Fourier Transforms and Theoretical Computer Science

February 5, 1999

Lecturer: Umesh Vazirani

Scribe: Steve Chien

Today’s topics: The Discrete Fourier Transform=20

- DFT over \(\mathbb{Z}_2^n \) and the mixing time of random walks.
- DFT over \(\mathbb{Z}_n \) and applications to polynomial/integer multiplication.

1 DFT over \(\mathbb{Z}_2^n \)

We consider the group \(\mathbb{Z}_2^n \) and functions \(f : \mathbb{Z}_2^n \rightarrow \mathbb{C} \). These functions form a vector space of dimension \(2^n \), and a natural basis to take would be that comprised of the indicator functions \(\{ f_x : f_x(y) = 1 \Leftrightarrow x = 3Dy \} \). Another basis is the parity basis, which we can define as the set \(\{ \chi_x : \chi_x(y) = 3D(\phi_1)^{x \cdot y} \} \), where \(x \cdot y \) is the inner product of \(x \) and \(y \). The effect of applying \(\chi_x \) is to determine the parity of those bits of \(y \) selected by the 1 bits in \(x \).

If we define \(\chi_x \cdot \chi_y \) as \(\sum_z \chi_x(z) \chi_y(z) \), then we see that the \(\chi_x \) are orthogonal. It is obvious that \(\forall x \chi_x \cdot \chi_x = 3D \sum_y 20(\phi_1)^{x \cdot y} = 3D \sum_y (\phi_1)^{x \cdot y} = 3D(\phi_1)^{x \cdot z} \). Since \(x + z \) must be nonzero in at least one of its bits, we see that as \(y \) varies, we will achieve exact cancellation and \(= \end{equation} \) end up with 0. Thus, by a counting argument, the \(2^n \) parity functions form a basis.

Furthermore, since these functions \(\{ \chi_x \} \) are homomorphisms, they are in fact the Fourier basis. (Another way to say this is that they are the characters of \(\mathbb{Z}_2^n \), a term that comes from group representation theory.) The Fourier transform then takes us from the basis of the indicator functions to the parity basis:

\[
\hat{f}(y) = 3D \sum_z (\phi_1)^{x \cdot z} f(z).
\]

There are several nice properties that come from these definitions.

Convolution

The first is that convolution in the indicator basis is equivalent to \(= \) multiplication in the Fourier basis. Recall that the convolution of two functions \(f \) and \(g \) is defined as \(f \ast g = g(x \Leftrightarrow y) = 3D \sum_y f(y)g(x \Leftrightarrow y) \) (over an arbitrary group, we replace the \(g(x \Leftrightarrow y) \) with \(g(y^{-1}x) \)). We can quickly verify that \(f \ast g = 3D \hat{f}(x) \hat{g}(x) \):

\[
f \ast g(x) = 3D \sum_z \sum_y f(y)g(z \Leftrightarrow y)(\phi_1)^{x \cdot z} = 3D \sum_y f(y)(\phi_1)^{x \cdot y} \sum_z g(z \Leftrightarrow y)(\phi_1)^{x \cdot (z-y)} = 3D \hat{f}(x) \hat{g}(x)
\]

Plancherel’s Theorem

\[
\sum_x f(x)g(x) = 3D \frac{1}{2^n} \sum_x \hat{f}(x) \hat{g}(x)
\]
Subspaces of \mathbb{Z}_2^n

Consider \mathbb{Z}_2^n as a vector space, and a subspace $X \subseteq \mathbb{Z}_2^n$. Define X^\perp (pronounced "x-perp") as $\{y \in \mathbb{Z}_2^n : x \cdot y = 3D0 \forall x \in X\}$. Consider now ξ the indicator function $\xi(x) = 20 f(x) = 3D \begin{cases} 1 & \text{if } x \in X \\ 0 & \text{otherwise} \end{cases}$ We claim that the Fourier transform of ξ behaves well $\iff 20 \hat{\xi}(y) = 3D \begin{cases} 1 & \text{if } y \in X^\perp \\ 0 & \text{otherwise} \end{cases}$.

Proof. Note that $\hat{\xi}(y) = 3D \sum_{x \in X} e^{-ix \cdot y}$. If $y \in X^\perp$, then $\forall x \cdot y = 3D0$ and so $\hat{\xi}(y) = 3D|X|$. If $y \not\in X^\perp$ then $\exists z \in X$ such that $z \cdot y = 3D1$. We can then divide X into two equal sets, $= X' = 3D\{x : x \cdot y = 3D0\}$ and $X' + Z$. From this we can conclude that $\hat{\xi}(y) = 3D0$ as needed.

Mixing Time of Random Walks over \mathbb{Z}_2^n

[Insert reference.]

Consider a random walk over \mathbb{Z}_2^n in which a particle begins at the origin and at each time step will either remain at its current position or move to one of its d neighbors, all with equal probability $\frac{1}{d+1}$. We wish to know how quickly the particle’s position as a probability distribution approaches uniform.

