
The Fast Fourier Transform1

1 Motivation: digital signal processing

The fast Fourier transform (FFT) is the workhorse of digital signal processing. To understand
how it is used, consider any signal: any quantity which is a function of time or of position
(Figure 1.1(a)). This signal might, for instance, capture a human voice by measuring the
fluctuations of air pressure close to the speaker’s mouth. Or it might capture the conformation
of stars in the night sky, by measuring brightness across a range of spatial coordinates. In
order to extract information from the signal, we need to first digitize it if it is analog – that
is, to convert it to a discrete function ���������	��

� , by sampling (Figure 1.1(b)) – and, then, to
put it through a system which will transform it in some way. The output is called the system
response.

In designing a system, there is an endless diversity of possible transformations to choose
from. The most convenient ones to deal with are those which satisfy two particular properties.� Linearity – the response to the sum of two signals is just the sum of their individual

responses. For instance, doubling a signal also doubles the system response.� Time invariance – shifting the input signal by time � produces the same output, also
shifted by � .

Any system with these properties can be described very concisely. In fact, it is completely
characterized by its response to the simplest possible input signal: the unit impulse � ����� ,
consisting solely of a “jerk” at time zero (Figure 1.1(c)). To see this, first consider the close
relative � ��������� , a shifted impulse in which the jerk is moved to time � . Any signal ������� can
be expressed as a linear combination of these, letting � ��������� pick out its behavior at time � ,

��������� ������ �
�����!� � ���"������#

By linearity, the system response to input ������� is determined by the responses to the various� ���$����� . And by time invariance, these are in turn just shifted copies of the impulse response% ����� , the response to � ����� . In other words, the output of the system on any possible input
signal ������� can be read off easily from

% ����� . It is

&'������� ������ �
������� % �������!���

called the convolution of � and
%
. For example, a system with impulse response (Figure 1.1(d))

% �����(�*),+.-./ if �$�102� + �3#3#3#4� / � +0 otherwise

performs a simple averaging operation, &'�����(�657 �8�������:9"�����;� + �29"�����;�=<>�29�?3?3?�9"�����@� / 9 + �	� .
1Copyright c

A
2004 S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani.

1

Figure 1.1 (a) An analog signal. (b) A digitized version, obtained by sampling at regular
intervals. (c) The unit impulse. (d) An averaging filter.

(a)

Time

������� (b)

���	
�
����
�
������ �� �� ������ �������� ������ !"�"#�# $% &' ()*�*+,�,-.�..�./�//�/ 01 23 456�67�78�89�9 :;<�<=�= >?@�@AB�BC�CD�DE�E FG
Time

H�IKJML

(c)

NO

PQ RS TU VW XY Z[\] ^_ `a bc de fg hi jk lm no pq rs tu vw xy z{ |} ~� �� �� �� �� �� �� �� �� �� �� Time

�����M� (d)

���� �� � ¡¢ £¤ ¥¦ §¨ ©ª «¬ ­®
¯° ±² ³´ µ¶ ·¸ ¹º»¼»½¾¼¾¿À¼ÀÁ¼ÁÂ¼ÂÃ¼Ã ÄÅ ÆÇ ÈÉ ÊË ÌÍ ÎÏ ÐÑ ÒÓ ÔÕ Ö× ØÙ ÚÛ

ÜÝ
Þß Time

àâá�ãMä

Most often, åçæéèKê and ëìæéèKê are nonzero only at a small finite set of times, say í to îðïòñ . In
such cases, their convolution óôæéèKê is nonzero only from í to õöî÷ïøõ :

óìæúùûêýü þ ÿ������� å æ � ê ë æúù ï � ê if í	� ù
� î÷ï ñÿ���
����� �
������ åçæ � ê ëìæúù ï � ê if î�� ù
� õöîòïøõ
This basic primitive is very important to compute efficiently. Each ëìæ � ê takes � æ î ê steps2, so
it looks like the overall computation time must be � æ î��Mê . Remarkably, the fast Fourier trans-
form does it in just � æ î������ î ê steps, and this speedup from quadratic to almost linear time
has revolutionized the practicality of digital signal processing.

