Lecture Notes on Complexity and NP-completeness

1. Reductions

Let A and B be two problems whose instances require as an answer either a “yes” or a “no”
(3SAT and Hamilton cycle are two good examples). A reduction from A to B is a polynomial-
time algorithm R which transforms inputs of A to equivalent inputs of B. That is, given an
input z to problem A, R will produce an input R(z) to problem B, such that z is a “yes”
input of A if and only if R(z) is a “yes” input of B.

A reduction from A to B, together with a polynomial time algorithm for B, constitute a
polynomial algorithm for A (see Figure). For any input z of A of size n, the reduction R takes
time p(n) —a polynomial— to produce an equivalent input R(z) of B. Now, this input R(z)
can have size a most p(n) —since this is the largest input R can conceivably construct in p(n)
time. If we now submit this input to the assumed algorithm for B, running in time ¢(m) on
inputs of size m, where ¢ is another polynomial, then we get the right answer of z, within a
total number of steps at most p(n) 4+ ¢(p(n)) —also a polynomial!

lly%17
x ! Reduction R R(X) Algorithm for B
‘ ‘ lln011
| |
input of A input
P [(OTpB)) :
| |
| |
1 1
\ /

Algorithm for A

Figure 1: Reduction

We have seen many reductions so far, establishing that problems are easy (e.g., from
matching to max-flow). In this part of the class we shall use reductions in a more sophisticated
and counterintuitive context, in order to prove that certain problems are hard. If we reduce
A to B, we are essentiually establishing that, give or take a polynomial, A is no harder than
B. We could write this as

A < B,

an inequality between the complexities of the two problems. If we know B is easy, this es-
tablishes that A is easy. If we know A is hard, this establishes B is hard. It is this latter
implication that we shall be using soon.

2. Problems, problems...

We have seen many problems that we can solve in polynomial time —and we know this is
good. The class of all problems that are so solvable is denoted P. We review several problems
from Pbelow; in each case we also list another problem, bearing a superficial similarity to

the one in P. The similarity is, indeed, superficial: the second problem in each pair is not
known (or believed, or expected) to be solved in polynomial time; only algorithms that are
exponential in the worst case are known for these problems.

e minimum spanning tree: Given a weighted graph and an integer K, is there a tree
that connects all nodes of the graph whose total weight is K or less?

e traveling salesman problem: Given a weighted graph and an integer K, is there a
cycle that visits all nodes of the graph whose total weight is K or less?

Notice that we have converted each one of these familiar problems into a decision problem,
a “yes-no” question, by supplying a goal K and asking if the goal can be met. Any opti-
mization problem can be so converted (we shall soon see more examples). If we can solve the
optimization problem, we can certainly solve the decision version (actually, the converse is in
general also true). Therefore, proving a negative complexity result about the decision problem
(for example, proving that it cannot be solved in polynomial time) immediately implies the
same negative result for the optimization problem. By considering the decision versions, we
can study optimization problems side-by-side with decision problems (see the next examples),
and consider reductions between them. This is a great convenience in the theory of complexity
which we are about to develop.

e Eulerian graph: Given a directed graph, is there a closed path that visits each edge
of the graph exactly once?

e Hamilitonian graph: Given a directed graph, is there a closed path that visits each
node of the graph exactly once?

A graph is Eulerian if and only if it is strongly connected and each node has equal in-degree
and out-degree; so the problem is squarely in P. There is no known such characterization —or
algorithm— for the Hamilton problem (and notice its eerie similarity with the TSP).

e circuit value: Given a Boolean circuit, and its inputs, is the output T?

e circuit SAT: Given a Boolean circuit, and some of its inputs, is there a way to set the
remaining inputs so that the output is T?

We know that circuit value is in P(we showed that it can be reduced to linear program-
ming; also, the naive algorithm for that evaluates all gates bottom-up is polynomial). How
about circuit SAT? There is no obvious way to solve this problem, sort of trying all input
combinations for the unset inputs —and this is an exponential algorithm.

e 2SAT: Given a Boolean formula in conjunctive normal form and with at most two literals
per clause, is there a satisfying truth assignment?

e 3SAT: Given a Boolean formula in conjunctive normal form and with at most three
literals per clause, is there a satisfying truth assignment?

We know from the homework that 2SAT can be solved by graph-theoretic techniques. For
3SAT, no such techniques are available, and the best algorithms known for this problems are

exponential in the worst case.

e matching: Given a boys-girls compatibility graph, is there a complete matching??

e 3D matching: Given a boys-girls-homes compatibility relation (that is, a set of trian-
gles), is there a complete matching (a set of disjoint triangles that covers all boys, all
girls, and all homes)?

