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Abstract. We study the maximization version of the fundamental graph
coloring problem. Here the goal is to color the vertices of a k-colorable
graph with k colors so that a maximum fraction of edges are properly
colored (i.e. their endpoints receive different colors). A random k-coloring
properly colors an expected fraction 1− 1

k
of edges. We prove that given

a graph promised to be k-colorable, it is NP-hard to find a k-coloring
that properly colors more than a fraction ≈ 1− 1

33k
of edges. Previously,

only a hardness factor of 1 − O
(

1
k2

)
was known. Our result pins down

the correct asymptotic dependence of the approximation factor on k.
Along the way, we prove that approximating the Maximum 3-colorable
subgraph problem within a factor greater than 32

33
is NP-hard.

Using semidefinite programming, it is known that one can do better than
a random coloring and properly color a fraction 1− 1

k
+ 2 ln k

k2 of edges in
polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard
to properly color (using k colors) more than a fraction 1 − 1

k
+ O

(
ln k
k2

)
of edges of a k-colorable graph.

1 Introduction

1.1 Problem statement
A graph G = (V, E) is said to be k-colorable for some positive integer k if
there exists a k-coloring χ : V → {1, 2, . . . , k} such that for all edges (u, v) ∈ E,
χ(u) 6= χ(v). For k > 3, finding a k-coloring of a k-colorable graph is a classic NP-
hard problem. The problem of coloring a graph with the fewest number of colors
has been extensively studied. In this paper, our focus is on hardness results for
the following maximization version of graph coloring: Given a k-colorable graph
(for some fixed constant k > 3), find a k-coloring that maximizes the fraction of
properly colored edge. (We say an edge is properly colored under a coloring if its
endpoints receive distinct colors.) Note that for k = 2 the problem is trivial —
one can find a proper 2-coloring in polynomial time when the graph is bipartite
(2-colorable).

We will call this problem Max k-Colorable Subgraph. The problem is equiv-
alent to partitioning the vertices into k parts so that a maximum number of
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edges are cut. This problem is more popularly referred to as Max k-Cut in the
literature; however, in the Max k-Cut problem the input is an arbitrary graph
that need not be k-colorable. To highlight this difference that our focus is on
the case when the input graph is k-colorable, we use Max k-Colorable Subgraph
to refer to this variant. We stress that we will use this convention throughout
the paper: Max k-Colorable Subgraph always refers to the “perfect completeness”
case, when the input graph is k-colorable.1 Since our focus is on hardness results,
we note that this restriction only makes our results stronger.

A factor α = αk approximation algorithm for Max k-Colorable Subgraph is an
efficient algorithm that given as input a k-colorable graph outputs a k-coloring
that properly colors at least a fraction α of the edges. We say that Max k-
Colorable Subgraph is NP-hard to approximate within a factor β if no factor β
approximation algorithm exists for the problem unless P = NP. The goal is to
determine the approximation threshold of Max k-Colorable Subgraph: the largest
α as a function of k for which a factor α approximation algorithm for Max
k-Colorable Subgraph exists.

1.2 Previous results

The algorithm which simply picks a random k-coloring, without even looking
at the graph, properly colors an expected fraction 1 − 1/k of edges. Frieze and
Jerrum [1] used semidefinite programming to give a polynomial time factor 1−
1/k+2 ln k/k2 approximation algorithm for Max k-Cut, which in particular means
the algorithm will color at least this fraction of edges in a k-colorable graph. This
remains the best known approximation guarantee for Max k-Colorable Subgraph
to date. Khot, Kindler, Mossel, and O’Donnell [2] showed that obtaining an
approximation factor of 1 − 1/k + 2 ln k/k2 + Ω(ln ln k/k2) for Max k-Cut is
Unique Games-hard, thus showing that the Frieze-Jerrum algorithm is essentially
the best possible. However, due to the “imperfect completeness” inherent to the
Unique Games conjecture, this hardness result does not hold for Max k-Colorable
Subgraph when the input is required to be k-colorable.

For Max k-Colorable Subgraph, the best hardness known prior to our work
was a factor 1 − Θ(1/k2). This is obtained by combining an inapproximability
result for Max 3-Colorable Subgraph due to Petrank [3] with a reduction from
Papadimitriou and Yannakakis [4]. It is a natural question whether is an efficient
algorithm that could properly color a fraction 1 − 1/k1+ε of edges given a k-
colorable graph for some absolute constant ε > 0. The existing hardness results
do not rule out the possibility of such an algorithm.