The first step towards a more efficient algorithm is to reinterpret the problem as one
involving polynomials. If we think of the å æ � ê as coefficients of a polynomial

ÿ � å � � �
, and

likewise the ëìæ � ê , then the output signal óìæéèKê is given by the coefficients of their product,! ��
��" ����� å �#� � $ è
! ��
��" ����� ë � � �%$ ü � ��
 �" ����� ó �&� �('

2For simplicity we are assuming here, and for the rest of this chapter, that all coefficients are real numbers,
and that basic arithmetic operations on reals take unit time. In general, if the numbers involved are large, the
various time bounds we obtain will need to be multiplied by)+*�,.-0/214365 , where 3 is the number of bits of precision.

2

In other words, convolution can be reformulated as polynomial multiplication. We will hence-
forth tackle the problem in this particular guise, letting the rich structure of polynomials
guide us through various twists and turns towards a solution. In fact, it will soon become
apparent that this chapter is all about switching representations.

2 Polynomial multiplication

2.1 An alternative representation of polynomials
The product of two degree- � polynomials � ��� � � ��� 9�� 5 � 91?3?3? 9������ � and 	 ����� � % � 9 % 5 � 9?3?3? 9 % �
� � has degree < � :

� ������� � ��� � 	 ��� ��� & � 9 & 5 �@9 ?3?3? 9 &��
�
� �
� #
Its ����� coefficient is &�� ��� ���� � � � % � �� , and takes � � � � steps to compute. We could obtain

� �����
by computing these coefficients one-by-one, but this is no different from the quadratic-time
baseline scheme for convolution.

A radically different approach is suggested by a special property of polynomials.

Fact. A degree- � polynomial is uniquely characterized by its values at any � 9 +
distinct points.

We will later see why this is true, but for the time being it gives us an alternative representa-
tion of polynomials. Fix any distinct points ��� �3#3#3# �
��� . We can specify a degree- � polynomial
� ����� either by

(1) its coefficients ���4� � 5 �3#3#3#.� ��� ; or

(2) the values � �����.��� � ��� 5 ���3#3#3#4� � ����� � .
Going from the first representation to the second is merely a matter of evaluating the polyno-
mial at the chosen points. Going in the reverse direction is called interpolation.

Interpolation

Coefficient representation���! "�$#% '&!&'&' (��) Value representation*,+.- �
/" *,+.- #0/" !&!&'&' *1+2-)
/
Evaluation

This alternative representation gives us another route to
� ����� : since it has degree 3 < � ,

we only need its value at any < � 9 + points, and its value at any given point is easy enough to
figure out, just � ����� times 	 ��� � . The resulting algorithm is shown in Figure 2.1.

The correctness of this high-level approach is a direct consequence of the equivalence of
the two polynomial representations. What is not so immediate is its efficiency. Selection and
multiplication are no trouble at all, just linear time. But how about evaluation? We know that
evaluating a polynomial of degree �43 � at one point takes � ����� steps, and so we would expect� points to take � ��� � � steps. The FFT does it in � ���65.798(��� time, for a particularly clever choice
of ��� �3#3#3# �
��: 5 in which the computations required by the individual points overlap with one
another and can be shared.

3

Figure 2.1 Polynomial multiplication
function PolyMult(� �)
Input: Coefficients of two polynomials � ��� ��� 	 ��� � , of degree �
Output: Their product

� � � ? 	
Selection

Pick any points � �4�
� 5 �3#3#3#.�
��: 5 , where � � < � 9 +
Evaluation

Compute � ����� ��� � ��� 5 ���3#3#3#.� � ��� : 5 �
and 	 ��� � ��� 	 ��� 5 ���3#3#3#4� 	 ��� : 5 �

Multiplication
Compute

� ����� �(� � ����� � 	 �����'� for all � � 02�3#3#3#.�	�=� +
Interpolation

Interpolate to recover
� ������� &�� 9 & 5 �;9 ?3?3? 9 &��
�
� �
�

2.2 Evaluation by divide-and-conquer
Here’s an idea for how to pick the � points at which to evaluate a polynomial � ����� of degree
3 �=� + . If we choose them to be positive-negative pairs, that is,

� ��� � � � 5 �3#3#3#.� � � :�� � 5 �
then the computations required for each � ��� � � and � �!� � � � overlap a lot, because the even
powers of � � coincide with those of � � � .

