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7.3.6. Show that the following problem is A"P-complete. DOMINATING SET: Given
a directed graph G and an integer B, is there a set S of B nodes of G such
that for every node u ¢ S of G, there is a node v € S such that (v,u) is an
edge of G.

7.3.7. Call a nondeterministic finite automaton M = (K,X, A s, F) acyclic if
there is no state ¢ and string w # e such that (¢, w) F3; (¢,¢). Show that
the problem of telling whether two acyclic nondeterministic finite automata
are inequivalent is N"P-complete.

7.4 1 COPING WITH NP-COMPLETENESS

Problems do not go away when they are proved AN'P-complete. But once we
know that the problem we are interested in is an N"P-complete problem, we are
more willing to lower our sights, to settle for solutions that are less than perfect,
for algorithms that are not always polynomial, or do not work on all possible
instances. In this section we review some of the most useful maneuvers of this
sort.

Special Cases

Once our problem has been shown NP-complete, the first question to ask is
this: Do we really need to solve this problem in the full generality in which it
was formulated —and proved N'P-complete? NP-completeness reductions often
produce instances of the problem that are unnaturally complex. Perhaps what
we really need to solve is a more tractable special case of the problem.

For example, we have already seen that there is an important special case
of SATISFIABILITY that can be easily solved efficiently: 2-SATISFIABILITY (recall
Section 6.3). If all instances of SATISFIABILITY that we must solve have clauses
of this kind, then the fact that the general problem is N"P-complete is rather
irrelevant. But often a special case of interest turns out to be itself N'P-complete
—for example, 3-SATISFIABILITY is such a case, recall Theorem 7.2.3. We next
see another example.

Example 7.4.1: Most problems involving undirected graphs become easy when
the graph is a tree —that is to say, it has no cycles, see Figure 7-12. Looking
back at our collection of N"P-complete graph problems, HAMILTON CYCLE is of
course trivial in trees (no tree has a cycle, Hamilton or otherwise), but so is
HAMILTON PATH —a tree has a Hamilton path only if it is a Hamilton path.
The CLIQUE problem also becomes trivial —no tree can have a clique with more
than two nodes.

The INDEPENDENT SET problem is also easy when the graph is a tree. The
method used for its solution takes advantage of the “hierarchical structure” of
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trees. It is often useful in a tree to pick an arbitrary node and designate it as
the root (see Figure 7-12); once this has been done, each node u in the tree
becomes itself the root of a subtree T'(u) —the set of all nodes v such that the
(unique) path from v to the root goes through u; see Figure 7-12. Then problems
can be solved bottom up, by going from the leaves (subtrees with one node) to
larger and larger subtrees, until the whole tree (the subtree of the root) has
been dealt with. For each node u we can define the set of its children C'(u) —the
nodes in its subtree that are adjacent to it, excluding u itself— and its set of
grandchildren G(u) —the children of its children. Naturally, these sets could be
empty. For example, in Figure 7-12, the root, denoted r, has two children and
five grandchildren. Nodes with no children are called leaves.
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Figure 7-12

The size of the largest independent set of the tree can now be found by
computing, for each node u, the number I(u), defined to be the size of the
largest independent set of T'(u). It is easy to see that the following equation

holds:
I(u) =max{ Y  I(v), 1+ I(u)} (2)
veC (u) vEG(u)

What this equation says is that, in designing the largest independent set of T'(u),
we have two choices: Either (this is the first term in the max) we do not put
u into the independent set, in which case we can put together all maximum
independent sets in the subtrees of its children, or (and this is the second term)
we put u in the independent set, in which case we must omit all its children, and
assemble the maximum independent sets of the subtrees of all its grandchildren.

It is now easy to see that a dynamic programming algorithm can solve the
INDEPENDENT SET problem in the special case of trees in polynomial time. The
algorithm starts at the leaves (where I(u) is trivially one) and computes 7(u) for
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larger and larger subtrees. The value of I at the root is the size of the maximum
independent set of the tree. The algorithm is polynomial, because for each node
u, all we have to do is compute the expression in (2), which only takes linear
time. For example, in the tree of Figure 7-12, the values of I(u) are shown in
parentheses. The largest independent set of the tree has size 14.