We know that matching can be solved by a reduction to max-flow, and then to linear
programming. For 3D matching we shall see a reduction too. Unfortunately, the reduction is
from 3SAT to 3D matching —and this is bad news for 3D matching...

e unary knapsack: Given integers aq,...,a,, and another integer K in unary, is there a
subset of these integers that sum exactly to K?

e knapsack: Given integers ay, ..., a,, and another integer K in binary, is there a subset
of these integers that sum exactly to K7

unary knapsackisin P—simply because the input is represented so wastefully, with about
n+ K bits, so that the O(n?K) dynamic programming algorithm, which would be exponential
if K were represented in binary, is bounded by a polynomial in the length of the input. There
is no polynomial algorithm known for knapsack.

e linear programming: Given an m X n matrix A and an m vector b, are there real
numbers z1,...,x, > 0 satisfying Az < b7

e integer linear programming: Given an m X n matrix A and an m vector b, are there
integers x1, ..., x, > 0 satisfying Az < b7

Although there are algorithms that solve linear programming in polynomial time (simplex is
exponential in the worst case, but certain more recently proposed alternative approaches work
in polynomial time), the additional requirement that the solution consist of integers seems to
make the problem impossible. Rounding the solutions of the linear program up or down is
no help —even finding whether a rounding that remains feasible is possible is a hard problem
(see the reduction from 3SAT to integer linear programming later in these notes).

3. Certificates and the Class NPAlthough some of the problems we saw in the pre-

vious section (TSP, 3SAT, circuit SAT, Hamilton cycle, 3D matching, knapsack) are
not known of believed to be solvable by polynomial algorithms, they all have a positive com-
mon property: the certificate property. In each case, if a given input of the problem is a “yes”
input (a satisfiable Boolean formula, a graph with a Hamilton cycle), then there is a short
argument, a succinct certificate that may convince one about the fact that the input is indeed
a “yes” input. In the case of 3SAT, the certificate would be a satisfying truth assignment. In
the case of Hamilton cycle, it would be a closed path that visits each node once. In the case
of the TSP, it would be a tour whose total cost is less than or equal to the given goal. And so
on. These certificates have the following properties:

e They are small. In each case the certificate would never have to be longer than a
polynomial in the length of the input.

o They are easily checkable. In each case there is a polynomial algorithm which takes
as inputs the input of the problem and the alleged certificate, and checks whether the
certificate is a valid one for this input. In the case of 3SAT, the algorithm would just
check that the truth assignment indeed satisfies all clauses. In the case of Hamilton cycle
whether the given closed path indeed visits every node once. And so on.

e Every “yes” input to the problem has at least one certificate (possibly many), and each
“no” input has none.

Not all problems have such certificates. Consider, for example, the problem non-Hamiltonian
graph: Given a graph G, is it true that there is no Hamilton cycle in G7 How would you
prove to a suspicious person that a given large, dense, complex graph has no Hamilton cycle?
Short of listing all cycles and pointing out that none visits all nodes once (a certificate that is
certainly not succinct)?

The problems that have this positive property comprise a class known as NP!. A “yes-no”
problem is in NPif and only if it has the certificate property. That is, every “yes” instance has
at least one concise certificate of its “yes-ness”, and all “no” instances have no such certificate;
and furthermore a certificate can be tested efficiently for validity.

Notice also that Pis a subset of NP. To see why, suppose that a problem is in P, that is,
it has a polynomial-time algorithm. But then a trace of this algorithm run on a given input,
and returning “yes”, is a good certificate for this input: It is concise, can be tested fast, “yes”
inputs have one, “no” inputs don’t.

Let us next consider the problem circuit SAT, defined above. It is of course in NP: A
setting of the unknown input gates s that makes the whole circuit T serves well as a certificate

of any “yes” input. It turns out that circuit SAT plays a very special and important role
within NP:

A problem is in NPif and only if it can be reduced to circuit SAT

Let us argue why this statement (known as Cook’s theorem, and considered as one of the most
important results in Computer Science) is true. One direction is easy: If a problem A can be
reduced to circuit SAT then of course it is in NP: A certificate of any “yes” input would be
a running of the reduction on this input, together with a certificate for the resulting input of
circuit SAT (a satisfying setting of the unknown input gates).

