
Linear Programming and Reductions

1 Linear Programming

Many of the problems we want to solve by algorithms are optimization problems: Find the
shortest path, the cheapest spanning tree, the most efficient encoding, the longest increasing
subsequence. In an optimization problem we seek a solution which (a) satisfies certain con-
straints (the path must use edges of the graph and lead from s to t, the tree must spann all
nodes, the subsequence must be increasing); and (b) is the best possible, with respect to some
well-defined criterion, among those that do.

Linear programming (or LP) is a very general class of optimization problems. In an LP
problem we want to find values for certain variables that (a) satisfy a set of linear equations
and/or inequalities, and (b) among those values we want to choose the one that maximizes a
given linear objective function.

An example
A company produces three products, and wishes to decide the level of production of each so
as to maximize profits. Let x1 be the amount of Product 1 produced in a month, x2 that of
Product 2 and x3 of Product 3. Each unit of Product 1 brings to the company a profit of 100,
each unit of Product 2 a profit of 600, and each unit of Product 3 a profit of 1400. But not
any combination of x1, x2, x3 is a possible production plan; there are certain constraints on x1,
x2, and x3 (besides the obvious one, x1, x2, x3 ≥ 0). First, x1 cannot be more than 200, and x2

more than 300 —presumably because of supply limitations. Also, the sum of the three must
be, because of labor constraints, at most 400. Finally, it turns out that Products 2 and 3 use
the same piece of equipment, with Product 3 three times as much, and hence we have another
constraint x2 + 3x3 ≤ 600. What are the best possible levels of production?

We represent the situation by a linear program, as follows:

max 100x1 + 600x2 + 1400x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

The set of all feasible solutions of this linear program (that is, all vectors in 3-d space that
satisfy all constraints) is precisely the polyhedron shown in Figure 1.

We wish to maximize the objective function 100x1 + 600x2 + 400x3 over all points of this
polyhedron. This means that we want to find the plane that is parallel to the one with equa-
tion 100x1 + 600x2 + 400x3 = 0, touches the polyhedron, and is as far towards the positive
orthant as possible. Obviously, the optimum solution will be a vertex of the polyhedron (or the
optimum solution may not be unique, but even in this case there will be an optimum vertex).
Two other possibilities with linear programming are that (a) the optimum solution may be
infinity, that is, the constraints are so loose that we can increase the objective at will, or (b)
that there may be no feasible solution — the constraints are too tight.

1

2

x
1

x 3

optimum

x

Figure 1: The feasible region

Linear programs can be solved by the simplex method, an algorithm devised by George
Dantzig in 1947, and which we shall explain in detail soon. The simplex method starts from
a vertex (in this case perhaps the vertex (0, 0, 0)) and repeatedly looks for a vertex that is
adjacent (it is joined to the current vertex by an edge of the polyhedron), and has better
objective value. You can think of it as a kind of hill-climbing in the vertices of the polytope.
When a vertex is found that has no better neighbor, simplex stops and declares this vertex to
be the optimum. For example, in the figure one of the possible paths followed by the simplex
algorithm is shown.

Reductions
Often, the most clever way to solve a problem is by reducing it to an already solved one. A
reduction from problem A to problem B is, informally, an algorithm that solves problem A
by using any algorithm that solves B. That is, we transform any given instance x or A to an
equivalent instance y of B, and then use the algorithm for B to solve y (see Figure ??).

We have seen reductions: In the chapter on dynamic programming, we solved the longest
common subsequence problem essentially by reducing it to the problem of finding long paths
in an appropriately constructed dag (and then we reduced that problem, in turn, to finding
shortest paths in a dag with edge weights −1).

The reason why linear programming is a very powerful algorithmic technique is that an
astounding variety of problems can be reduced to it; in this chapter we shall see many exam-
ples.

2

There are many different variants of linear programming:

1. a constraint may be an equation or an inequality;

2. we may wish to maximize or minimize the objective function;

3. the variables may or may not be required to be nonnegative.

We next point out that all of these variations can be reduced to one another!

