
UC Berkeley—CS 170 Problem Set 1
Lecturers: Christos Papadimitriou and Umesh Vazirani Due on January 28 at 11:59 p.m.

Problem Set 1 for CS 170

Problem 0

The first question of each homework will be on opportunity for you to provide us some
feedback. In fact, it will be a requirement. Although you may not have much to say, please
say something. This problem will be graded. This week, we’d like to know what’s the one
thing you’d like to see explained better in lecture or discussion sections? (Sometimes we
botch the description of some concept, leaving some people confused. Sometimes we omit
things people would like to hear about. Sometimes the notes are very confusing on some
point.)

Problem 1

On most computers, the operations of subtraction, testing the parity (odd or even) of a bi-
nary integer, and halving can be performed more quickly than computing remainders. This
problem investigates the binary gcd algorithm, which avoids the remainder computations
used in Euclid’s algorithm.

(a) Prove that if a and b are both even, then gcd(a, b) = 2 gcd(a/2, b/2).

(b) Prove that if a is even and b is odd, then gcd(a, b) = gcd(a/2, b).

(c) Prove that if a and b are both odd, then gcd(a, b) = gcd(|a − b|/2, b).

(d) Design an efficient binary gcd algorithm for input integers a and b, where a ≥ b, that
runs in O(log2 a) time. (assume that subtracting two n bit integers takes O(n) steps,
and testing parity and halving can be performed in unit time).

Problem 2

Let’s compute the Fibonacci series in yet another way. Consider the following recursion:
(

Fn+1

Fn

)

=

(

1 1
1 0

)(

Fn

Fn−1

)

with
(

F1

F0

)

=

(

1
1

)

(a) Based on this recursive definition, write

(

Fn+1

Fn

)

in terms of

(

F1

F0

)

.

(b) How many matrix multiplications are required to calculate this expression?

(c) What is the bit complexity of the algorithm if binary multiplication is n2?

(d) How fast do we have to make binary multiplication in order for this algorithm to be
faster than the one given in class?

Problem set 1 due on January 28 at 11:59 p.m. 2

Problem 3

(a) Prove or disprove: If a has an inverse modulo b, then b has an inverse modulo a.

(b) Prove or disprove: If ax ≡ bx mod c, then a ≡ b mod c.

(c) If p is prime, how many elements of {0, 1, ..., pn − 1} have an inverse modulo pn?

Problem 4

The algorithm for computing ax (mod N) by repeated squaring does not necessarily lead
to the minimal number of multiplications. Give an example x (x > 10) where the exponen-
tiation can be performed using fewer multiplications using some other method.

BONUS!

In class we saw that in order to implement a shallow (depth log n) circuit for adding two
numbers, it is crucial to be able to quickly determine the carry bit in each position. Say that
the two n-bit numbers being added are an−1...a0 and bn−1...b0. Define the carry propogate
bit pi = ai + bi, and the carry generate bit gi = ai · bi. Let di denote the actual carry into
the ith position. Then di = di−1 · pi−1 + ci−1. We wish to compute all of the di’s efficiently

in parallel. Let Ai =

(

pi ci

0 1

)

and Mi = Ai−1Ai−2...A1A0, where we use boolean matrix

multiplication (i.e. + is replaced by OR, and · is replaced by AND).

(a) Show how to find di from Mi.

(b) Now we would like to find all of the Mi’s. If we computed them sequentially (i.e. Mi =
Ai−1Mi−1), then we would require O(n) steps. Describe how to do the computation in
parallel using only O(log n) steps.

HINT: Group the matrices in pairs (e.g. B1 = A2A1, B2 = A3A4, ...) and solve this
subproblem of size n/2 whose output is n/2 matrices. Now give a procedure for quickly
computing the n matrices, Mi, in parallel from these n/2 matrices. Where do you use
the fact that boolean matrix multiplication is an associative operation?