For Max k-Cut, a better hardness factor was shown by Kann, Khanna, Lager-
gren, and Panconesi [5] — for some absolute constants β > α > 0, they showed
that it is NP-hard to distinguish graphs that have a k-cut in which a fraction
(1−α/k) of the edges cross the cut from graphs whose Max k-cut value is at most
a fraction (1−β/k) of edges. Since MaxCut is easy when the graph is 2-colorable,
this reduction does not yield any hardness for Max k-Colorable Subgraph.
1 While a little non-standard, this makes our terminology more crisp, as we can avoid

repeating the fact that the hardness holds for k-colorable graphs in our statements.



1.3 Our results

Petrank [3] showed the existence of a γ0 > 0 such that it is NP-hard to find
a 3-coloring that properly colors more than a fraction (1 − γ0) of the edges of
a 3-colorable graph. The value of γ0 in [3] was left unspecified and would be
very small if calculated. The reduction in [3] was rather complicated, involv-
ing expander graphs and starting from the weak hardness bounds for bounded
occurrence satisfiability. We prove that the NP-hardness holds with γ0 = 1

33 .
In other words, it is NP-hard to obtain an approximation ratio bigger than 32

33
for Max 3-Colorable Subgraph. The reduction is from the constraint satisfaction
problem corresponding to the adaptive 3-query PCP with perfect completeness
from [6].

By a reduction from Max 3-Colorable Subgraph, we prove that for every k > 3,
the Max k-Colorable Subgraph is NP-hard to approximate within a factor greater
than ≈ 1− 1

33k (Theorem 2). This identifies the correct asymptotic dependence
on k of the best possible approximation factor for Max k-Colorable Subgraph. The
reduction is similar to the one in [5], though some crucial changes have to be
made in the construction and some new difficulties overcome in the soundness
analysis when reducing from Max 3-Colorable Subgraph instead of MaxCut.

In the quest for pinning down the exact approximability of Max k-Colorable
Subgraph, we prove the following conditional result. Assuming the so-called 2-to-
1 conjecture, it is hard to approximate Max k-Colorable Subgraph within a factor
1 − 1

k + O
(

ln k
k2

)
. In other words, the Frieze-Jerrum algorithm is optimal up to

lower order terms in the approximation ratio even for instances of Max k-Cut
where the graph is k-colorable.

Unlike the Unique Games Conjecture (UGC), the 2-to-1 conjecture allows
perfect completeness, i.e., the hardness holds even for instances where an assign-
ment satisfying all constraints exists. The 2-to-1 conjecture was used by Dinur,
Mossel, and Regev [7] to prove that for every constant c, it is NP-hard to color a
4-colorable graph with c colors. We analyze a similar reduction for the k-coloring
case when the objective is to maximize the fraction of edges that are properly
colored by a k-coloring. Our analysis uses some of the machinery developed in
[7], which in turn extends the invariance principle of [8]. The hardness factor we
obtain depends on the spectral gap of a certain k2 × k2 stochastic matrix.

Remark 1. In general it is far from clear which Unique Games-hardness results
can be extended to hold with perfect completeness by assuming, say, the 2-to-1
(or some related) conjecture. In this vein, we also mention the result of O’Donnell
and Wu [9] who showed a tight hardness for approximating satisfiable constraint
satisfaction problems on 3 Boolean variables assuming the d-to-1 conjecture
for any fixed d. While the UGC assumption has led to a nearly complete un-
derstanding of the approximability of constraint satisfaction problems [10], the
approximability of satisfiable constraint satisfaction problems remains a mystery
to understand in any generality.



Remark 2. It has been shown by Crescenzi, Silvestri and Trevisan [11] that any
hardness result for weighted instances of Max k-Cut carries over to unweighted
instances assuming the total edge weight is polynomially bounded. In fact, their
reduction preserves k-colorability, so an inapproximability result for the weighted
Max k-Colorable Subgraph problem also holds for the unweighted version. There-
fore all our hardness results hold for the unweighted Max k-Colorable Subgraph
problem.

2 Unconditional Hardness Results for Max k-Colorable
Subgraph

We will first prove a hardness result for Max 3-Colorable Subgraph, and then
reduce this problem to Max k-Colorable Subgraph.

2.1 Inapproximability result for Max 3-Colorable Subgraph

Petrank [3] showed that Max 3-Colorable Subgraph is NP-hard to approximate
within a factor of (1−γ0) for some constant γ0 > 0. This constant γ0 is presum-
ably very small, since the reduction starts from bounded occurrence satisfiability
(for which only weak inapproximability results are known) and uses expander
graphs. We prove a much better inapproximability factor below, via a simpler
proof.

Theorem 1 (Max 3-Colorable Subgraph Hardness). The Max 3-Colorable Sub-
graph problem is NP-hard to approximate within a factor of 32

33 + ε for any
constant ε > 0.

Proof. For the proof of this theorem, we will use reduce from a hard to approx-
imate constraint satisfaction problem (CSP) underlying the adaptive 3-query
PCP given in [6]. This PCP has perfect completeness and soundness 1/2 + ε for
any desired constant ε (which is the best possible for 3-query PCPs).

We first state the properties of the CSP. An instance of the CSP will have
variables partitioned into three parts X ,Y and Z. Each constraint will be of the
form (xi ∨ (Yj = zk)) ∧ (xi ∨ (Yj = zl)), where xi ∈ X , zk, zl ∈ Z are variables
(unnegated) and Yj is a literal (Yj ∈ {yj , yj} for some variable yj ∈ Y). For Yes
instances of the CSP, there will be a Boolean assignment that satisfies all the
constraints. For No instances, every assignment to the variables will satisfy at
most a fraction (1/2 + ε) of the constraints.

Remark 3. We remark the condition that the instance is tripartite, and that the
variables in Z never appear negated are not explicit in [6]. But these can be
ensured by an easy modification to the PCP construction in [6]. The PCP in
[6] has a bipartite structure: the proof is partitioned into two parts called the
A-tables and B-tables, and each test consists of probing one bit A(f) from an



A table and 3 bits B(g), B(g1), B(g2) from the B table, and checking (A(f) ∨
(B(g) = B(g1))∧(A(f)∨(B(g) = B(g2)). Further these tables are folded which is
a technical condition that corresponds to the occurrence of negations in the CSP
world. If the queries at locations g1 and g2 are made in a parallel C-table, and
even if the C-table is not folded (though the A and B tables need to be folded),
one can verify that the analysis of the PCP construction still goes through. This
then translates to a CSP with the properties claimed above.

Zl

R

T F

m
2

m
2

m
2

yj ȳj
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Fig. 1. Global gadget for truth
value assignments. Blocks Xi, Yj

and Zl are replicated for all ver-
tices in X , Y and Z. Edge weights
are shown next to each edge.

TF

xi zk zlYj

A′ B′

A B

Fig. 2. Local gadget for each con-
straint of the form (xi ∨ Yj = zk) ∧
(xi ∨ Yj = zl). All edges have unit
weight. Labels A,A′, B, B′ refer to
the local nodes in each gadget.

Let I be an instance of such a CSP with m constraints of the above form
on variables V = X ∪ Y ∪ Z. Let X = {x1, x2, . . . , xn1}, Y = {y1, y2, . . . , yn2}
and Z = {z1, z2, . . . , zn3}. From the instance I we create a graph G for the Max
3-Colorable Subgraph problem as follows. There is a node xi for each variable
xi ∈ X , a node zl for each zl ∈ Z, and a pair of nodes {yj , yj} for the two
literals corresponding to each yj ∈ Y. There are also three global nodes {R, T, F}
representing boolean values which are connected in a triangle with edge weights
m/2 (see Fig. 1).

For each constraint of the CSP, we place the local gadget specific to that
constraint shown in Figure 2. Note that there are 10 edges of unit weight in
this gadget. The nodes yj , yj are connected to node R by a triangle whose edge
weights equal wj = ∆(yj)+∆(yj)

2 . Here ∆(X) denotes the total number of edges
going from node X into all the local gadgets. The nodes xi and zl connected to
R with an edge of weight ∆(xi)/2 and ∆(zl)/2 respectively. The proofs of the
following (simple) lemmas will appear in the full version.

Lemma 1 (Completeness). Given an assignment of variables σ : V → {0, 1}
which satisfies at least c of the constraints, we can construct a 3-coloring of G
with at most m− c improperly colored edges (each of weight 1).



Lemma 2 (Soundness). Given a 3-coloring of G, χ, such that the total weight
of edges that are not properly colored by χ is at most τ < m/2, we can construct
an assignment σ′ : V → {0, 1} to the variables of the CSP instance that satisfies
at least m− τ constraints.

Returning to the proof of Theorem 1, the total weight of edges in G is

10m +
3m

2
+

n1∑

i=1

∆(xi)
2

︸ ︷︷ ︸
m

+
n2∑

j=1

3wj +
n3∑

l=1

∆(zl)
2

︸ ︷︷ ︸
m

=
27
2

m +
3
2

n2∑

j=1

(∆(yi) + ∆(yj))

︸ ︷︷ ︸
2m

=
33
2

m .

By the completeness lemma, Yes instances of the CSP are mapped to graphs
G that are 3-colorable. By the soundness lemma, No instances of the CSP are
mapped to graphs G such that every 3-coloring miscolors at least a fraction
(1/2−ε)

33/2 = 1−2ε
33 of the total weight of edges. Since ε > 0 is an arbitrary constant,

the proof of Theorem 1 is complete.2

2.2 Max k-Colorable Subgraph Hardness

Theorem 2. For every integer k > 3 and every ε > 0, it is NP-hard to ap-
proximate Max k-Colorable Subgraph within a factor of 1− 1

33(k+ck)+ck
+ ε where

ck = k mod 3 6 2.

Proof. We will reduce Max 3-Colorable Subgraph to Max k-Colorable Subgraph and
then apply Theorem 1. Throughout the proof, we will assume k is divisible by 3.
At the end, we will cover the remaining cases also. The reduction is inspired by
the reduction from MaxCut to Max k-Cut given by Kann et al. [5] (see Remark 4).
Some modifications to the reduction are needed when we reduce from Max 3-
Colorable Subgraph, and the analysis has to handle some new difficulties. The
details of the reduction and its analysis follow.

Let G = (V, E) be an instance of Max 3-Colorable Subgraph. By Theorem 1,
it is NP-hard to tell if G is 3-colorable or every 3-colors miscolors a fraction
1
33 − ε of edges. We will construct a graph H such that H is k-colorable when
G is 3-colorable, and a k-coloring which miscolors at most a fraction µ of the
total weight of edges of H implies a 3-coloring of G with at most a fraction µk of
miscolored edges. Combined with Theorem 1, this gives us the claimed hardness
of Max k-Colorable Subgraph.

2 Our reduction produced a graph with edge weights, but by Remark 2, the same
inapproximability factor holds for unweighted graphs as well.



Let K ′
k/3 denote the complete graph with loops on k/3 vertices. Let G′ be

the tensor product graph between Kk/3 and G, G′ = K ′
k/3 ⊗ G as defined by

Weichsel [12]. Identify each node in G′ with (u, i), u ∈ V (G), i ∈ {1, 2, . . . , k/3}.
The edges of G′ are ((u, i), (v, i′)) for (u, v) ∈ E and any i, i′ ∈ {1, . . . , k/3}. Next
we make 3 copies of G′, and identify the nodes with (u, i, j), (u, i) ∈ V (G′), j ∈
{1, 2, 3}, then put edges between all nodes of the form (u, i, j) and (u, i′, j′) if
either i 6= i′ or j 6= j′ with weight 2

3du, where du is degree of node u. The total
weight of edges in this new construction H equals

∑

u∈V

((
k

2

)
2
3
du +

3
2

(
k

3

)2

du

)
6 k2m .

Lemma 3. If G is 3-colorable, then H is k-colorable.

Proof. Let χG : V (G) → {1, 2, 3} be a 3-coloring of G. Consider the follow-
ing coloring function for H, χH : V (H) → {1, 2, . . . , k}. For node (u, i, j), let

χH((u, i, j)) = πj(χG(u)) + 3(i − 1). Here π is the permutation
(

1 2 3
2 3 1

)
, and

πj(x) = π(. . . (π(︸ ︷︷ ︸
j times

x))). Equivalently π(x) = x mod 3 + 1.

Consider edges of the form {(u, i, j), (v, i′, j)}. If i 6= i′, then colors of the
endpoints are different. Else we have χ((u, i, j))− χ((v, i, j)) ≡ χ(u)− χ(v) 6≡ 0
mod 3. For edges of the form {(u, i, j), (u, i′, j′)}, if i 6= i′, clearly edge is satisfied.
When i = i′, j 6= j′, χ((u, i, j))−χ((u, i, j′)) ≡ πj(u)−πj′(u) ≡ j−j′ 6≡ 0 mod 3.

Lemma 4. If H has a k-coloring that properly colors a set of edges with at least
a fraction (1 − µ) of the total weight, then G has a 3-coloring which colors at
least a fraction (1− µk) of its edges properly.

Proof. Let χH be the coloring of H, Sj
u = {χH((u, i, j)) | 1 6 i 6 k/3} and

Su =
⋃

j Sj
u. Denote the total weight of uncut edges in this solution as

Ctotal =
∑

u∈V (G)

2
3
duCwithin

u + Cbetween, (1)

where Cwithin
u and Cbetween denotes the number of improperly colored edges

within the copies of node u and between copies of different vertices u, v ∈ V (G)
respectively. We have the following relations:

Cbetween =
∑3

j=1

∑
uv∈E(G)

∑
16i6i′6k/3 1χH((u,i,j))=χH((v,i′,j))

>
∑3

j=1

∑
uv∈E(G) |Sj

u ∩ Sj
v|

(2)

Cwithin
u =

∑
c∈Su

(|χ−1
H (c)∩Bu|

2

)
(Bu = {(u, i, j)|∀i, j})

=
∑

c∈Su

|Bu,c|2
2 − k

2 (Bu,c = Bu ∩ χ−1
H (c))

> 1
2|Su|

(∑
c∈Su

|Bu,c|
)2 − k

2 (Cauchy-Schwarz)

> k
2

(
k
|Su| − 1

)
> k

2
|Su|
|Su| > |Su|

2

(3)



Now we will find a (random) 3-coloring χG for G. Pick c from {1, 2, . . . , k}
uniformly at random. If c /∈ Su, select χG(u) uniformly at random from {1, 2, 3}.
If c ∈ Su, set χG(u) = j if j is the smallest index for which c ∈ Sj(u). With this
coloring χG(u), the probability that an edge (u, v) ∈ E(G) will be improperly
colored is:

Pr [χG(u) = χG(v)] 6
3∑

j=1

Prc
[
c ∈ Sj

u ∩ Sj
v

]
+

1
3
Prc

[
c ∈ Su, c ∈ Sv

]

+
1
3
Prc

[
c ∈ Su, c ∈ Sv

]
+

1
3
Prc

[
c ∈ Su, c ∈ Sv

]

6
3∑

j=1

|Sj
u ∩ Sj

v|
k

+
|Su|
3k

+
|Sv|
3k

We can thus bound the expected number of miscolored edges in the coloring χG

as follows.

E

[ ∑

(u,v)∈E(G)

1χG(u)=χG(v)

]
6

∑

uv∈E

[( 3∑

j=1

|Sj
u ∩ Sj

v|
k

)
+
|Su|
3k

+
|Sv|
3k

]

6 1
k

(
Cbetween +

∑

u∈V (G)

du

3
|Su|

)
(using (2))

6 1
k

(
Cbetween +

∑

u∈V (G)

2du

3
Cwithin

u

)
=

Ctotal

k

This implies that there exists a 3-coloring of G for which the number of im-
properly colored edges in G is at most Ctotal

k . Therefore if H has a k-coloring
which improperly colors at most a total weight µk2m of edges, then there is a
3-coloring of G which colors improperly at most a fraction µk2m

km = µk of its
edges.

This completes the proof of Theorem 2 when k is divisible by 3. The other
cases are easily handled by adding k mod 3 extra nodes connected to all vertices
by edges of suitable weight. Due to space considerations, the details will appear
in the full version.

Remark 4 (Comparison to [5]). The reduction of Kann et al [5] converts an
instance G of MaxCut to the instance G′ = K ′

k/2⊗G of Max k-Cut. Edge weights
are picked so that the optimal k-cut of G′ will give a set Su of k/2 different colors
to all vertices in each k/2 clique (u, i), 1 6 i 6 k/2. This enables converting a
k-cut of G′ into a cut of G based on whether a random color falls in Su or not.
In the 3-coloring case, we make 3 copies of G′ in an attempt to enforce three
“translates” of Su, and use those to define a 3-coloring from a k-coloring. But we
cannot ensure that each k-clique is properly colored, so these translates might
overlap and a more careful soundness analysis is needed.