To investigate this, we need to split � ��� � into its odd and even powers, for instance
� 9��9�;9	�$� � 9
<$��
 9 ��� 9 + 0 ��
�� � � 9��$� � 9 ���4� 9 � ��� 9 <$� � 9 + 0 ���4��#

Notice that the terms in parentheses are polynomials in � � . More generally,

� ����� � ��� ��� � � 9 � ��� ��� � ���
where ��� ��? � , with the even-numbered coefficients, and ��� ��? � , with the odd-numbered coeffi-
cients, are polynomials of degree 3 � - < � + (assume for convenience that � is even). Given
paired points

� � � , the calculations needed for � ��� � � can be recycled towards computing � �!� � � � :
� ��� � �6� � � ��� �� � 9 � � � � ��� �� �

� �!� � � �6� ��� ��� �� � � � � ��� ��� �� ��#
In other words, evaluating � ��� � at � paired points

� ��� �3#3#3#.� � � :�� � 5 reduces to evaluating
��� ����� and ��� ����� (which each have half the degree of � ��� �) at just � - < points, �

�� �3#3#3#4�
� �:�� � 5 .
Evaluate:

Equivalently:

�������
degree ���! �"

�$#%�����'&'�)(������
degree ���+*-,. /" at:

at: �10 23�54 �54 67686

67686��90

 �1:�; 97< 42$�1:�; 97< 4

��9 4 ��9:�; 97< 4

2$�10

4

Figure 2.2 Reverse-engineering a good initial set of points.

� � ���

� �

� �

� �

� �� �

...

The original problem of size � is in this way recast as two subproblems of size � - < , followed by
some linear time arithmetic. If we could recurse, we would get a divide-and-conquer procedure
with running time / ������� < / ��� - <>��9 � �������
which is � ���65.798 ��� , exactly what we want.

But we are not yet done. For the divide-and-conquer to work, we need the points to be
paired at every level of the recursion, not just initially. One way to arrange this is to “reverse-
engineer” it. Here’s what we mean. At the very bottom of the recursion, we are left with a
single point. This point might as well be 1, in which case the level above it must consist of its
square roots,

��� + � � + (Figure 2.2). The next level up then has
� � 9 + � � + as well as the

complex numbers
� � � + � � � , where � is the imaginary unit. By continuing in this manner,

we eventually reach the initial set of � points. Perhaps you have already guessed what they
are – the � ��� complex roots of unity, that is, the � complex solutions to the equation �

: � + .
Figure 2.3 is a pictorial review of some basic facts about complex numbers. The third panel

of this figure introduces the � ��� roots of unity: the complex numbers + �	� �	� � �3#3#3#.�	� : 5 , where
����
 �
� � �": (in polar coordinates, � + � <�� - ���). If � is even,

1. the � ��� roots are paired, �
:�� ��� � � ��� � ; and

2. squaring them produces the ��� - <>� : � roots of unity.

Therefore, if we start with these numbers for some � which is a power of two, then at succes-
sive levels of recursion we will have the ��� - < � � ��� roots of unity, for � � 02� + � <:� � �3#3#3# . All these
sets of numbers are paired, and so our divide-and-conquer, as shown in the last panel, works
perfectly. The resulting algorithm is the fast Fourier transform (Figure 2.4).

Incidentally, why are we allowed to assume that � is a power of two? Well, our polynomial
multiplication scheme lets us choose any value of � we like, as long as it is more than < � .
For the sake of efficiency we would like to keep � small, but fortunately we can always find a
power of two between < � 9 + and � � (can you see why?). This modest increase in the input size
is a small cost for the tremendous convenience it brings.

5

Figure 2.3 The complex roots of unity are ideal for our divide-and-conquer scheme.

real

imaginary

�
�

�

�

The complex plane
�����
	���
 is plotted at position � ������� .
Polar coordinates: rewrite as ����� ��������� 	�
 �! #"$� �%�&�('()+* ,
denoted � �(� � � ., length �-�/. �102	3�40 ,, angle �6587 9 ��:(;<� : ���1�=� �>��?(�(� �! #"$� ���@?A�
, � can always be reduced modulo :(; .

Examples:

Number BDC
 EF	3EG

Polar coords �HC �H;<� �IC �H;J?G:�� � E . :K�!;J?ALK�

M NPOQNSR�TVUWO�XYU�R[Z

M N O T+U O ZM N R TVU R Z
Multiplying is easy in polar coordinates

� �A\G� � \��$] � � 0 � � 0 �^� � �A\�� 0 � � _	 � 0 � .
For any ��� � �(� � � ,, B ��� � �(� � 	`;<� since BDC � �IC �H;<� ;, if � is on the unit circle (i.e. �D� C), then �Ka6� �HC �Hb � � .

cSdegfih

angle
c[de

j de
The � ��� complex roots of unity

Solutions to the equation �Kak� C .
By multiplication rule: solutions are �l� �IC � � � , for � a mul-
tiple of :(;J?(b . (Shown here for bm� C@n .)
For even b :, These numbers are paired., Their squares are the � bJ?o:o�!aop roots of unity, shown here
with boxes around then.

