}{r} 2^{-n} \left(\frac{3r}{2} \left(\frac{2}{3} \right)^r \left(\frac{1}{3} \right)^{2r} \right)$$
Using Stirling's approx. for \((\binom{3^n}{n})\)

\[
(\pi n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n)
\]

Above \(\geq \Omega\left(\frac{1}{\sqrt{n}} \cdot 2^n \left(1 + \frac{1}{2}\right)^n\right)\)

\[
\geq \left(\frac{3}{4}\right)^n \Omega\left(\frac{1}{\sqrt{n}}\right)
\]

Repeating this gives \((\frac{4}{3})^n\) poly(\(n\)) time also for 3SAT.

\((\frac{4}{3})^n\) poly(\(n\)) — not bad!

Almost the best known runtime which is \(\approx (1.31)^n\)

For k-SAT, Schönig's random walk also takes \((2 - \frac{2}{k})^n\) poly(\(n\)) time.

Savings over brute force \(2^n\) approaches 0 as \(k\) grows.

Strong exponential time hypothesis (SETH) asserts this is necessary.
[Origin of Zr:
- Run for $r+2t$ steps with t incorrect steps.
- Write down the prob. of this, and optimize in t, turns out $t = r$.
]

t=0 was first analysis. [}