3 Conditional Hardness Results for Max k-Colorable
Subgraph

We will first review the (exact) 2-to-1 Conjecture, and then construct a noise
operator, which allows us to preserve k-colorability. Then we will bound the
stability of coloring functions with respect to this noise operator. In the last
section, we will give a PCP verifier which concludes the hardness result.

3.1 Preliminaries

We begin by reviewing some definitions and d-to-1 conjecture.

Definition 1. An instance of a bipartite Label Cover problem represented as
L = (U, V,E, W,RU , RV , Π) consists of a weighted bipartite graph over node
sets U and V with edges e = (u, v) ∈ E of non-negative real weight we ∈ W . RU

and RV are integers with 1 6 RU 6 RV . Π is a collection of projection functions
for each edge: Π = {πvu : {1, . . . , RV } → {1, . . . , RU}

∣∣u ∈ U, v ∈ V }. A labeling
` is a mapping ` : U → {1, . . . , RU}, ` : V → {1, . . . , RV }. An edge e = (u, v)
is satisfied by labeling ` if πe(`(v)) = `(u). We define the value of a labeling as
sum of weights of edges satisfied by this labeling normalized by the total weight.
Opt(L) is the maximum value over any labeling.

Definition 2. A projection π : {1, . . . , RV } → {1, . . . , RU} is called d-to-1 if
for each i ∈ {1, . . . , RU}, |π−1(i)| 6 d. It is called exactly d-to-1 if |π−1(i)| = d
for each i ∈ {1, 2, . . . , RU}.

Definition 3. A bipartite Label-Cover instance L is called d-to-1 Label-Cover
if all projection functions, π ∈ Π are d-to-1.

Conjecture 1 (d-to-1 Conjecture [13]). For any γ > 0, there exists a d-to-1 Label-
Cover instance L with RV = R(γ) and RU 6 dRV many labels such that it is
NP-hard to decide between two cases, Opt(L) = 1 or Opt(L) > γ. Note that
although the original conjecture involves d-to-1 projection functions, we will
assume that it also holds for exactly d-to-1 functions (so RU = dRV ), which is
the case in [7].

Using the reductions from [7], it is possible to show that the above conjecture
still holds given that the graph (U ∪ V,E) is left-regular and unweighted, i.e.,
we = 1 for all e ∈ E.

3.2 Noise Operators

For a positive integer M , we will denote by [M ] the set {0, 1, . . . , M − 1}. We
will identify elements of [M2] with [M ]× [M ] in the obvious way, with the pair
(a, b) ∈ [M ]2 corresponding a + Mb ∈ [M2].



Definition 4. A Markov operator T is a linear operator which maps proba-
bility measures to other probability measures. In a finite discrete setting, it is
defined by a stochastic matrix whose (x, y)’th entry T (x → y) is the prob-
ability of transitioning from x to y. Such an operator is called symmetric if
T (x → y) = T (y → x) = T (x↔y).

Definition 5. Given ρ ∈ [−1, 1], the Beckner noise operator, Tρ on [q] is defined

by as Tρ(x → x) = 1
q +

(
1− 1

q

)
ρ and Tρ(x → y) = 1

q (1− ρ) for any x 6= y.

Observation 1 All eigenvalues of the operator Tρ are given by 1 = λ0(Tρ) >
λ1(Tρ) = . . . = λq−1(Tρ) = ρ. Any orthonormal basis α0, α1, . . . , αq−1 with α0

being constant vector, is also a basis for Tρ.

Lemma 5. For an integer q > 6, there exists a symmetric Markov operator T
on [q]2 whose diagonal entries are all 0 and with eigenvalues 1 = λ0 > λ1 >
. . . > λq2−1 such that the spectral radius ρ(T ) = max{|λ1|, |λq2−1|} is at most

4
q−1 .

Proof. Consider the symmetric Markov operator T on [q]2 such that, for x =
(x1, x2), y = (y1, y2) ∈ [q]2,

T (x↔y) =





α if {x1, x2} ∩ {y1, y2} = ∅ and x1 6= x2, y1 6= y2,
β if x1 6∈ {y1, y2} and x1 = x2, y1 6= y2,
β if y1 6∈ {x1, x2} and x1 6= x2, y1 = y2,
0 else,

where α = 1
(q−1)(q−3) and β = 1

(q−1)(q−2) . It is clear that T is symmetric and
doubly stochastic.

To bound the spectral radius of T , we will bound the second largest eigenvalue
λ1(T 2) of T 2. Notice that T 2 is also a symmetric Markov operator. Moreover
λi(T 2) = λ2

i (T ), therefore λ1(T 2) > max(λ2
1(T ), λ2

q2−1(T )) > ρ(T )2.

Notice that T 2(x↔y) > 0 for all pairs x, y ∈ [q]2. Consider the variational
characterization of 1− λ1(T 2) [14]:

minψ

∑
x,y(ψ(x)−ψ(y))2π(x)T 2(x↔y)∑

x,y(ψ(x)−ψ(y))2π(x)π(y)

> minψ,x,y
π(x)(ψ(x)−ψ(y))2T 2(x↔y)

(ψ(x)−ψ(y))2π(x)π(y) = minx,y q2T 2(x↔y)



For any two pairs (x1, x2), (y1, y2) ∈ [q]2, let l = |[q] \ {x1, x2, y1, y2}|. Then
we have

T 2((x1, x2)↔(y1, y2)) =





l(l − 1)β2 > (q − 3)2β2 if x1 = x2 and y1 = y2,
l(l − 1)αβ > (q − 4)2αβ if x1 6= x2 and y1 = y2,
l(l − 1)αβ > (q − 4)2αβ if x1 = x2 and y1 6= y2,
l(l − 1)α2 + lβ2 > (q − 4)

[
(q − 5)α2 + β2

]

if x1 6= x2 and y1 6= y2.

> (q − 5)(q − 4)
(q − 3)2(q − 2)(q − 1)

So ρ(T ) 6
√

λ1(T 2) 6
√

1− (q−5)(q−4)q2

(q−3)2(q−2)(q−1) 6 3
q + 8

q2 6 4
q−1 for q > 6.

3.3 q-ary Functions, Influences, Noise stability

We define inner product on space of functions from [q]N to R as 〈f, g〉 =
Ex∼[q]N [f(x)g(x)]. Here x ∼ D denotes sampling from distribution D and D =
[q]N denotes the uniform distribution on [q]N .

Given a symmetric Markov operator T and x = (x1, . . . , xN ) ∈ [q]N , let
T⊗Nx denote the product distribution on [q]N whose ith entry yi is distributed
according to T (xi↔yi). Therefore T⊗Nf(x) = Ey∼T⊗N x [f(y)].

Definition 6. Let α0, α1, . . . , αq−1 be an orthonormal basis of Rq such that α0

is all constant vector. For x ∈ [q]N , we define αx ∈ RqN

as

αx = αx1 ⊗ . . .⊗ αxN
.

Definition 7 (Fourier coefficients). For a function f : [q]N → R, define
f̂(αx) = 〈f, αx〉.

Definition 8. Let f : [q]N → R be a function. The influence of ith variable on
f , Infi(f) is defined by

Infi(f) = E [Var [f(x)|x1, . . . , xi−1, xi+1, . . . , xN ]]

where x1, . . . , xN are uniformly distributed. Equivalently,

Infi(f) =
∑

x:xi 6=0

f̂2(αx).

Definition 9. Let f : [q]N → R be a function. The low-level influence of ith

variable of f is defined by

Inf6t
i (f) =

∑

x:xi 6=0, |x|6t

f̂2(αx).



Observation 2 For any function f ,
∑

i

Inf6t
i (f) =

∑

x:|x|6t

f̂2(αx)|x| 6 t
∑

x

f̂2(αx) = t‖f‖22.

If f : [q]N → [0, 1], then ‖f‖22 6 1, so
∑

i Inf6t
i (f) 6 t.

Definition 10 (Noise stability). Let f be a function from [q]N to R, and let
−1 6 ρ 6 1. Define the noise stability of f at ρ as

Sρ(f) = 〈f, T⊗n
ρ f〉 =

∑
x

ρ|x|f̂2
i (αx)

where Tρ is the Beckner operator as in Definition 5.

A natural way to think about a q-coloring function is as a collection of q-indicator
variables summing to 1 at every point. To make this formal:

Definition 11. Define the unit q-simplex as ∆q = {(x1, . . . , xq) ∈ Rq | ∑ xi =
1, xi > 0}.