1. To turn an inequality constraint, say
∑n

i=1
aixi ≤ b, into an equation, we introduce a new

variable s (called the slack variable for this inequality and required to be nonnegative),
and rewrite the inequality as

∑n
i=1

aixi + s = b, s ≥ 0. Any combination of values that
satisfies the new constraints also satisfies the original one, and vice-versa. Similarly,
any inequality

∑

i aixi ≥ b is rewritten as
∑

i aixi − s = b, s ≥ 0; s is now called a surplus
variable.

Naturally, it is easy to go in the other direction, and replace an equation by two inequal-
ities:

∑n
i=1

aixi = b can be written
∑n

i=1
aixi ≤ b,

∑n
i=1

aixi ≥ b.

2. An variable x that is unrestricted in sign can be replaced by two nonnegative variables
as follows: We introduce two nonnegative variables, x+, x− ≥ 0, and replace x, wherever
it occurs in the constraints or the objective function, by x+ −x−. This way, x can take on
any real value by appropriately adjusting the new variables.

3. Finally, to turn a maximization problem into a minimization one, or vice-versa, we just
multiply the coefficients of the objective function by −1.

For example, the linear program with the three products can be rewritten thus:

min−100x1 − 600x2 − 1400x3

x1 + s1 = 200

x2 + s2 = 300

x1 + x2 + s3 = 400

x2 + 3x3 + s4 = 600

x1, x2, x3, s1, s2, s3, s4 ≥ 0

This form of a linear program, seeking to minimize a linear objective function with equa-
tional constraints and nonnegative variables, is called the standard form. It is the form solved
by the simplex algorithm.

Production planning
We have the demand estimates for our product for all months of 2005, di : i = 1, . . . , 12, and
they are very uneven, ranging from 440 to 920. We currently have 30 employees, each of
which produce 20 units of the product each month at a salary of 2,000; we have no stock of
the product. How can we handle such fluctuations in demand? Three ways:

• overtime —but this is expensive since it costs 80% more than regular production, and
has limitations, as workers can only work 30% overtime.

3

• hire and fire workers —but hiring costs 320, and firing costs 400 per worker.

• store the surplus production —but this costs 8 per item per month. And we must end
the year without any items stored.

This rather involved problem can be formulated and solved as a linear program. As in all
such reductions, a crucial first step is defining the variables:

• Let wi be the number of workers we have the ith month —we have w0 = 60.

• Let xi be the production for month i.

• oi is the number of items produced by overtime in month i.

• hi and fi is the number of workers hired/fired in the beginning of month i.

• si is the amount of product stored after the end of month i.

There is one variable of each of these six kinds for each time period i = 1, . . . , 12. We now
must write the constraints:

• xi = 20wi + oi (one constraint for each i = 1, . . . , 12) —the amount produced is the one
produced by regular production, plus by overtime.

• wi = wi−1 + hi − fi, wi ≥ 0, one for each i —the changing number of workers; we know
that w0 = 30.

• si = si−1 + xi − di ≥ 0 —the amount stored in the end of this month is what we started
with, plus the production, minus the demand. By di we denote the known demand at
month i; and by requirement, s + 0 = s12 = 0.

• oi ≤ 6wi —only 30% overtime.

Finally, what is the objective function? It is

min2000
12

∑

i=1

wi + 400
12
∑

i=1

fi + 320
12
∑

i=1

hi + 8
12

∑

i=1

si + 180
12

∑

i=1

oi,

a linear function of the variables. Solving this linear program by simplex will give us the
optimum business strategy of the company.

A Communication Network Problem
We have a network whose lines have the bandwidth shown in the Figure. We wish to establish
three connections: One between A and B (connection 1), one between B and C (connection 2),
and one between A and C (connection 3). We must give each connection at least 2 units of
bandwidth, but possibly more. The connection from A to B pays $3 per unit of bandwidth,
from B to C pays $2, and from A to C pays $4. Notice that each connection can be routed
in two ways (the long and the short path), or by a combination (for example, two units of
bandwidth via the short route, and one via the long route). How do we route these calls to
maximize the network’s revenue?