The other direction is much more complicated, but here is a plausible explanation: Suppose
that we have a problem A in NP; we want to show that it has a reduction to circuit SAT.
The fact that A is in NPmeans that there is a polynomial algorithm that checks inputs
of A and certificates for validity. But an algorithm runs on a computer, and, after all, a
computer is nothing more than a huge Boolean circuit supplying the rules whereby the next
state is computed from the current state and the input. If we superpose enough (polynomially
many) such circuits, we get a circuit that describes the full run of the validity algorithm on a
certificate and an input, where the bits in the input gates stand for the input and the certificate.
Suppose now that we are given an input z of A. If we plug in the correct T/F values for z
in the apprpriate input gates of the circuit, and keep the input gates that correspond to the
certificate unknown, we get an instance of circuit SAT that precisely captures the question
whether a valid certificate for = exists —that is to say, whether z is a “yes” instance of A.
Hence, the construction of the circuit we described is the sought reduction from A to circuit
SAT!

If a “yes-no” problem has these two properties:

e it is in NP;

e all other problems in NPreduce to it;

'NPstands for nondeterministic polynomial, meaning that all problems in it can be “solved” in polynomial
time by a nondeterministic “computer” that starts by guessing the right certificate, and then checking it.

then it is called NP-complete. The existence of such problems may seem a priori unlikely,
but we already know that there is at least one: circuit SAT. In the next section we shall see
many more examples of NP-complete problems..

4. NP-complete problems

To prove that a problem is NP-complete, we typically reduce a problem that is known to
be NP-complete to it. Now that circuit SAT has provided a place to start, we shall prove
many problems NP-complete by the reductions pictured in the figure.

From circuit SAT to 3SAT. Suppose that we are given a circuit €' with some input gates

unknown, such as the one pictured in Figure. We must construct from it an equivalent input
to 3SAT, that is, a formula R(C') that is satisfiable if and only if there is a satisgying setting of
the unknown input gates of C'. The construction is shown in the figure. R(C) has a variable
for each gate of C', and also for each gate of C' it has certain clauses. The precise set of the
clauses depends on the nature of the gate considered.

o If z is a T input gate, then we simply have the clause (z).
e If z is a I input gate, then we have the clause (7).
e If z is a I input gate, then we have the clause (7).

e If 2 is an unknown input gate, then no clauses are added for it (intuitively, they are free
to be whatever they want, as long as they succeed in making the output gate T).

If gate z is the OR of the gates y and z, then we add the clauses (Vv z)-(ZVz)-(TVyVz). It
is easy to see that the conjunction of these clauses is equivalent to the statement [z = (y V z)].

Similarly, if gate z is the AND of the gates y and z, then we add the clauses (TV y) - (T V z) -
(Vv ZVez), which is [z = (y A 2)]

Next, if gate z is the NOT of gate y, then we add the clauses (ZV7) - (2 Vy), which is [z = (7)]

Finally, if gate z also happens to be the output gate, then we add the clause (z), expressing
the condition that the output gate be T.

The conjunction of all these clauses is the sought formula R(C'). To show that the reduction
R works, we must establish the following statement:

C' has a setting of the unknown input gates that makes the output variable T if and only if
R(C) is satisfiable.

Suppose that C' does have such a setting of the unknown input gates. Then R(C') can be
satisfied by the following truth assignment: Set all variables correponding to unknown input
gates to T or F, depending on their value in the given setting of the input gates. Compute
now all values of all gates in the circuit; this is claimed the truth assignment that satisfies
R(C'). This truth assignment must satisfy all clauses of R(C'), because it corresponds to a
legal assignment of values to the gates of C', and all these clauses require is that the values be
legal. Finally, since the given setting makes the output gate T, the last clause is also satisfied.

Conversely (this is the subtler direction in proofs of reductions), suppose that R(C) has
a satisfying truth assignment. Then consider the setting of the unknown input gates of
suggested by this truth assignment. Since the truth assignment satisfies R(C'), it assigns to
all other variables of R(C') the value of the corresponding gate (since R(C') requires that all

gates be properly computed). But, since R(C) also insists that the output be T, this means
that the setting of the unknown inputs succeeds in satisfying C.

From 3SAT to integer linear programming. This reduction is easy, since any clause such as

(x VYV z) can be rewritten as the integer linear program z +1—-y+2z > 1,0 < 2,y,z < 1.
Repeating for all clauses, we have an input of integer linear programming that is equivalent
to the given input to 3SAT.