Needless to say, the closely related NODER COVER problem can also be
solved the same way (recall the reductions between NODE COVER and INDEPEN-
DENT SET). So, if the graphs we are interested in happen to be trees, the fact
that NODE COVER and INDEPENDENT SET are N'P-complete is irrelevant. Many
other A"P-complete problems on graphs are solved by similar algorithms when
specialized to trees, see for example Problem 7.4.1.$

Approximation Algorithms

When facing an A"P-complete optimization problem, we may want to consider
algorithms that do not produce optimum solutions, but solutions guaranteed to
be close to the optimum. Suppose that we wish to obtain such solutions for
an optimization problem, maximization or minimization. For each instance z
of this problem, there is an optimum solution with value opt(z); let us assume
that opt(z) is always a positive integer (this is the case with all optimization
problems we study here; we can easily spot and solve instances in which opt 1s
7€10).

Suppose now that we have a polynomial algorithm A which, when presented
with instance z of the optimization problem, returns some solution with value
A(z). Since the problem is AP-complete and A is polynomial, we cannot realis-
tically hope that A(z) is always the optimum value. But suppose that we know
that the following inequality always holds:

lopt(z) — A(2)]

<
opt(z) =6

where ¢ 1s some positive real number, hopefully very small, that bounds from
above the worst-case relative error of algorithm A. (The absolute value in this in-
equality allows us to treat both minimization and maximization problems within
the same framework.) If algorithm A satisfies this inequality for all instances z
of the problem, then it is called an e-approximation algorithm.

Once an optimization problem has been shown to be AP-complete, the fol-
lowing question becomes most important: Are there e-approximation algorithms
for this problem? And if so, how small can € be? Let us observe at the outset
that such questions are meaningful only if we assume that P # NP, because, if
P = NP, then the problem can be solved exactly, with ¢ = 0.

All N'P-complete optimization problems can therefore be subdivided into
three large categories:
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(a) Problems that are fully approximable, in that there is an e-approximate
polynomial-time algorithm for them for all € > 0, however small. Of the
N'P-complete optimization problems we have seen, only TWO-MACHINE
SCHEDULING (in which we wish to minimize the finishing time D) falls
into this most fortunate category.

(b) Problems that are partly approximable, in that there are e-approximate
polynomial-time algorithms for them for some range of €’s, but —unless of
course P = N'P— this range does not reach all the way down to zero, as
with the fully approximable problems. Of the AN"P-complete optimization
problems we have seen, NODE COVER and MAX SAT fall into this interme-
diate class.

(c) Problems that are inapproximable, that is, there is no e-approximation
algorithm for them, with however large ¢ —unless of course P = N'P. Of
the N"P-complete optimization problems we have seen in this chapter, un-
fortunately many fall into this category: the TRAVELING SALESMAN PROB-
LEM, CLIQUE, INDEPENDENT SET, as well as the problem of minimizing the
number of states of a deterministic automaton equivalent to a given regu-
lar expression in output polynomial time (recall the corollary to Theorem

7.3.8).

Example 7.4.2: Let us describe a l-approximation algorithm for NODE COVER
—that is to say, an algorithm which, for any graph, returns a node cover that is
at most twice the optimum size. The algorithm is very simple:

C:=0
while there is an edge [u, v] left in G do
add u and v to (', and delete them from GG

For example, in the graph in Figure 7-13, the algorithm might start by
choosing edge [a,b] and inserting both endpoints in C'; both nodes (and their
adjacent edges, of course) are then deleted from G. Next [e, f] might be chosen,
and finally [g, h]. The resulting set C' is a node cover, because each edge in G
must touch one of its nodes (either because it was chosen by the algorithm, or
because it was deleted by it). In the present example, C' = {a, b, ¢, f, g, h}, has
six nodes, which is at most twice the optimum value —in this case, four.

To prove the “at most twice” guarantee, consider the cover C' returned by
the algorithm, and let C be the optimum node cover. |C] is exactly twice the
number of edges chosen by the algorithm. However, these edges by the very way
they were chosen, have no vertices in common, and for each of them at least
one of its endpoints must be in €' —because C' is a node cover. It follows that
the number of edges chosen by the algorithm is no larger than the optimum set
cover, and hence |C| < 2 -|C|, and this is indeed a 1-approximation algorithm.
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Figure 7-13

Can we do better? Depressingly, this simple approximation algorithm is the
best one known for the NODE COVER problem. And only very recently have we
been able to prove that, unless P = NP, there is no c-approximation algorithm
for NODE COVER for any € < .$

Example 7.4.3: However, for TWO-MACHINE SCHEDULING, there is no limit to
how close to the optimum we can get: For any € > 0 there is an e-approximation
algorithm for this problem.

This family of algorithms is based on an idea that we have already seen:
Recall that the PARTITION problem can be solved in time O(nS) (where n is the
number of integers, and S is their sum; see Section 6.2). Tt is very easy to see
that this algorithm can be rather trivially adapted to solve the TWO-MACHINE
SCHEDULING (finding the smallest D): The B(i) sets are extended to include
sums up to S (not just up to H = %S) The smallest sum in B(n) that is > %S
is the desired minimum D.

One more idea is needed to arrive at our approximation algorithm: Consider
an instance of TWO-MACHINE SCHEDULING with these task lengths

45362, 134537, 85879,56390, 145627, 197342, 83625, 126789, 38562, 75402,
with n = 10, and S ~ 10°. Solving it by our exact @(nS) algorithm would cost
us an unappetizing 107 steps. But suppose instead that we round up the task
lengths to the next hundred. We obtain the numbers

45400, 134600, 85900, 56400, 145700, 197400, 83700, 126800, 38600, 75500,

which is really the same as

454,1346,859,564,1457,1974, 837, 1268, 386, 755,
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(normalizing by 100); thus we can now solve this instance in about 10° steps.
By sacrificing a little in accuracy (the optimum of the new problem is clearly
not very far from the original one), we have decreased the time requirements a
hundredfold!

It 1s easy to prove that, if we round up to the next kth power of ten, the
difference between the two optimal values is no more than n10¥. To calculate the
relative error, this quantity must be divided by the optimum, which, obviously,

can be no less than % We have thus a %ﬁ—approximation algorithm, whose

running time is O(%). By setting 2%;0)6 equal to any desirable € > 0, we arrive

at an algorithm whose running time is 0(%) —certainly a polynomial.{»

Example 7.4.4: How does one prove that a problem is inapproximable (or not
fully approximable)? For most optimization problems of interest, this question
had been one of the most stubborn open problems, and required the development
of novel ideas and mathematical techniques (see the references at the end of this
chapter). But let us look at a case in which such a proof is relatively easy, that
of the TRAVELING SALESMAN PROBLEM.

Suppose that we are given some large number ¢, and we must prove that,
unless P = NP, there is no c-approximation algorithm for the TRAVELING
SALESMAN PROBLEM. We know that the HAMILTON CYCLE problem is NP-
complete; we shall show that, if there is an e-approximation algorithm for the
TRAVELING SALESMAN PROBLEM, then there is a polynomial-time algorithm
for the HAMILTON CYCLE problem. Let us start with any instance G of the
HAMILTON CYCLE problem, with n nodes. We apply to it the simple reduction
from HAMILTON CYCLE to TRAVELING SALESMAN PROBLEM (recall the proof
of Theorem 7.3.4), but with a twist: The distances d;; are now the following
(compare with the proof of Theorem 7.3.4):

0 if i = j;
di; = { 1 if (vi,vj) € G,

2+ ne otherwise.
The instance constructed has the following interesting property: If G has a
Hamilton cycle, then the optimum cost of a tour is n; if, however, there 1s no
Hamilton cycle, then the optimum cost is greater than n(1 + ¢) —because at
least one distance 2 + ne must be traversed, in addition to at least n — 1 others
of cost at least 1.

Suppose that we had a polynomial-time e-approximation algorithm A for

the TRAVELING SALESMAN PROBLEM. Then we would be able to tell whether G
has a Hamilton cycle as follows: Run algorithm A on the given instance of the
TRAVELING SALESMAN PROBLEM. Then we have these two cases:
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(a) TIf the solution returned has cost > n(1 4 ¢) + 1, then we know that the
optimum cannot be n, because in that case the relative error of A would
have been at least

[n(1+¢)+1—n|
n > €

bl

which contradicts our hypothesis that A is an e-approximation algorithm.
Since the optimum solution is larger than n, we conclude that G has no
Hamilton cycle.

(b) If, however, the solution returned by A has cost < n(1 + ¢), then we know
that the optimum solution must be n. This is because our instance was
designed so that it cannot have a tour of cost between n + 1 and n(1 + ¢).
Hence, in this case G has a Hamilton cycle.

It follows that, by applying the polynomial algorithm A on the instance of
the TRAVELING SALESMAN PROBLEM that we constructed from G in polynomial
time, we can tell whether G has a Hamilton cycle —which implies that P = AP.
Since this argument can be carried out for any € > 0, however large, we must
conclude that the TRAVELING SALESMAN PROBLEM is inapproximable.{

Ways of coping with AN P-completeness often mix well: Once we realize
that the TRAVELING SALESMAN PROBLEM is inapproximable, we may want to
approrimate special cases of the problem. Indeed, let us consider the special case
in which the distances d;; satisfy the triangle inequality

dij < d;k + dkj for each 1, j, k,

a fairly natural assumption on distance matrices, which holds in most instances
of the TRAVELING SALESMAN PROBLEM arising in practice. As it turns out, this
special case is partly approximable, and the best known error bound is % What
is more, when the cities are restricted to be points on the plane with the usual
Euclidean distances —another special case of obvious appeal and relevance—
then the problem becomes fully approximable! Both special cases are known
to be N'P-complete (see Problem 7.4.3 for the proof for the triangle inequality

case).

Backtracking and Branch-and-Bound

All N"P-complete problems are, by definition, solvable by polynomially bounded
nondeterministic Turing machines; unfortunately we only know of exponential
methods to simulate such machines. We examine next a class of algorithms that
tries to improve on this exponential behavior with clever, problem-dependent
stratagems. This approach typically produces algorithms that are exponential
in the worst case, but often do much better.
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A typical N'P-complete problem asks whether any member of a large set
S of “candidate certificates”, or “candidate witnesses” (truth assignments, sets
of vertices, permutations of nodes, and so onrecall Section 6.4) satisfies certain
constraints specified by the instance (satisfies all clauses, is a clique of size K,
is a Hamilton path). We call these candidate certificates or witnesses solutions.
For all interesting problems, the size of the set Sy of all possible solutions is
typically exponentially large, and only depends on the given instance  (its size
depends exponentially on the number of variables in the formula, on the number
of nodes in the graph, and so on).

Now, a nondeterministic Turing machine “solving” an instance of this N'P-
complete problem produces a tree of configurations (recall Figure 6-3). Each
of these configurations corresponds to a subset of the set of potential solutions
So, call it S, and the “task” facing this configuration is to determine whether
there is a solution in S satisfying the constraints of z. Hence, Sy is the set
corresponding to the initial configuration. Telling whether S contains a solution
is often a problem not very different from the original one. Thus, we can see
each of the configurations in the tree as a subproblem of the same kind as the
original (this useful “self-similarity” property of A"P-complete problems is called
self-reducibility). Making a nondeterministic choice out of a configuration, say
leading to r possible next configurations, corresponds to replacing S with r sets,
S1,...,Sr, whose union must be S, so that no candidate solution ever falls
between the cracks.

This suggests the following genre of algorithms for solving NP-complete
problems: We always maintain a set of active subproblems, call it A; initially,
A contains only the original problem Sp; that is, A = {Sp}. At each point we
choose a subproblem from A (presumably the one that seems most “promising”
to us), we remove it from .4, and replace it with several smaller subproblems
(whose union of candidate solutions must cover the one just removed). This is
called branching.

Next, each newly generated subproblem is submitted to a quick heuristic
test. This test looks at a subproblem, and comes up with one of three answers:

(a) Tt may come up with the answer “empty,” meaning that the subproblem un-
der consideration has no solutions satisfying the constraint of the instance,
and hence it can be omitted. This event is called backtracking.

(b) It may come up with an actual solution of the original problem contained
in the current subproblem (a satisfying truth assignment of the original
formula, a Hamilton cycle of the original graph, etc.), in which case the
algorithm terminates successfully.

(c) Since the problem is N'P-complete, we cannot hope to have a quick heuristic
test that always comes up with one of the above answers (otherwise, we
would submit the original subproblem Sy to it). Hence, the test will often
reply “7” ) meaning that it cannot prove that the subproblem is empty, but it
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cannot find a quick solution in it either; in this case, we add the subproblem
in hand to the set A of active subproblems. The hope is that the test will
come up with one of the two other answers often enough, and thus will
substantially reduce the number of subproblems we will have to examine
—and ultimately the running time of the algorithm.

We can now show the full backtracking algorithm:

./4 = {SO}
while A is not empty do
choose a subproblem S and delete it from A
choose a way of branching out of S, say to subproblems Sy, ..., S,
for each subproblem S; in this list do
if test(S;) returns “solution found” then halt
else if test(.S;) returns “?" then add S; to A
return “no solution”

The backtracking algorithm terminates because, in the end, the subprob-
lems will become so small and specialized that they will contain just one can-
didate solution (these are the leaves of the tree of the nondeterministic compu-
tation); in this case the test will be able to decide quickly whether or not this
solution satisfies the constraints of the instance.

The effectiveness of a backtracking algorithm depends on three important
“design decisions:”

(1) How does one choose the next subproblem out of which to branch?
(2) How is the chosen subproblem further split into smaller subproblems?

(3) Which test is used?

Example 7.4.5: In order to design a backtracking algorithm for SATISFIABIL-
ITY, we must make the design decisions (1) through (3) above.

In SATISFIABILITY the most natural way to split a subproblem is to choose
a variable x and create two subproblems: one in which x = T, and one in
which z = 1. As promised, each subproblem is of the same sort as the original
problem: a set of clauses, but with fewer variables (plus a fixed truth assignment
for each of the original variables not appearing in the current subproblem). In
the x = T subproblem, the clauses in which x appears are omitted, and = 1is
omitted from the clauses in which it appears; exactly the opposite happens in
the x = L subproblem.

The question regarding design decision (2) is, how to choose the variable
z on which to branch. Let us use the following rule: Choose a wvariable that
appears in the smallest clause (if there are ties, break them arbitrarily). This is
a sensible strategy, because smaller clauses are “tighter” constraints, and may
lead sooner to backtracking. In particular, an empty clause is the unmistakable
sign of unsatisfiability.
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Now for design decision (1) —how to choose the next subproblem. In line
with our strategy for (2), let us choose the subproblem that contains the smallest
clause (again, we break ties arbitrarily).

Finally, the test (design decision (3)) is very simple:

if there is an empty clause, return “subprsblem is empty;”
if there are n® clauses, return “sslutisn fsund;”
stherwise return “7"

See Figure 7-14 for an application of the backtracking algorithm described
above to the instance

(xvyvz),(TVy),([TVe),(ZVe),(TVYVIE),

which we know is unsatisfiable (recall Example 6.3.3). As it turns out, this
algorithm 1s a variant of a well-known algorithm for SATISFIABILITY, known
as the Davis-Putnam procedure. Significantly, when the instance has at
most two literals per clause, the backtracking algorithm becomes exactly the
polynomial purge algorithm of Section 6.3.$

9t

“empty” “empty”

Figure 7-14

Example 7.4.6: Let us now design a backtracking algorithm for HAMILTON
CYCLE. In each subproblem we already have a path with endpoints a and b, say,
and going through a set of nodes T'C V — {a, b}. We are looking for a Hamilton
path from a to b through the remaining nodes in V, to close the Hamilton cycle.
Initially @ = b is an arbitrary node, and T' = (.

Branching is easy —we just choose how to extend the path by a new edge,
say [a, c], leading from a to a node ¢ ¢ T'. This node ¢ becomes the new value
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of a in the subproblem (node b is always fixed throughout the algorithm). We
leave the choice of the subproblem from which to branch unspecified (we pick
any subproblem from A). Finally, the test is the following (remember that in a
subproblem we are looking for a path from a to b in a graph G — T, the original
graph with the nodes in T deleted).

if G —T — {a,b} is disconnected, or if G — T has a degree-one node
other than a or b, return “subproblem is empty;”

if G — T is a path from a to b, return “solution found;"

otherwise return “7"

—@—

/>

Figure 7-15: Execution of backtracking algorithm for HAMILTON CYCLE on the
graph shown in the root. Initially both @ and b coincide with the dotted node.
In the leaf (backtracking) nodes the degree-one nodes are circled (in the middle
leaves there are many choices). A total of nineteen subproblems is considered.

The application of this algorithm to a simple graph is shown in Figure
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7-15. Although the number of partial solutions constructed may seem large
(nineteen), it is minuscule compared to the number of solutions examined by
the full-blown nondeterministic “algorithm” for the same instance (this number
would be (n — 1)! = 5,040). Needless to say, it is possible to devise more
sophisticated and effective branching rules and tests than the one used here.{

Determining the best design decisions (1) through (3) depends a lot not
only on the problem, but also on the kinds of instances of interest, and usually
requires extensive erperimentation.

Backtracking algorithms are of interest when solving a “yes-no” problem.
For optimization problems one often uses an interesting variant of backtracking
called branch-and-bound. In an optimization problem we can also think that
we have an exponentially large set of candidate solutions; however, this time
each solution has a cost! associated with it, and we wish to find the candidate
solution in Sy with the smallest cost. The branch-and-bound algorithm is in
general the one shown below (the algorithm shown only returns the optimal
cost, but it can be easily modified to return the optimal solution).

A :={Sp}, bestsofar:= co
while A is not empty do
choose a subproblem S and delete it from A
choose a way of branching out of S, say to subproblems Sy, ...,S,
for each subproblem S; in this list do
if |S;| = 1 (that is, S; is a complete solution) then update bestsofar
else if lowerbound(.S;) <bestsofar then add .S; to .A
return bestsofar

The algorithm always remembers the smallest cost of any solution seen so
far, initially co (performance often improves a lot if bestsofar is initialized to
the cost of a solution obtained by another heuristic). Every time a full solution
to the original problem is found, bestsofar is updated. The key ingredient of a
branch-and-bound algorithm (besides the design decisions (1) and (2) it shares
with backtracking) is a method for obtaining a lower bound on the cost of any
solution in a subproblem S. That is, the function lowerbound(S) returns a
number that is guaranteed to be less than or equal to the lowest cost of any
solutionin S. The branch-and-bound algorithm above will always terminate with
the optimal solution. This is because the only subproblems left unconsidered are
those for which lowerbound(S;) >bestsofar —that is, those subproblems of which
the optimal solution is provably no better than the best solution we have seen
so far.

t We shall assume that the optimization problem in question is a minimization

problem; maximization problems can be treated in a very similar way.
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Naturally, there are many ways of obtaining lower bounds (lowerbound(S) =
0 would usually do...). The point is that, if lowerbound(S) is a sophisticated
algorithm returning a value that is usually very close to the optimum solution
in S, then the branch-and-bound algorithm is likely to perform very well, that
18, to terminate reasonably fast.

Example 7.4.7: Let us adapt the backtracking algorithm we developed for
HAMILTON CYCLE to obtain a branch-and-bound algorithm for the TRAVELING
SALESMAN PROBLEM. As before, a subproblem S is characterized by a path from
a to b through a set T of cities. What is a reasonable lower bound? Here is
one idea: For each city outside T'U {a, b}, calculate the sum of its two shortest
distances to another city outside 7. For a and b, calculate their shortest distance
to another city outside 7. Tt is not hard to prove (see Problem 7.4.4) that the
half sum of these numbers, plus the cost of the already fixed path from a to b
through 7', is a valid lower bound on the cost of any tour in the subproblem S.
The branch-and-bound algorithm is now completely specified.

There are far more sophisticated lower bounds for the TRAVELING SALES-
MAN PROBLEM.

Local Improvement

Our final family of algorithms is inspired by evolution: What if we allow a
solution of an optimization problem to change a little, and adopt the new solution
if it has improved cost? Concretely, let Sy be the set of candidate solutions in
an instance of an optimization problem (again, we shall assume that it is a
minimization problem). Define a mneighborhood relation N on the set of
solutions N C Sy x Sy —it captures the intuitive notion of “changing a little.”
For s € Sy, the set {s' : (s,s’) € N} is called the neighborhood of s.

The algorithm is simply this (see Figure 7-16 for a suggestive depiction of
the operation of local improvement algorithms):

s :=initialsolution

while there is a solution s’ such that
N(s,s') and cost(s’) <cost(s) do: s := s’

return s

That is, the algorithm keeps improving s by replacing with a neighbor s’
with a better cost, until there is no s’ in the neighborhood of s with better cost;
in the latter case we say that s is a local optimum. Obviously, a local optimum
is not guaranteed to be an optimal solution —unless of course N = Sy x Sg.
The quality of local optima obtained and the running time of the algorithm
both depend critically on N: the larger the neighborhoods, the better the local
optimum; on the other hand, large neighborhoods imply that the iteration of
the algorithm (an execution of the while loop, and the ensuing search through
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the neighborhood of the current solution s) will be slower. Local improvement
algorithms seek a favorable compromise in this trade-off. As usual, there are no
general principles to guide us in designing a good neighborhood; the choice seems
very problem-dependent, even instance-dependent, and is best made through

experimentation.
/ i
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Figure 7-16: Once the neighborhood relation has been fixed, the solutions of
an optimization problem can be pictured as an energy landscape, in which local
optima are depicted as valleys. Local improvement heuristics jump from solution
to solution, until a local optimum is found.

local optima

Another issue that affects the performance of a local improvement algorithm
is the method used in finding s’. Do we adopt the first better solution we find in
the neighborhood of s, or do we wait to find the best? Is the longer iteration jus-
tified by the speed of descent —and do we want speedy descent anyway? Finally,
the performance of a local improvement algorithm also depends on the proce-
dure initialsolution. It is not clear at all that better initial solutions will result
in better performance —often a mediocre starting point is preferable, because it
gives the algorithm more freedom to explore the solution space (see Figure 7-16).
Incidentally, the procedure initialsolution should best be randomized —that 1s,
able to generate different initial solutions when called many times. This allows
us to restart many times the local improvement algorithm above, and obtain
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many local optima.

Example 7.4.8: Let us take again the TRAVELING SALESMAN PROBLEM. When
should we consider two tours as neighbors? Since a tour can be considered
as a set of m undirected inter-city “links,” one plausible answer is, when they
share all but very few links. Two 1s the minimum possible number of links
in which two tours may differ, and this suggests a well-known neighborhood
relation for the TRAVELING SALESMAN PROBLEM that we call 2-change (see
Figure 7-17). That is, two tours are related by N if and only if they differ in just
two links. The local improvement algorithm using the 2-change neighborhood
performs reasonably well in practice. However, much better results are achieved
by adopting the 3-change neighborhood; furthermore, it is reported in the
literature that 4-change does not return sufficiently better tours to justify the
increase in iteration time.

o<W

Figure 7-17

Perhaps the best heuristic algorithm currently known for the TRAVELING
SALESMAN PROBLEM, the Lin-Kernighan algorithm, relies on A-change,
a neighborhood so sophisticated and complex that it does not even fit in our
framework (whether two solutions are neighbors depends on the distances). As
its name suggests, A-change allows arbitrary many link changes in one step
(but of course, not all possible such changes are explored, this would make the
iteration exponentially slow).{

Example 7.4.9: In order to develop a local improvement algorithm for MAX
SAT (the version of SATISFIABILITY in which we wish to satisfy as many clauses
as possible; recall Theorem 7.2.4), we might choose to consider two truth as-
signments to be related by NV if they only differ in the value of a single variable.
This immediately defines an interesting, and empirically successful, local im-
provement algorithm for MAX SAT. It is apparently advantageous in this case to
adopt as s’ the best neighbor of s, instead of the first one found that is better
than s. Also, it has been reported that it pays to make “lateral moves” (adopt
a solution even if the inequality in the third line of the algorithm is not strict).
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This heuristic is considered a very effective way of obtaining good solutions to
MAX SAT, and is often used to solve SATISFIABILITY (in this use, it is hoped
that in the end the algorithm will return a truth assignment that satisfies all
clauses).$

An interesting twist on local improvement algorithms is a method called
simulated annealing. As the name suggests, the inspiration comes from the
physics of cooling solids. Simulated annealing allows the algorithm to “escape”
from bad local optima (see Figure 7-18, and compare with 7-17) by performing
occasional cost-increasing changes.

L

Vo

Figure 7-18: Simulated annealing has an advantage over the basic local improve-
ment algorithm because its occasional cost-increasing moves help it avoid early
convergence in a bad local optimum. This often comes at a great loss of efficiency.

s :=initialsolution, T := Tj
repeat
generate a random solution s’ such that N (s,s’),
and let A :=cost(s’)—cost(s)
if A <0 then s:=5, else
s := s’ with probability e~
update(7")
until 7=0

A
T
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return the best solution seen

Intuitively, the probability that a cost-increasing change will be adopted is
determined by the amount of the cost increase A, as well as by an important
parameter 7', the temperature. The higher the temperature, the more aggres-
sively more expensive solutions are pursued. The way in which T is updated in
the penultimate line of the algorithm —the annealing schedule of the algorithm,
as it is called— is perhaps the most crucial design decision in these algorithms
—besides, of course, the choice of neighborhood.

There are several other related genres of local improvement methods, many
of them based, like the ones we described here, on some loose analogy with
physical or biological systems (genetic algorithms, neural networks, etc.; see the
references).

From the point of view of the formal criteria that we have developed in
this book, the local improvement algorithms and their many variants are to-
tally unattractive: They they do not in general return the optimum solution,
they tend to have exponential worst-case complexity, and they are not even
guaranteed to return solutions that are in any well-defined sense “close” to the
optimum. Still, for many N“P-complete problems, in practice they often turn
out to be the ones that perform best! Explaining and predicting the impres-
sive empirical success of some of these algorithms is one of the most challenging
frontiers of the theory of computation today.

Problems for Section 7.4

7.4.1. Give a polynomial algorithm for the DOMINATING SET problem (recall Prob-
lem 7.3.6) in the special case of trees (considered as symmetric directed
graphs).

7.4.2. Suppose that all clauses in an instance of satisfiability contain at most one
posttwe literal; such clauses are called Horn clauses. Show that, if all
clauses of a Boolean formula are Horn clauses, then the satisfiability ques-
tion for this formula can be settled in polynomial time. (Hint: When does
a variable in a Horn formula have to be assigned T7?)

7.4.3. Show that the TRAVELING SALESMAN PROBLEM remains N P-complete
even if the distances are required to obey the triangle inequality. (Hint:
Look back at our original proof that the TRAVELING SALESMAN PROBLEM
is N'P-complete.)

7.4.4. Suppose that, in an instance of the traveling salesman problem with cities
1,2,...,n and distance matrix d;;, we only consider tours that start from
a, traverse by some path of length L the cities in a set T C {1,2,...,n},
end up in another city b, and then visit the remaining cities and return to
a. Let us call this set of tours S.
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(a) Foreach city i € {1,2,...,n}—T—{a, b}, let m; be the sum of the small-
est and next-to-smallest distances from ¢ to another city in {1,2,...,n} —
T—{a,b}. Let s be the shortest distances from a to any city in {1,2,...,n}—
T — {a, b}, plus the corresponding shortest distance from b. Show that any
tour in S has cost at least

L+%[ Z m; + s].

1€{1,2,...n}—-T—{a,b}

That is, the formula above is a valid lower bound for S.

(b) The minimum spanning tree of the n cities is the smallest tree that
has the cities as set of nodes; it can be computed very efficiently. Derive a
better lower bound for S from this information.

7.4.5. How many 2-change neighbors does a tour of n cities have? How many
3-change neighbors? 4-change neighbors?

7.4.6. (a) Suppose that in the simulated annealing algorithm the temperature is
kept at zero. Show that this is the basic local improvement algorithm.
(b) What is the simulated annealing algorithm with the temperature kept
at infinity?
(c) Suppose now that the temperature is zero for a few iterations, then
infinity for a few, then zero again, etc. How is the resulting algorithm
related to the basic version of local improvement?
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