Divide-and-conquer step

divide and
conquer

still
paired

paired

Evaluate qsrut(v
at wyx z roots
of unity

Evaluateq|{}rut(vP~�q|�HrutAv
at r�wG����vV�}�
roots

(w is a power of 2)

6

Figure 2.4 The fast Fourier transform (polynomial formulation)
function FFT(� �	�)
Input: Coefficient representation of a polynomial � ��� �

of degree 3 �=� + , where � is a power of two
� , an � ��� root of unity

Output: Value representation � � � � ���3#3#3#.� � � � : 5 �
if ��� + then return � � + �
rewrite � ����� � ��� ��� � � 9 � ��� ��� � �
FFT(� � �	� �) evaluates � � at even powers of �
FFT(��� �	� �), likewise for � �
for � � 0 to � � + :

compute � � � � �(� ��� � � � � � 9 � � ��� � � � � �
return � � � � ���3#3#3#.� � � � : 5 �

2.3 Interpolation
We are well on our way towards efficiently realizing the grand scheme of Figure 2.1. The last
remaining piece of the puzzle is interpolation, the inverse of evaluation:

Interpolation

Coefficient representation���! "�$#% '&!&'&' (�����9# Value representation*,+.- �
/" *,+.- #0/" !&!&'&' *1+2- ��� #0/
Evaluation

Our two polynomial representations are vectors of the same length; denote the coefficient
representation simply by � , and the value representation by �� . The FFT takes us from � to
�� when the points � � �	� are complex roots of unity,

�� � FFT � � �	� ��#
For the reverse direction, here’s a crazy idea, an idle shot in the dark: how about trying
FFT � �� �	� 5 � ? Amazingly, as we will very soon see, it works!

� � +� FFT � �� �	� 5 ��#
Interpolation is thus solved in the most simple and elegant way we could possibly have hoped
for – using the same FFT algorithm, but called with � 5 in place of � ! This might seem like a
miraculous coincidence, but it will make a lot more sense when we recast our polynomial oper-
ations in the language of linear algebra. Meanwhile, our � ���65�798 ��� polynomial multiplication
algorithm (Figure 2.1) is now fully specified.

2.4 A matrix reformulation
To get a clearer view of interpolation, let’s explicitly set down the relationship between our two
representations for a polynomial � ����� of degree 3 ��� + . They are both vectors of � numbers,

7

and one is a linear transformation of the other:����
�
� �����.�
� ��� 5 �

...
� ����: 5 �

�����
� �

����
�
+ � � � �� ?3?3? � : 5�+ � 5 � � 5 ?3?3? � : 55

...+ � : 5 � �: 5 ?3?3? � : 5: 5

�����
�

����
�
���� 5
...��: 5

�����
� #

Call the matrix in the middle � . Its specialized format – a Vandermonde matrix – gives it
many interesting properties, of which the following (see exercise) is particularly relevant to
us.

If ��� �3#3#3#4�
� : 5 are distinct numbers then � is invertible.

The existence of � 5 allows us to invert the matrix equation above, so as to express coeffi-
cients in terms of values. In brief,

Evaluation is multiplication by � , while interpolation is multiplication by � 5 .
This reformulation of our polynomial operations reveals their essential nature more clearly.

Among other things, it finally justifies an assumption we have been making throughout, that
� ����� is uniquely characterized by its values at any � points – in fact, we now have an ex-
plicit formula which will give us � ����� in this situation. Vandermonde matrices also have the
distinction of being quicker to invert than more general matrices, in � ��� � � time instead of
� ���
 � . However, we need to do interpolation a lot faster than this, so once again we turn to
our special choice of points – the complex roots of unity.