Observation 3 For positive integers Q, q and any function f = (f1, . . . , fq) :
[Q]N → ∆q,

∑
i Inf6t

i (f) =
∑

i

∑
j Inf6t

i (fj) 6 t
∑

j ‖fj‖2 6 t.

We want to prove a lower bound on the stability of q-ary functions with noise
operators T . The following proposition is generalization of Proposition 11.4 in [2]
to general symmetric Markov operators T with small spectral radii. The proof
is also very similar, so it is left out and will appear in the full version.

Proposition 1. For integers Q, q > 3, and a symmetric Markov operator T on
[Q] with spectral radius ρ(T ) 6 c

q−1 , for some c > 0, there is a small enough
δ = δ(q) > 0 and t = t(q) > 0 such that for any function f = (f1, . . . , fq) :
[Q]N → ∆q with Inf6t

i (f) 6 δ, for all i, satisfies

q∑

j=1

〈fj , T
⊗Nfj〉 > 1/q − 2c ln q/q2 − C ln ln q/q2

for some universal constant C < ∞.

Definition 12 (Moving between domains). For any x = (x1, . . . , x2N ) ∈
[q]2N , denote x ∈ [q2]N as

x = ((x1, x2), . . . , (x2N−1, x2N )) .

Similarly for y = (y1, . . . , yN ) ∈ [q2]N , denote y ∈ [q]2N as

y = (y1,1, y1,2, . . . , yN,1, yN,2),

where yi = yi,1 + yi,2q such that yi,1, yi,2 ∈ [q]. For a function f on [q]2N , define
f on [q2]N as f(y) = f(y).



The relationship between influences of variables for functions f and f are given
by the following claim (Claim 2.7 in [7]).

Claim. For any function f : [q]2N → R, i ∈ {1, . . . , N} and any t > 1, Inf6t
i (f) 6

Inf62t
2i−1(f) + Inf62t

2i (f).

3.4 PCP Verifier for Max k-Colorable Subgraph

This verifier uses ideas similar to the Max k-Cut verifier given in [2] and the
4-coloring hardness reduction in [7]. Let L = (U, V, E,R, 2R, Π) be a 2-to-1
bipartite, unweighted and left regular Label-Cover instance as in Conjecture 1.
Assume the proof is given as the Long Code over [k]2R of the label of every
vertex v ∈ V . Below for a permutation σ on {1, . . . , n} and a vector x ∈ Rn,
x ◦σ denotes (xσ(1), xσ(2), · · · , xσ(n)). For a function f on Rn, f ◦σ is defined as
f ◦ σ(x) = f(x ◦ σ).

– Pick u uniformly at random from U , u ∼ U .
– Pick v, v′ uniformly at random from u’s neighbors. Let π, π′ be the associated

projection functions, χv, χv′ be the (supposed) Long Codes for the labels of
v, v′ respectively.

– Let T be the Markov operator on [k]2 given in Lemma 5. Pick x ∼ [k2]R

and y ∼ T⊗Rx. Let σv, σv′ be two permutations of {1, . . . , 2R} such that
π(σ−1

v (2i − 1)) = π(σ−1
v (2i)) = π′(σ−1

v′ (2i − 1)) = π′(σ−1
v′ (2i)) (both π and

π′ are exactly 2-to-1, so such permutations exist).
– Accept iff χv ◦ σv(x) and χv′ ◦ σv′(y) are different.

The proofs of the following two lemmas are very similar to the ones in [2], and
they are left out for space considerations.

Lemma 6 (Completeness). If the original 2-to-1 Label-Cover instance L has
a labeling which satisfies all constraints, then there is a proof which makes the
above verifier always accept.

Lemma 7 (Soundness). There is a constant C such that, if the above verifier
passes with probability exceeding 1− 1/k + O(ln k/k2), then there is a labeling of
L which satisfies γ′ = γ′(k) fraction of the constraints independent of label set
size R.

Note that our PCP verifier makes “k-coloring” tests. By the standard conversion
from PCP verifiers to CSP hardness, and Remark 2 about conversion to un-
weighted graphs with the same inapproximability factor, we conclude the main
result of this section by combining Lemmas 6 and 7.

Theorem 3. For any constant k > 3, assuming 2-to-1 Conjecture, it is NP-hard
to approximate Max k-Colorable Subgraph within a factor of 1−1/k+O(ln k/k2).
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