4

A

10

6

11

13

8 12

B

C

Figure 2: A communication network

This is also a linear program. We have variables for each connection and each path (long
or short); for example x1 is the short path bandwidth allocated to connection 1, and x′

2 the
long path for connection 2. We demand that (1) no edge bandwidth is exceeded, and (2) each
call gets a bandwidth of 2.

max 3x1 + 3x′

1 + 2x2 + 2x′

2 + 4x3 + 4x′

3

x1 + x′

1 + x2 + x′

2 ≤ 10

x1 + x′

1 + x3 + x′

3 ≤ 12

x2 + x′

2 + x3 + x′

3 ≤ 8

x1 + x′

2 + x′

3 ≤ 6

x′

1 + x2 + x′

3 ≤ 13

x′

1 + x′

2 + x3 ≤ 11

x1 + x′

1 ≥ 2

x2 + x′

2 ≥ 2

x3 + x′

3 ≥ 2

x1, x
′

1 . . . , x′

3 ≥ 0

The solution, obtained via simplex in a few microseconds, is the following: x1 = 0, x′

1 =
7, x2 = x′

2 = 1.5, x3 = .5, x′

3 = 4.5.
The reader may have expected integer values for the bandwidth; actually, the optimum

here is the fractional solution indicated. This is not a problem in this example, but it would
be so in production scheduling: There may not be a way to hire 4.5 workers. There is a tension
in LP between the ease of obtaining fractional solutions and the desirability of integer ones.
As we shall see, finding the optimum integer solution of an LP is a very hard problem, called
integer linear programming.

5

Question: Suppose that we removed the constraints stating that each call should receive
at least two units. Would the optimum change?

2 Simplex: A Rough Outline

We are given a linear program in standard form (minimization with equality constraints and
nonnegative variables), such as the one equivalent to our original three-products example,
reproduced below:

min−100x1 − 600x2 − 1400x3

x1 + s1 = 200

x2 + s2 = 300

x1 + x2 + s3 = 400

x2 + 3x3 + s4 = 600

x1, x2, x3, s1, s2, s3, s4 ≥ 0

How should we go about solving it? Notice first that, in contrast to all other optimization
problems we have seen so far in this book (shortest path, minimum spanning tree, etc.), this
is a continuous problem, as its solutions (values of the six variables) live in a continuous
space (in particular, the polyhedron of Figure ??. Is there a way to make this problem finite?
For example, in relation to the three-products example we argued that, in order to find the
optimum, we need only consider the (finitely many) vertices of the polyhedron. But a vertex
is a concept from geometry; if we are given a system of equations as above, what are its
“vertices”?

Suppose that we are given a linear program in standard form with m equations in n vari-
ables (constrained to be nonnegative), where m < n. We can choose m of the n variables and
set the remaining n − m variables to zero. This gives us a system of m equations with m
unknowns; as we know, such systems have in general a unique solution. If this system has
a solution, and this solution happens to be nonnegative, then we call it a vertex of the linear
program.

The term vertex refers exactly to the vertices of the polyhedron in Figure ??. For example,
in the linear program above we can set s2, s3, s4 to zero, and solve the resulting system of 4
equations with 4 unknowns to obtain x1 = 100, x2 = 300, x3 = 200, s1 = 100 — a vertex, since
all values are nonnegative. (This vertex corresponds to the vertex (100, 300, 200) in Figure ??.)
Similarly, by setting x1, x2, x3 to zero we obtain the vertex s1 = 200, s2 = 300, s3 = 400, s4 = 600
(the (0, 0, 0) vertex in the figure). And so on.

What makes vertices important is the following property, which we state without proof
(besides the sound geometric intuition from Figure ??:
If a linear program has an optimum (that is, if it is not infeasible, and the objective function is
not unbounded) then the optimum is obtained at a vertex.

Therefore, linear programming is a finite problem: We need only look at each vertex —
more precisely, at each combination of m columns, concentrating on those that have nonnega-
tive solutions. In other words, the property above is a reduction from linear programming to
solving systems of linear equations!

This motivates us to pause for a moment and ponder that problem.

6

Gaussian Elimination
We are given a system of n linear equations with n unknowns, say

x1 − 2x3 = 2

x2 + x3 = 3

x1 + x2 − x4 = 4

x2 + 3x3 + x4 = 5

with n = 4. We know from highschool a systematic way for solving such systems of equations.
This method is based on the following obvious property of such systems:
We can obtain an equivalent system of linear equations if we replace an equation by the result
of adding to that equation a multiple of another equation.
For example, we can multiply the first equation by −1 and add it to the third to obtain the
new equation 2x3 − x4 = 2; we can now replace the third equation by the new one, obtaining
the equivalent system

x1 + x2 − 2x3 = 2

x2 + x3 = 3

x2 + 2x3 − x4 = 2

x2 + 3x3 + x4 = 5

Our choice of the two equations and the multiplier was clever in the following sense: It elimi-
nated the variable x1 from the third equation. Since the second and fourth equations did not
involve x1 to begin with, now only the first equation contains x1. In other words, ignoring the
first equation, we have a system of three equations with three unknowns: We decreased n by
one! If we solve this smaller system, it is easy to substitute the values for x1, x2, x3 back to
the first equation and solve for x1.

This suggests an algorithm — once more due to Gauss (see Figure ??).
The running time of the algorithm is obviously T (n) = T (n − 1) + n2 = O(n3).

Boxed Subsection: Determinants
Going back to LP and the simplex algorithm, we noticed that the concept of vertex entails a
reduction from LP to solving systems of linear equations. Unfortunately the reduction is not
efficient, as there are

(

nm

)

combinations to check — an exponential number.
The simplex algorithm is a clever way of exploring this exponential space of vertices in a

greedy fashion. It is based on another important property of vertices. Let us call two vertices
neighbors if the sets of variables of one can be obtained from the other by adding one variable
and deleting another. Obviously, each vertex has at most m(n − m) neighbors.
If in a linear program that has an optimum a vertex has the property that no neighbor has a
better objective function, then it is the optimum vertex.
This fact suggests a greedy algorithm for LP:

procedure simplex(LP)
Input: A linear program LP in standard form with m equations in n nonnegative variables Output: The optimum solution v of LP

7

Figure 2.1 Gaussian elimination.
procedure gauss(E,X)
Input: A system E = {e1, . . . , en} of linear equations with n unknowns X = {x1, . . . , xn}:
e1 : a11x1 + a12x2 + . . . + a1nxn = b1; dots; en : an1x1 + an2x2 + . . . + annxn = bn

Output: A solution of the system, if one exists

if all coefficients aij are zero:
if all bj’s are zero return ‘‘any real numbers x1, . . . , xn’’
else return ‘‘no solution’’

else choose a nonzero coefficient apq

for i = 1, . . . , n:
if i 6= p: for j = 1, . . . , n:
set aij = aij − apj/apq

set bj = bj − bp/apq

call gauss(E − {ep}, X − {xq}) to obtain solution xi : i = 1, . . . , n, i 6= q
set xq = (bp −

∑

i 6= qapjxj)/apq

let v be any vertex of LP
while there is a neighbor v′ of v
(that is, a set of m columns that differs from v by one
and yields a system of n equations that has a nonnegative solution)
with better objective:

set v = v′

For example, in the LP above we would start with the vertex v = (0, 0, 0) and continue with
the vertices ???

There are several problems with simplex as presented here:

• How do we find the starting vertex? In our example we had the obvious starting point
(0, 0, 0), but in a general LP? It turns out this can be reduced to LP: Add new artificial
variables a1, . . . , am ≥ 0, and add ai to the ith equation. Now we have a starting vertex,
namely the one with ai = bi for all i and all other variables zero. Change the objective to
∑m

i=1
ai, and solve this LP by simplex. If the optimum objective is positive, this means

that the original LP has no feasible solution. If it is zero, we have our starting vertex!

• Degeneracy: Two different subsets of m variables may give rise to the same vertex (see
Figure[?]). This is a serious problem, as it can result in simplex cycling, or returning
a suboptimal vertex. It can be taken care of by perturbation: Change each bi by a tiny
ransom amount to bi + εi.

• Unboundedness: If we find out that a set of m columns yields an answer “any m real
numbers,” this may be evidence that the LP is unbounded, that is, its objective function
can be made arbitrarily small.

8

• Time complexity: As presented, simplex runs in time O(Lm4n), where L is the length
of the longest objective-decreasing path of vertices. As it turns out, there are special-
ized examples where L is exponential in m and n! But the m4n factor is also highly
unappetizing!

This m4n factor can be improved to mn, making simplex a practical algorithm. One
improvement is that, once we have solved a system of equations, we can solve another
system that differs in one column in time O(mn) instead of O(m3). An extension of
the same method — by treating the objective function as an extra equation — makes it
simple to determine which variable to omit and which to add in order to get to a vertex
with a better objective without trying all possible O(mn) combinations of variables.

3 Network Flows

Suppose that we are given the network of the Figure (top), where the numbers indicate ca-
pacities, that is, the amount of flow that can go through the edge in unit time. We wish to find
the maximum amount of flow that can go through this network, from S to T .

This is yet another problem that can be reduced to linear programming. We have a non-
negative variable for each edge, representing the flow through this edge. These variables are
denoted fSA, fSB, . . . We have two kinds of constraints: Capacity constraints such as fSA ≤ 5
(a total of 9 such constraints, one for each edge), and flow conservation constraints such as
fAD+fBD = fDC +fDT , stating that the amount of flow going into D is the same as the amount
of flow leaving D. (a total of 4 such constraints in our example, one for each node except S
and T)). We wish to maximize fSA + fSB, the amount of flow that leaves S, subject to these
constraints. It is easy to see that this linear program is equivalent to the max-flow problem.
The simplex mathod would correctly solve it.

But in the case of max-flow, it is very instructive to “simulate” the simplex method, to see
what effect its various iterations would have on the given network. Simplex would start with
the all-zero flow, and would try to improve it. How can it find an improvement in the flow?
Answer: It finds a path from S to T (say, by depth-first search), and moves flow along this
path of total value equal to the minimum capacity of an edge on the path (it can obviously do
no better). This is the first iteration of simplex (see the bottom of Figure 3).

How would simplex continue? It would look for another path from S to T . Since this time
we already partially (or totally) use some of the edges, we should do depth-first search on the
edges that have some residual capacity, above and beyond the flow they already carry. Thus,
the edge CT would be ignored, as if it were not there. The depth-first search would now find
the path S−A−D−T , and augment the flow by two more units, as shown in the top of Figure
4.

Next, simplex would again try to find a path from S to T . The path is now S−A−B−D−T
(the edges C − T and A − D are full are are therefore ignored), and we augment the flow as
shown in the bottom of Figure 4.

Next the algorithm would again try to find a path. But since edges A−D, C−T , and S−B
are full, they must be ignored, and therefore depth-first search would fail to find a path, after
marking the nodes S,A,C as reachable from S. Simplex then returns the flow shown, of value
6, as maximum.

How can we be sure that it is the maximum? Notice that these reachable nodes define a cut
(a set of nodes containing S but not T), and the capacity of this cut (the sum of the capacities

9

of the edges going out of this set) is 6, the same as the max-flow value. (It must be the same,
since this flow passes through this cut.) The existence of this cut establishes that the flow is
optimum!

There is a complication that we have swept under the rug so far: When we do depth-first
search looking for a path, we use not only the edges that are not completely full, but we
must also traverse in the opposite direction all edges that already have some non-zero flow.
This would have the effect of canceling some flow; canceling may be necessary to achieve
optimality, see Figure 5. In this figure the only way to augment the current flow is via the
path S −B −A−T , which traverses the edge A−B in the reverse direction (a legal traversal,
since A − B is carrying non-zero flow).

To summarize: The max-flow problem can be easily reduced to linear programming and
solved by simplex. But it is more interesting to understand what simplex would do by follow-
ing its iterations directly on the network (as we see in the Problems, such simulation actually
leads to a polynomial algorithm for max flow). It repeatedly finds a path from S to T along
edges that are not yet full (have some non-zero residual capacity), and also along any reverse
edges with non-zero flow. If an S − T path is found, we augment the flow along this path,
and repeat. When a path cannot be found, the set of nodes reachable from S defines a cut of
capacity equal to the max-flow. Thus, the value of the maximum flow is always equal to the
capacity of the minimum cut. This is the important max-flow min-cut theorem. One direction
(that max-flow≤min-cut) is easy (think about it: how can any cut be smaller than any flow?).
The other direction is proved by the algorithm just described.

4 Duality

As it turns out, the max-flow min-cut theorem is a special case of a more general property of
linear programs called duality. Duality means that a maximization problem and a minimiza-
tion problem have the property that any feasible solution of the min problem is greater than
or equal any feasible solution of the max problem (see the Figure). Furthermore, and more
importantly, they have the same optimum value.

Consider the network shown in the Figure below, and the corresponding max-flow problem.
We know that it can be written as a linear program as follows:

max fSA +fSB

fSA ≤ 3
fSB ≤ 2

fAB ≤ 1
fAT ≤ 1

fBT ≤ 3
fSA −fAB −fAT = 0

fSA +fAB −fBT = 0
f ≥ 0P

Consider now the following linear program:

10

min 3ySA +2ySB +yAB +yAT +3yBT

ySA +uA ≥ 1
ySB +uB ≥ 1

yAB −uA +uB ≥ 0
yAT −uA ≥ 0

yBT −uB ≥ 0
y ≥ 0D

This LP describes the min-cut problem! To see why, suppose that the uA variable is meant
to be 1 if A is in the same set of the cut as S, and 0 otherwise, and similarly for B (naturally,
by the definition of a cut, S will always be with S in the cut, and T will never be with S).
Each of the y variables is to be 1 if the corresponding edge contributes to the cut capacity,
and 0 otherwise. Then the constraints make sure that these variables behave exactly as they
should. For example, the second constraint states that if A is not with S, then SA must be
added to the cut. The third one states that if A is with S and B is not (this is the only case
in which the sum −uA + uB becomes −1), then AB must contribute to the cut. And so on.
Although the y and u’s are free to take values larger than one, they will be “slammed” by the
minimization down to 1 or 0.

Let us now observe that these two programs have strikingly symmetric, dual, structure.
Each variable of P corresponds to a constraint of D, and vice-versa. Equality constraints
correpond to unrestricted variables (the u’s), and inequality constraints to restricted variables.
Minimization becomes maximization. The matrices are transpose of one another, and the roles
of right-hand side and objective function are interchanged.

Such LP’s are called dual to each other. It is mechanical, given an LP, to form its dual:
Transpose the matrix, convert maximization to minimization and vice-versa, interchange the
roles of the right-hand side and the objective function, and introduce a nonnegative variable
for each inequality, and an unrestricted one for each equality.

By the max-flow min-cut theorem, the two LP’s P and D above have the same optimum.
In fact, this is true for general dual LP’s! This is the duality theorem, which can be stated as
follows (we shall not prove it; the best proof comes from the simplex algorithm, very much as
the max-flow min-cut theorem comes from the max-flow algorithm):

If an LP has a bounded optimum, then so does its dual, and the two optimal values coincide.

5 Matching

It is often useful to compose reductions. That is, we can reduce a problem A to B, and B to
C, and since C we know how to solve, we end up solving A. A good example is the matching
problem.

Suppose that the bipartite graph shown in Figure 6 records the compatibility relation
between four boys and four girls. We seek a maximum matching, that is, a set of edges that is
as large as possible, and in which no two edges share a node. For example, in the figure below
there is a complete matching (a matching that involves all nodes).

To reduce this problem to max-flow we do this: We create a new source and a new sink,
connect the source with all boys and all girls with the sinks, and direct all edges of the original
bipartite graph from the boys to the girls. All edges have capacity one. It is easy to see that
the maximum flow in this network corresponds to the maximum matching.

11

Well, the situation is slightly more complicated than was stated above: What is easy to
see is that the optimum integer-valued flow corresponds to the optimum matching. We would
be at a loss interpreting as a matching a flow that ships, for example, .7 units along the
edge Al-Eve! Fortunately, what the algorithm in the previous section establishes is that if the
capacities are integers, then the maximum flow is integer. This is because we only deal with
integers throughout the algorithm. Hence integrality comes for free in the max-flow problem.

Unfortunately, max-flow is about the only problem for which integrality comes for free. It
is a very difficult problem to find the optimum solution (or any solution) of a general linear
program with the additional constraint that (some or all of) the variables be integers. To
see why, notice that the NP-complete satisfiability problem can be reduced to integer linear
programming as this problem is called: The clause (x1 ∨ x2 ∨ x3) can be represented by the
constraints

x1 + (1 − x2) + x3 ≥ 1, , 0 ≥ xi ≥ 1, xiintegers.

Repeating for all clauses of a given Boolean formula, we get an integer linear program in
which finding any feasible solution is equivalent to solving the original instance of satisfiabil-
ity!

6 Games

We can represent various situations of conflict in life in terms of matrix games. For example,
the game shown below is the rock-paper-scissors game. The Row player chooses a row strategy,
the Column player chooses a column strategy, and then Column pays to Row the value at the
intersection (if it is nagetive, Row ends up paying Column).

r p s

r 0 −1 1
p 1 0 −1
s −1 1 0

Games do not necessarily have to be symmetric (that is, Row and Column have the same
strategies, or, in terms of matrices, A = −AT). For example, in the following fictitious Pres-
idential Election game the strategies may be the issues on which a candidate for office may
focus (the initials stand for “economy,” “society,” “morality,” and “tax-cut”) and the entries are
the millions of votes lost by Column.

(

m t

e 3 −1
s −2 1

)

We want to explore how the two players may play “optimally” these games. It is not clear
what this means. For example, in the first game there is no such thing as an optimal “pure”
strategy — it very much depends on what your opponent does; similarly in the second game.
But suppose that you play this repeatedly. Then it makes sense to randomize. That is, con-
sider a game given by an m × n matrix Gij ; define a mixed strategy for the row player to be
a vector (x1, . . . , xm), such that xi ≥ 0, and

∑m
i=1

xi = 1. Intuitively, xi is the probability with
which Row plays strategy i. Similarly, a mixed strategy for Column is a vector (y1, . . . , yn),
such that yj ≥ 0, and

∑n
j=1

yj = 1.

12

Suppose that, in the Presidential Election game, Row decides to play the mixed strategy
(.5, .5). What should Column do? The answer is easy: If the xi’s are given, there is a pure
strategy (that is, a mixed strategy with all yj ’s zero except for one) that is optimal. It is found
by comparing the n numbers

∑m
i=1

Gijxi, for j = 1, . . . , n (in the Presidential Election game,
Column would compare .5 with 0, and of course choose the smallest —remember, the entries
denote what Column pays). That is, if Column knew Row’s mixed strategy, s/he would end up
paying the smallest among the n outcomes

∑m
i=1

Gijxi, for j = 1, . . . , n. On the other hand,
Row will seek the mixed strategy that maximizes this minimum; that is,

max
x

min
j

m
∑

i=1

Gijxi.

This maximum would be the best possible guarantee about an expected outcome that Row can
have by choosing a mixed strategy. Let us call this guarantee z; what Row is trying to do is
solve the following LP:

max z
−z −3x1 +x2 ≤ 0
−z +2x1 −x2 ≤ 0

x1 +x2 = 1

Symmetrically, it is easy to see that Column would solve the following LP:

minw
w −3y1 +2y2 ≥ 0
w +y1 −y2 ≥ 0

y1 +y2 = 1

The crucial observation now is that these LP’s are dual to each other, and hence have the
same optimum, call it V .

Let us summarize: By solving an LP, Row can guarantee an expected income of at least V ,
and by solving the dual LP, Column can guarantee an expected loss of at most the same value.
It follows that this is the uniquely defined optimal play (it was not a priori certain that such
a play exists). V is called the value of the game. In this case, the optimum mixed strategy for
Row is (3/7, 4/7), and for Column (2/7, 5/7), with a value of 1/7 for the Row player.

The existence of mixed strategies that are optimal for both players and achieve the same
value is a fundamental result in Game Theory called the min-max theorem. It can be written
in equations as follows:

max
x

min
y

∑

xiyjGij = min
y

max
x

∑

xiyjGij .

It is surprising, because the left-hand side, in which Column optimizes last, and therefore has
presumably an advantage, should be intuitively smaller than the righ-hand side, in which
Column decides first. Duality equalizes the two, as it does in max-flow min-cut.

7 Approximate Separation

An interesting last application: Suppose that we have two sets of points in the plane, the
black points (xi, yi) : i = 1, . . . ,m and the white points (xi, yi) : i = m + 1, . . . ,m + n. We wish

13

to separate them by a straight line ax + by = c, so that for all black points ax + by ≤ c, and
for all white points ax + by ≥ c. In general, this would be impossible. Still, we may want to
separate them by a line that minimizes the sum of the “displacement errors” (distance from
the boundery) over all misclassified points. Here is the LP that achieves this:

min e1 +e2 + . . . + em + em+1 + . . . + em+n

e1 ≥ ax1 + by1 − c
e2 ≥ ax2 + by2 − c

...
em ≥ axm + bym − c

em+1 ≥ c − axm+1 − bym+1

...
em+n ≥ c − axm+n − bym+n

ei ≥ 0

8 Circuit Evaluation

We have seen many interesting and diverse applications of linear programming. In some
sense, this one is the ultimate application: Suppose that we are given a Boolean circui, that
is, a DAG of gates, each of which is either an input gate (indegree zero, and has a value T or
F), or an OR gate (indegree two), or an AND gate (indegree two), or a NOT gate (indegree one).
One of them is designated as the output gate. We wish to tell if this circuit evaluates (following
the laws of Boolean values bottom-up) to T. This is known as the circuit value problem.

There is a very simple and automatic way of translating the circuit value problem into an
LP: For each gate g we have a variable xg. For all gates we gave 0 ≥ xg ≤ 1. If g is a T input
gate, we have the equation xg = 1; if it is F, xg = 0. If it is an OR gate, say of the gates h
and h′, then we have the inequality xg ≤ xh + xh′ . If it is an AND gate of h and h′, we have
the inequalities xg ≤ xh, xg ≤ xh′ (notice the difference). For a NOT gate we say xg = 1 − xh.
Finally, we want to max xo, where o is the output gate. It is easy to see that the optimum value
of xo will be 1 if the circuit value if T, and 0 if it is F.

This is a rather straight-forward reduction to LP, from a problem that may not seem very
interesting or hard at first. However, the circuit value problem is in some sense the most
general problem solvable in polynomial time! Here is a justification of this statement: After
all, a polynomial time algorithm runs on a computer, and the computer is ultimately a Boolean
combinational circuit implemented on a chip. Since the algorithm runs in polynomial time, it
can be rendered as a circuit consisting of polynomially many superpositions of the computer’s
circuit. Hence, the fact that circuit value problem reduces to LP means that all polynomially
solvable problems do!

In our next topic, Complexity and NP-completeness, we shall see that a class that contains
many hard problems reduces, much the same way, to integer programming.

14

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

2

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

2

2

Figure 3: Max flow

15

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

4

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

4

2

2

2

4

2

2

2

2

2

minimum cut

with capacity

2+2+2=6

maximum flow of value 6

4

Figure 4: Max flow (continued)

16

1

1

1

1

1 1

S T

A

B

1
1

Figure 5: Flows may have to be canceled

T

Al

Bob

Charlie

Dave

Eve

Fay

Grace

Helen

S

(all capacitie are 1)

Figure 6: Reduction from matching to max-flow

17