2.5 Interpolation resolved
In linear algebra terms, the FFT multiplies an arbitrary � -dimensional vector – which we
were calling the coefficient representation – by the �	�=� matrix

� :�� � �(�
�����������
�

+ + + ?3?3? ++ � � � ?3?3? � : 5+ � � � � ?3?3? � ��
 : 5
�
...+ � � � � � ?3?3? �
 : 5
� �
...+ �
 : 5
� � ��
 : 5
� ?3?3? �
 : 5
�
 : 5
�

������������
�

� � row for �
� � +� � �� � � �

...� � � �

...� � � : 5
where � is any complex � ��� root of unity, and � is a power of two. (Notice how simple this
matrix is to describe: its � � � � � ��� entry is �

� �
.) We now examine the geometry of this transfor-

mation, through which it will become clear that the inverse of � : looks a lot like � : itself:

� :�� � � 5 � +� � :�� � 5 ��#
But �

 5 is also an � ��� root of unity, and this is why interpolation – or equivalently, multipli-
cation by � : � � � 5 – is itself just a single FFT.

8

Figure 2.5 The FFT takes points in the standard coordinate system, whose axes are shown
here as � 5 �
� � �
�
 , and rotates them into the Fourier basis, whose axes are the rows of � :�� � � ,
shown here as � 5 � � � � �
 . For instance, points in direction � 5 gets mapped into direction � 5 .

FFT

���

������
� �

� �
� �

For simplicity, take � to be 	�

������� and abbreviate � �
� ��� by � . It is helpful to think of the

rows of � as vectors in � � , and to understand their spatial layout: specifically, the angles
between them. The angle between any two vectors ��� � �����! ! ! ��"� ��#%$ � and &'� � &(���! ! !)�"& ��#%$ � in
� � is a function of their inner product

�+*,&.-/�0�1�2&.-�43 � $ &.-$ 3 *!*!* 3 � ��#%$ &5-��#%$ �
where 6 - denotes the complex conjugate3 of 6 . This is maximized when the vectors lie in the
same direction, and is zero when the vectors are orthogonal (at right angles) to each other.

Taking the inner product of rows 7 and 8 of matrix � , we get a geometric series
9 3 �;: #=< 3 �
?> : #=<!@ 3 *!*!* 3 � >A��#%$B@C> : #=<!@

The usual formula (see exercise) tells us that its sum is D if 7E�F8 and is zero otherwise. In
other words, the rows of the matrix are orthogonal to each other. They can therefore be thought
of as the axes of an alternative coordinate system, which is often called the Fourier basis. The
effect of multiplying a vector by � is to rotate it from the standard basis, with the usual set of
axes, into the Fourier basis, which is defined by the rows of � (Figure 2.5). The FFT is thus
a change of basis, or to put it more geometrically, a rigid rotation.

The inverse of � is the opposite rotation, from the Fourier basis back into the standard
basis. Expressing the orthogonality of � ’s rows in the form �G� - �HD�I , we see that this
reverse transformation is

� #%$ � $� � -
Let’s take a closer look at � - . Its

� 7(�J8=�LK�M entry is the complex conjugate of the corresponding
entry of � , which means it must be �N# : < . Whereupon � - �O� �

� �P#%$2� . Interpolation, the final
piece of our polynomial multiplication algorithm, is therefore just multiplication by � �

� �P#%$?� ,
a single FFT operation.

Let’s step back and take a geometric view of the overall algorithm. The key idea is that
the task we need to perform, polynomial multiplication (or equivalently, convolution), is a

3For a single complex number QSRUTWVJXZY , its complex conjugate Q�[is TWV2\(X]Y . The complex conjugate of a vector (or
matrix) is obtained by taking the complex conjugates of all of its entries.

9

lot easier in the Fourier basis than in the standard basis. Therefore, we first rotate vectors
into the Fourier basis (evaluation), then perform the task (multiplication), and finally rotate
back (interpolation). The initial vectors are coefficient representations, while their rotated
counterparts are value representations. To efficiently switch between these, back and forth, is
the province of the FFT. We now take a closer look at how this is achieved.

3 The definitive algorithm

The FFT multiplies vectors by the matrix � : � � � , whose � � � � � ��� entry (starting row- and
column-count at zero) is � � � . The potential for divide-and-conquer becomes apparent when� ’s columns are segregated into evens and odds.

row �
���

������
���
	��

...

���
...���
	
�

� �����

� ����� � � ��� � �����

� � � � �����

�������column

� ���! "�

�#�

���
	��

���������� ���$
...

% � �

�

�

Here we have simplified entries using �
:�� � � � + and � : � + . Notice that the top left � - < � � - <

submatrix is simply � :�� � � � � � . The other submatrices are closely related. Therefore the final
product is the vector

&�'&�(
...&�)
*+(
&�'&�(
...&�)
*+(

,).-�(

,).-�(
&
/&�0
...&�)1*�/
&
/&�0
...&�)1*�/

,)2-�(

,)2-�(

35476

8 4769 3;:!<�=

row
9

This leads to the definitive FFT algorithm of Figure 3.1.

4 The fast Fourier transform unraveled

Through all our discussions so far, the fast Fourier transform has remained tightly cocooned
within the strictures of a divide-and-conquer formalism. To fully expose its structure, we need
to unbind it, to unravel the recursion.

The FFT decomposes an input vector into its even- and odd-numbered components. On an
input of length eight, this results in the following pattern of recursion.

10

Figure 3.1 The fast Fourier transform
function FFT(� �	�)
Input: A vector � � �8� � � � 5 �3#3#3#4� � : 5 � , for � a power of two

A primitive � ��� root of unity, �
Output: � :�� � �:�
if ��� + then return ���� �4��� 5 �3#3#3# ��� :�� � 5 � ������� �	�8��� � � � �3#3#3#.� ��: � ���	� � ����	� � ���	� 5 �3#3#3# ���	�:�� � 5 � ������� �	�8� 5 � �
 �3#3#3#.� ��: 5 ���	� � �
for � � + to � - < � + :
 � ��� � 9 � � ����

 � � :�� � ��� � � � � � ��
return �

 � ��
 5 �3#3#3#.��
�: 5 �

���������������������

��������� � � ��� � � � ��� �

��� � � � � ��� ��� ��������

�� ���� � ��������� �

�� ����!�"��� � �������������"������� � �"���

� ��� �

The intermediate computations are extremely simple. What happens with �8� � � � � � , for
instance, is shown below on the left.

#�$

#"%

#�$�&'#"%

#�$�&)(% #"% (* #�$,+-#"%)

FFT ./. # $�0 # %2130 (% 1

4

4

56
78

9�:
9�; ;

This kind of computational structure is called a butterfly. The FFT is made up entirely of
these, so it will be convenient to instead use the shorthand depicted above on the right. The
edges are wires carrying complex numbers from left to right. A weight of � means “multiply
the number on this wire by � � ”. And the numbers coming into a node get added up.

When written in terms of these circuit elements, the divide-and-conquer step has a very
simple form. Here is how a problem of size � is reduced to two subproblems of size � - < (for
clarity, one pair of outputs � � � � 9 � - <>� is singled out):

11

������

���
���
	���

����

����� �

�

���������

FFT � (input: ������������� ����� �)

FFT ��!"�

FFT ��!"�...

...

� ���#�

The complete FFT circuit for a length-eight vector is shown in Figure 4.1. Notice the following.

1. For $ inputs there are %'&)(+*,$ levels, each with $ nodes.

2. There is a unique path between each input -/. and each output 0214365)7 .
This path is most easily described using the binary representations of 8 and 9 (shown in the
figure for convenience). There are two edges out of each node, one going up (the : -edge) and
one going down (the ; -edge). To get to 02143 5 7 from any input node, simply follow the edges
specified in the bit representation of 9 , starting from the leftmost bit. (Can you similarly
specify the path in the reverse direction?)

3. On the path between -#. and 02143 5 7 , the labels add up to 8<9�=>&+?>@ .

Since 3BADCE; , this means that the contribution of input - . to output 0F14365)7 is - . 3 . 5 , and
therefore the circuit correctly the values of polynomial 0F14GH7 .

4. And finally, the circuit is a natural for parallel computation.

12

Figure 4.1 The fast Fourier transform circuit.

��

��

��

��

�	

�

�

�� ��

��

��

��

��

��

��

�� !

"#

$%

&'

()

*+

,-

./

021

043

025

026

087

029

0;:

<>=@? 7BA

<>=@? 5 A

<>=@?DC A

<>=@? 3 A

<>=@? 9 A

<>=@? 6 A

<>=@? : A

0 C

<>=@? 1 A

7

3

3

3

3

6

6 :

3

3

5

5
6

C

5
9

3

1E1F1

7 1F1

1 7 1

7E7 1

1E1 7

7 1 7

1 7F7

7E7F7 7E7E7

7E7 1

7 1 7

7 1E1

1 7E7

1 7 1

1E1 7

1E1E1

13