From 3SAT to independent set. In a typical input to independent set we are given a graph

G = (V,F) and an integer K. We are asked whether there is a set I C V with |I| > K such
that if u,v € I then [u,v] ¢ E.

We must reduce 3SAT to independent set. That is, given any Boolean formula ¢ with
at most 3 literals in each clause, we must produce a graph G = (V| F) and an integer K such
that G has an independent set of size K or more if and only if ¢ is satisfiable.

The reduction is illustrated in the figure. K is the number of clauses. For each clause we
have a group of nodes, one for each literal in the clause, connected by edges in all possible
ways. Also, any two nodes from different groups, correponding to contradictory literals (like
z and T) are connected by an edge. This concludes the description of G, and of the reduction.

Suppose that G has an independent set I of size K or more. Since there are K groups,
and all nodes in them are connected in all ways, I cannot contain two nodes from any group.
So, it must have one node from each group. Think of the node from a group as the literal that
satisfies this clause. Since contradictory literals are connected with an edge, no nodes in I are
contradictory, and hence these literals together comprise a satisfying truth assignment for ¢.
(If a particular variable was not used, this means that we can take it to be either T or I'; both
alternatives would satisfy ¢.)

Conversely, suppose that we have a satisfying truth assignment of ¢. Each clause must
have at least one T literal; fix one of for each clause. Consider the corresponding set I of K
nodes. Since these literals come from a single truth assignment, they are not contradictory,
and so [is an independent set, completing the proof.

From independent set fo vertex cover and clique. Let G = (V, E) be a graph. A vertex

cover of G is a set C' C V such that all edges in F have at least one endpoint in C'. The
vertex cover problem is this: Given a graph G and a number K, does G have a vertex cover
of size at most K7

The reduction from independent set to vertex cover is very easy, and based on this
observation: C'is a vertex cover of G = (V, F) if and only if V — C'is an independent set! This
is because any two nodes not in a vertex cover cannot have an edge between them, because
this edge would not have an endpoint in the vertex cover. So, here is the reduction: Given an
instance (G = (V,), K) of independent set, we produce the instance (G = (V, E),|V| - K)
of vertex cover. There is an independent set with K nodes or more if and only if there is a
vertex cover of size |V| — K or less.

The cligue in a graph is a fully connected set of nodes. The clique problem asks whether
there is a clique of size K or larger in the graph. The reduction from independent set to
clique is very simple: We go from the instance (G, K') of independent set to the equivalent
instance (G, K), where G is the complement of GG, the graph with the same nodes as &, and
with precisely all edges that are missing from G'.

From vertex cover lo dominating set. A set of nodes D id a dominating set if each node

either is in D, or is adjacent to a node in D. This twist on vertex cover is also NP-
complete. To reduce an input (G, K) of vertex cover to it, we simply add to G, for each
edge [a,b] € F, anew node ab, and two new edges [a, ab], [b,ab]. It is clear that any vertex

cover of & is a dominating set of the new graph. And any dominating set of the new graph can
be made into a vertex cover of G by replacing any new vertex by one of its adjacent vertices.

5. An Epilogue: Undecidability

Are there problems that are not even in NP? The answer is, “yes, but they rarely appear
to come up in practice.” In fact, there are problems for which there are no algorithms at all!

Consider the following situation. You want to write a Boolean function term(P,X) which
takes two inputs, P and X. P is a program in the same language, and X is a data file. term(P,X)
returns true if program P with input file X eventually terminates. If program P on file X loops
forever, then term(P,X) returns false.

It can be proved that such program is impossible to write! That is to say, there is no
algorithm, however ineficient, that solves the problem “given a program P and its input X,
will P terminate on X?” Here is the proof:

Suppose, for the sake of contradiction, that we have written such a Boolean function
term(P,X). Using it, we can write the following simple program:

Boolean function diag(P): if term(P,P) then loop forever

And now the contradiction: Does diag(diag) terminate? It is easy to see that it does
if and only if it does not! This is a contradiction, to whic we were led by assuming that
term(P,X) can be written. We must conclude that there is no program that can be written
to solve the termination (or halting problem above.

NP-complete

_

NP

Figure 2: Pand NP

circuit SAT

|

3SAT
integer independent set
linear \
programming /
clique

vertex cover

|

dominating set

Hamilton cycle

3D matching

set cover

undirected Hamilton cycle

Figure 3:

¢

tTSP

knpapsack

(X+Y+2) (X+Y+Z) (X+Y) (X+Y+Z)

Figure 4:

