
Greedy algorithms1

1 Minimum spanning trees

Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which nodes are computers, undirected edges are
potential links, and the goal is to pick enough of these edges so that the nodes are connected.
But this is not all, because each link also has a maintenance cost, reflected in that edge’s
weight. What is the cheapest possible network?

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

One immediate observation is that the optimal set of edges cannot contain a cycle, because
removing an edge from this cycle would reduce the cost without compromising connectivity:

1. Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
The particular tree we want is the one with minimum total weight, known as the minimum
spanning tree. Here is its formal definition.

Input: An undirected graph G = (V,E); edge weights we.

Output: A tree T = (V,E ′), which minimizes

weight(T) =
∑

e∈E′

we.

In the example above, the minimum spanning tree has a cost of 16:

A

B

C

D

E

F

1

4

2 5
4

However, this is not the only optimal solution. Can you spot another?

1.1 A greedy approach
Kruskal’s minimum spanning tree algorithm starts with the empty graph and then selects
edges from E according to the following rule.

Repeatedly add the next lightest edge which doesn’t produce a cycle.
1Copyright c©2004 S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani.

1

Figure 1.1 Kruskal’s algorithm.

B

A
6 5

3

42 FD

C E

5 41
2

4

B

A

FD

C E

In other words, it constructs the tree edge by edge, and apart from taking care to avoid cycles,
simply picks whichever edge is cheapest at the moment. This is a greedy algorithm: every
decision it makes is the one with the most obvious immediate advantage.

Figure 1.1 shows an example. We start with an empty graph and then attempt to add
edges in increasing order of weight:

B − C, C −D, B −D, C − F, D − F, E − F, A−D, A−B, C −E, A− C.

(Some ties have been broken arbitrarily.) The first two succeed but the third, B − D, would
produce a cycle if added. So we ignore it and move along. The final result is a tree with cost
14, the minimum possible.

At the outset of Kruskal’s algorithm, each node is in a connected component all by itself.
Then edges start being added, and the connected components get bigger and fewer in number.
An edge e = {u, v} is incorporated only if it doesn’t produce a cycle, that is, only if u, v lie in
different components. The precise effect of adding the edge is to merge these two connected
components, and thereby to reduce the overall number of components by one. Suppose there
are n nodes. Over the course of this incremental process, the number of connected components
decreases from n to one, which means that n− 1 edges must have been added along the way.

This consideration does not apply solely to the trees produced by Kruskal’s algorithm. For
any tree, imagine starting with an empty graph (with nodes but no edges), and then inserting
the tree’s edges one by one, in any arbitrary order. Our earlier argument still holds.

2. A tree on n nodes has n− 1 edges.

What happens when an edge e is removed from a tree? Well, we can pretend that e was the
last edge to be added when the tree was being built (recall that the ordering was irrelevant).
By rewinding the tree construction process one step, we find we must have two connected
components. Neither of them can contain cycles, so they must be trees.

3. Removing an edge from a tree breaks it into two smaller trees.

Many more properties of trees can be derived by reasoning in this way. We now use sim-
ilar logic to establish a simple rule which justifies the correctness of a whole slew of greedy
minimum spanning tree algorithms, including Kruskal’s.

1.2 The cut property
Suppose that in the process of building a minimum spanning tree (henceforth abbreviated
MST), we have already chosen some edges X ⊆ E and are so far on the right track: there is

2

Figure 1.2 T ∪ {e}. The addition of e (dotted) to T (solid lines) produces a cycle. This cycle
must contain at least one other edge (shown here as e′) across the cut (S, V − S).

��

��

� ��

� �� �

�	
�

� �

����

��

��

��
��

� ��

� ��

e

S V − S

e
′

some MST containing these edges. Which edge should we add next? The following property
gives us a lot of flexibility in our choice.

Cut property. Let X ⊆ E be part of some minimum spanning tree of graph
G = (V,E). Pick any set of nodes S ⊂ V such that there is no edge in X which
connects a node in S to one in V −S. If e ∈ E is the minimum-weight edge between
S and V − S, then X ∪ {e} is also part of some MST.

Let’s see why this holds. The starting set X is part of some MST T ; if the new edge e
happens to be part of T , then we are in luck and there is nothing to prove. So assume e is not
in T . We have to exhibit a different MST T ′ which contains X ∪ {e}. We will do so by altering
T slightly, changing just one of its edges.

What happens when edge e is added to T ? Since T is connected, it already has a path
between the endpoints of e, so the addition of this edge produces a cycle. This cycle (call
it C) contains e, and must therefore also have some other edge e′ across the cut (S, V − S)
(Figure 1.2). Define T ′ = T ∪ {e} − {e′}, and let’s check that it is a tree. We know from
property (3) that T − {e′} consists of two disjoint smaller trees, each containing an endpoint
of e′. The addition of edge e unites these two trees: it creates a path (specifically, C − {e ′})
between the endpoints of e′.

Is T ′ a minimum spanning tree? Compare its weight to that of T :

weight(T ′) = weight(T) + w(e)− w(e′).

Both e and e′ cross between S and V − S, and e is specifically the lightest edge of this type.
Therefore w(e) ≤ w(e′), and weight(T ′) ≤ weight(T). Since T is a MST, so it T ′.

Figure 1.3 shows an example of the cut property. Which edge is e′?

1.3 Kruskal’s algorithm
Kruskal’s algorithm is justified by the cut property. Whenever it adds an edge e that unites
two connected components C1, C2, we are sure that e is the lightest edge between C1 and
V − C1. Therefore the final tree returned is guaranteed to be optimal.

Now we fill in some implementation details. Throughout the algorithm, we have to test
candidate edges u − v to see whether their endpoints lie in different connected components.

3

Figure 1.3 The cut property. (a) An undirected graph. (b) Set X has three edges, and is part
of the MST T on the right. (c) If S = {A,B,C,D,E}, then one of the minimum-weight edges
across the cut (S, V − S) is e = {E,F}. X ∪ {e} is part of MST T ′, shown on the right.

(a) A

B

C E

FD

1 3

1

2 2

3

1

2 2

(b) A

B

C E

FD

A

B

C E

FD

1

1

2 2

1

(c) A

B

C E

FD

A

B

C E

FD

1

1

2

1

2

To efficiently perform this check, we will maintain a collection of (disjoint) sets, each of which
contains the nodes of a particular connected component.

We need three set operations. Initially each node is in a component by itself.

makeset(x): create a singleton set containing just x

We repeatedly test pairs of nodes to see if they belong to the same set.

find(x): to which set does x belong?

And whenever we add an edge, we are effectively merging the two components.

union(x, y): merge the sets containing x and y

The final algorithm is shown in Figure 1.4. It needs O(|E| log |E|) time to sort the edges, plus
time for |V | makeset, 2|E| find and |V |−1 union operations. We will next see how to perform
all the disjoint-set operations in time O(|E| log∗ |V |), where log∗ |V | (to be defined shortly) is
much smaller than log |V |, and in fact, is for all practical purposes a constant. Therefore the
total running time is O(|E| log |V |).

1.4 A data structure for disjoint sets
1.4.1 Union by rank

One way to store a set is as a directed tree (Figure 1.5). Nodes of the tree are elements of
the set, arranged in no particular order, and each with parent pointers which eventually lead
up to the root of the tree. This root element is a convenient representative, or name, for the

4

Figure 1.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: An undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) 6= find(v):
add edge {u, v} to X
union(u, v)

Figure 1.5 A directed-tree representation of two sets {B,E} and {A,C,D, F,G,H}.

E H

B C F

A

D

G

whole set. It is distinguished from the other elements by the fact that its parent pointer is a
self-loop.

In addition to a parent pointer π, each node also has a rank which, for the time being,
should be interpreted as the height of the subtree rooted at that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

procedure find(x)
while x 6= π(x) : x = π(x)
return x

Makeset is, of course, a constant time operation. On the other hand, find follows parent
pointers to the root of the tree and therefore takes time proportional to the height of the tree.
The tree actually gets built via the third operation, union, and so we must make sure that
this procedure keeps trees shallow.

Merging two sets is easy: make the root of one point to the root of the other. But we have
a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point to ry

5

Figure 1.6 A sequence of operations on the disjoint set data structure.

makeset(A),makeset(B), . . . ,makeset(G)

A B C D E F G

union(A,D),union(B,E),union(C,F),union(C,G)

A

D E

B

F

GC

union(E,A),union(B,G)

A

D

E

B GC

F

or the other way round? Since tree height is the main impediment to computational efficiency,
a good strategy is to make the root of the shorter tree point to the root of the taller tree. This
way, the overall height increases only if the two trees being merged are equally tall. Instead
of explicitly computing the heights of trees, we will use the rank numbers of their root nodes
– which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(ry) > rank(rx):

π(rx) = ry

else:
π(ry) = rx

if rank(rx) = rank(ry) : rank(rx) = rank(rx) + 1

See Figure 1.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path towards a root node, the rank values along
the way are strictly increasing.

1. For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

6

2. Any root node of rank k has at least 2k nodes in its tree.

This extends to internal (non-root) nodes as well: a node of rank k has at least 2k descendants.
After all, any internal node was once a root, and its set of descendants has not changed since
then. Moreover, different rank-k nodes cannot share common descendants, since by property
(1) any element has at most one ancestor of rank k. Which means

3. If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of all operations.

1.4.2 Path compression

Can the trees in the data structure be made even shorter? One idea is to be opportunistic:
during a find(x) operation, when a series of parent pointers is followed up to the root of a
tree, change all of these pointers so that they point directly to the root (Figure). After all, we
spent all this time discovering the tree of all these nodes, not just of x, and it makes sense
to somwhow remember this information. This is called path compression. It only doubles the
amount of time needed for a find, and is easy to code — here is a slick recursive implemen-
tation:

procedure find(x)
if x 6= π(x) : π(x) = find(π(x))
return x

This simple alteration makes a tremendous difference when there are multiple find’s along
overlapping paths. To capture this effect, we will analyze sequences of find (or union) oper-
ations, and show that the average time per operation is only slightly more than O(1).

Boxed: Cheaper by the dozen: Amortized analysis
What does not change under path compression? To figure this out, let’s divide nodes into two
categories: those which are roots of trees, and those which aren’t. In the absence of path
compression, these two groups have the following properties.

• Non-root nodes: their rank never changes, and they can never again resurface as roots.

• Root nodes: their ranks can change, and the composition of this layer of nodes can change
(as new elements as added, and others cease to be roots), but all such changes depend
only on the other root nodes.

Path compression only changes parent pointers of non-root nodes. Therefore,

4. The ranks of nodes, and the identities of the root elements, are exactly the same
as if there were no path compression —but of course, due to path compression, the
rank of a node is now just a quantity useful in the analysis, not the longest path
from a leaf to it.

7

This means that properties (1)–(3) continue to hold.

If there are n elements, their rank values can range from 0 to log n. Let’s divide the
non-zero part of this range into certain carefully chosen intervals, for reasons that will soon
become clear:

[0], [1], [2, 3], [4, 5, . . . , 15], [16, 17, . . . , 216 − 1 = 65535], . . .

Each group is of the form (k, k + 1, . . . , 2k − 1]. The number of groups is a number we denote
by log∗ n, defined to be the number of successive log operations you need to apply to n to bring
it down to one (or below). For instance, log∗ 1000 = 4 since log log log log 1000 ≤ 1. In practice
there will just be the five intervals shown above; more are needed only if we need to handle
more than 265536 elements — that is to say, never.

A find operation spends O(1) time on each non-root node x that it encounters on its path.
The parent pointer of x is changed, as a result of which the rank of its parent increases.
Accordingly, divide the lifetime of x, from the moment it ceases to be a root, into two phases.

Phase one: rank(π(x)) lies in the same interval as rank(x).

Phase two: rank(π(x)) is in a higher interval than rank(x).

(If x has rank zero, phase one is skipped altogether.) To calculate the time taken by a sequence
of m find operations, let’s separately consider the time taken on phase-one nodes and phase-
two nodes.

If x is in the group (k, 2k], then it can be visited at most 2k times by find operations before
moving on to phase two. Moreover, by property (3) the number of nodes with rank ∈ (k, 2k] is
bounded by

n

2k+1
+

n

2k+2
+ · · · ≤

n

2k
.

So, phase-one nodes in this particular group receive a combined total of at most n visits from
find operations. Since there are log∗ n distinct groups, the overall time spent on phase-one
nodes is ≤ n log∗ n.

As for phase-two nodes, in any given find, the path being updated can have at most log∗ n
of them (why?). Therefore the time taken on these nodes, over m operations, is O(m log∗ n).
The grand total for m find (or union) operations is then O((m + n) log∗ n), almost linear.

1.5 Prim’s algorithm
Let’s return to our discussion of minimum spanning tree algorithms. What the cut property
tells us in most general terms is that any algorithm conforming to the following greedy schema
is guaranteed to work.

X = { } (edges picked so far)
repeat until |X| = |V | − 1:
pick a set S ⊂ V for which X has no edges between S and V − S
let e ∈ E be the minimum-weight edge between S and V − S
X = X ∪ {e}

Prim’s algorithm is a somewhat more organized realization of this template than Kruskal’s:
the intermediate set of edges X is always connected and therefore forms a tree. S is chosen to
be the set of this tree’s vertices.

8

Figure 1.8 Prim’s minimum spanning tree algorithm.
procedure prim(G,w)
Input: An undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the array prev

for all u ∈ V :
cost(u) =∞
prev(u) = nil

Pick any initial node u0

cost(u0) = 0

H = makeheap (V) (using cost-values as keys)
while H is not empty:

v = deletemin(H)
for each {v, z} ∈ E:

if cost(z) > w(v, z):
cost(z) = w(v, z)
prev(z) = v
decreasekey(H, z)

Figure 1.7 Prim’s algorithm: the edges X form a tree, and S consists of its vertices.

��

��

� ��

� �� �

�	
�

� �

����

��

� ��

��

��

��� ��

� �� �
 ! !

" "# #

$ $% %

e

S V − S

X

On each iteration, the tree defined by X grows by one edge, namely the lightest edge
between a vertex in S (a tree-vertex) and a vertex outside S (Figure 1.7), whose weight is

min
v 6∈S

min
u∈S

w(u, v).

We can equivalently think of S as growing to include the vertex v 6∈ S of smallest cost:

cost(v) = min
u∈S

w(u, v).

The assimilation of v in S is accomplished via an edge whose other endpoint is

prev(v) = the node closest to v in S.

When this occurs, the cost values do not need to be recomputed from scratch, but merely
updated to include edges out of v.

9

Figure 1.9 An illustration of Prim’s algorithm, starting at node A. Also shown are a table of
cost/prev values, and the final MST.

B

A
6 5

3

42 FD

C E

5 41
2

4

B

A

FD

C E

Set S A B C D E F
{} 0/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil
A 5/A 6/A 4/A ∞/nil ∞/nil

A, D 2/D 2/D ∞/nil 4/D
A, D, B 1/B ∞/nil 4/D

A, D, B, C 5/C 3/C
A, D, B, C, F 4/F

This sounds a lot like Dijkstra’s algorithm, and in fact the pseudocode is almost identical
(Figure 1.8). The only difference is in the key values by which the heap is prioritized. In
Dijkstra’s algorithm, the value of a node is the length of an entire path to that node from the
starting point, since in the shortest paths problem we are interested in the length of the whole
path and not just of the last edge. Nonetheless, the two algorithms are similar enough that
they have the same running time, which depends on the particular heap implementation.

Figure 1.9 shows Prim’s algorithm at work, on a small six-node graph. Notice how the
final MST is completely specified by the prev array.

2 Huffman encoding

Suppose you are asked to store a string of 130 million characters, all of them A,C,G, or T –
the map of a chromosome, say. The default option is to use one byte per character, but this
seems wasteful when just two bits will suffice: 00 for A, 01 for C, 10 for G, and 11 for T . This
way, you need only 260 megabits in total.

Taking a closer look at the string, you find that the four characters are not equally abun-
dant. The most frequent is A, which appears 70 million times, while C appears just 3 million
times, G 20 million times, and T 37 million times. Perhaps there is an even more economical
encoding, for instance one that assigns a shorter bit string to A than to C? The only thing to
be careful of is that these variable-length encodings must obey the prefix property: none of
(four) codes should be a prefix of another code. If A were 0 and C were 001, the decoding of
strings like 0010 · · · might be ambiguous, or at the very least complicated.

Here’s an encoding that works well: 0 for A, 110 for C, 111 for G and 10 for T . It can be
represented by a binary tree (Figure 2.1) in which the characters are at the leaves and the bit
string is generated by the path from root to leaf, interpreting “left” as 0 and “right” as 1. The
total size of the encoding drops to 213 megabits, a 17% improvement.

The tree can also be thought of as specifying a decoding procedure. Given some long string

10

Figure 2.1 Code: A = 0, C = 110, G = 111, T = 10. Frequencies are shown in square brackets.

T

A

GC

[60]

[23]

[37]

[20][3]

[70]

of bits which you want to translate into characters, start at the root of the tree and use the
string to guide you down. Each time you reach a leaf, output that character and move back to
the root.

The tree of Figure 2.1 happens to be optimal. In general, given a bunch of characters
σ1, . . . , σn, and their frequencies f1, . . . , fn, how can we find such a tree, or to start with an
even more basic question, what properties does it possess? Well, each leaf corresponds to a
character, and its depth is the length of that character’s code. The optimal tree is the one
which minimizes the overall size of the encoding,

cost of tree =

n
∑

i=1

fi · (depth of σi in tree).

Although we are only given frequencies for the leaves, we can also assign frequencies to any
internal node: the number of times it is visited is precisely the sum of the frequencies of its
descendant leaves. The cost function can then be rewritten even more simply:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.

This is because each edge of the tree corresponds to a bit, and the number of times that bit is
written is exactly the frequency of the node to which the edge leads.

Both formulations of the cost function will turn out to be handy. The first one tells us an
extremely useful property of the optimal tree.

The two characters with the smallest frequencies must be together at the bottom
of the tree, as children of the lowest internal node in the tree.

Otherwise, the encoding could be improved by swapping.
This suggests that we start constructing the tree greedily: find the smallest fi, fj and make

them the children of an internal node. This new node, which we’ll call σij, has a frequency of
fi+fj; for instance, see the parent of C,G in the figure. Together with σi and σj , it forms a little
subtree (call it Tmini) which contains two edges and which, crucially, is guaranteed to be part
of the optimal tree T . This is a good start, but what about the rest of T ? Well, if we remove

11

Figure 3.1 Left: Eleven towns. Right: Towns which are within thirty miles of each other.

h

b

k

j

i

g

f
ea

c

d

h

b

k

j

i

g

f
ea

c

d

the two edges from it, we are left with a tree that has n− 1 leaves, namely the remaining σk ’s
and the new node σij . Call this Trest. Our second formulation of the cost function then tells us
that the cost of T is simply the cost of Tmini, which is now fixed, plus that of Trest. Therefore Trest

is itself the optimal tree for its particular set of leaves, and we can find it by recursing.

function buildtree(L = [(σ1, f1), . . . , (σn, fn)])
(Returns a tree with leaves σ1, . . . , σn)
let fi, fj be the two smallest frequencies
remove (σi, fi), (σj , fj) from L
T ← buildtree(L ◦ [(σij , fi + fj)])
set the children of σij to σi and σj

return T

Returning to the chromosome example, we do not mean to suggest that there is no better
way to compress the string. The claim is that it is impossible to do better by encoding single
characters. Chances are there are far better encodings, for instance using 010 to denote the
frequently occurring substring AAGATTA, or something of the sort. However, once the text
is scanned, and blocks of characters to be encoded are identified, Huffman’s algorithm gives
the best encoding. Many applications, including image and video transmission, use it as their
basic building block.

3 Set cover

The dots in Figure 3.1 are intended to represent a collection of towns. This county is in its
early stages of planning, and is deciding where to put schools. There are only two constraints:
each school should be in a town, and no one should have to travel more than thirty miles to
reach one of them. What is the minimum number of schools needed?

This is a typical set cover problem. For each town x, let Sx be the set of towns within thirty
miles of it. A school at x will essentially “cover” these other towns. The question is then, how
many sets Sx need to be picked in order to cover all the towns in the county?

SET COVER

Input: A set of elements B; sets S1, . . . , Sm ⊆ B

12

Output: A selection of the Si whose union is B.

Cost: Number of sets picked.

(In our example, the elements of B are the towns.) This problem lends itself immediately to a
greedy solution:

Repeat until all elements of B are covered:

Pick the set Si with the largest number of uncovered elements

This is extremely natural and intuitive. However, it does not necessarily give the optimal
solution. In our earlier example, this greedy scheme would first place a school at town a, since
this covers the largest number of other towns. However, this would eventually force it to place
four schools, whereas three suffice – for instance, at b, e, i.

Although the greedy approach is not optimal, it is fairly close.

Claim. Suppose B contains n elements and that the optimal cover consists of k
sets. Then the greedy algorithm will use at most k lnn sets.2

Let nt be the number of elements still not covered after t iterations of the greedy algorithm
(so n0 = n). Since these remaining elements are covered by the optimal k sets, there must be
some set with at least nt/k of them. Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

k
= nt

(

1−
1

k

)

.

By repeatedly applying this, and using the rule 1− x < e−x (for x > 0), we get

nt ≤ n0

(

1−
1

k

)t

< ne−t/k.

At t = k lnn, this number is less than one.

We say that the greedy algorithm has an approximation ratio of lnn, the maximum ratio
between its solution and the optimal solution. This guarantee is reassuring, but seems to
leave a lot of room for improvement. Such hopes are unjustified: it turns out that under
certain widely held assumptions (which we will clarify in a later chapter), there is provably
no polynomial-time algorithm with a smaller approximation ratio.

2
ln means “natural logarithm”, that is, to the base e.

13