More formally, the probability distribution of the particle’s position after one time step can be described as:

$$Q(x) = 3D \begin{cases} \frac{1}{d+1} & \text{if } x = 3D0 \text{ or } x = 3D\epsilon_i \\ 0 & \text{otherwise} \end{cases}$$

Phrasing it this way allows to see the happy fact that after two steps, the probability distribution is simply the convolution of $Q(x)$ with itself, which by definition is $Q \ast Q(x) = 3D \sum_{y} Q(y)Q(x \oplus y)$. One way to read this is that the probability of the particle being at x after two steps is exactly the sum over all y of the probability of both being at y after one step, $Q(y)$ and moving from y to x in the second step, $Q(x \oplus y)$. From this we conclude that after n steps, the probability distribution is the convolution power of Q, denoted by Q^n.

Using the above fact about convolutions and the Fourier transform, we can see that $Q^n = 3DQ^n$. We wish to determine how close to uniform this is. Notice that if $U(x) = 3D \frac{1}{d+1}$ is the uniform distribution, then the Fourier transform of it is $20 U(x) = 3D \begin{cases} 1 & \text{if } x = 3D0 \\ 0 & \text{otherwise} \end{cases}$.

We now prove the following theorem:

Theorem. $\|Q \ast k \Rightarrow U\|_1 \leq \sqrt{2(\epsilon^{-k} \Rightarrow 1)} = \sqrt{3D \frac{(d+1)^{\frac{\ln d}{4}} + cd}}$.

In fact this is a very tight bound; a lower bound of $\frac{d\ln d}{4} + = cd$ can be proven.

To prove this theorem we first need the following lemma:

Lemma. For any function $P(x)$ such that $\hat{P}(0) = 3D1$ then $\|P \ast k \Rightarrow U\|_1 \leq \sum_{x \neq y} |\hat{P}(x)|^2$.

Proof. The proof relies on the Cauchy-Schwarz inequality, whose results are often disastrous but fortunately not so in this case, as well as Plancherel’s result.

$$\|P \ast k \Rightarrow U\|_1^2 = 3D \sum_y (|P \ast k(y) \Rightarrow U(y)|^2) =$$
\[
\leq 2d \sum_y |P^{*k}(y)|^2 \leq U(y)|^2 \leq \sum_{y \not\equiv 0} (P^{*k}(y))^2 \\
\leq \sum_{y \not\equiv 0} [\hat{P}(y)]^{2k}
\]

Now, since \(\hat{U}(0) = 3D\hat{P}(0) = 3D1 \) but \(\hat{U}(x) = 3D0 \) otherwise, using Plancherel’s theorem we can write

\[
\|P^{*k} \leftrightarrow U\|_1^2 \leq \sum_{y \not\equiv 0} (P^{*k}(y))^2 \\
\leq \sum_{y \not\equiv 0} [\hat{P}(y)]^{2k}
\]

which is exactly what we need.

Proof of Theorem. What we need to do now is to calculate the actual Fourier coefficients \(\tilde{=} \) and apply our lemma. Fortunately, our task is made much easier by the structure of \(Q(x) \), namely the \(\tilde{=} \) properties that \(Q(x) \) is nonzero for only \(d+1 \) values of \(x \), and that these values of \(x \) have simple structure.

\[
\hat{Q}(x) = 3D \sum_y (\varepsilon_1) \varepsilon_y Q(y) \\
= 3D \frac{1}{d+1} [1 + \#0’s \text{ in } x \leftrightarrow \#1’s \text{ in } x] \\
= 3D 1 \varepsilon \frac{2|x|}{d+1} \text{ where } |x| = 3D \#1’s \text{ in } x
\]

The second equality comes about since \(Q(y) \) is nonzero only for \(y = 3D0 \) or \(y = 3De \). When \(y = 3D0 \), \(\varepsilon \varepsilon_y \) is 1, and when \(y = 3De \), then \((\varepsilon_1)^{x=y} \) is 1 when the \(i \)th bit of \(x \) is 0, and \(\varepsilon \) otherwise.

Applying the lemma, we obtain

\[
\|Q^{*k} \leftrightarrow U\|_1^2 = 3D \sum_{x \not\equiv 0} (1 \varepsilon \varepsilon_1)^{2|y|} = 3D \sum_{j=3D1}^d \left(\frac{d}{j} \right) = 20(1 \varepsilon \varepsilon_1)^{2d} \leq \sum_{j=3D1}^d \frac{d^j}{j!} = e^{ \frac{2d}{e} }
\]

Considering only the \(\epsilon \) term and substituting in for \(k \), we see that

\[
e^{ \frac{2d}{e} } = 3De^{-d \ln d} = 3D e^{-d \ln d} \leq d^{-d} e^{-c_d}
\]

Substituting this back in, we find that

\[
\|Q^{*k} \leftrightarrow U\|_1^2 \leq \sum_{j=3D1}^d \frac{d^j}{j!} = d^{-d} e^{-c_d}
\]
This gives us the following:

\[\sum_{j=3D1}^{d} e^{-\epsilon j} j! \]
\[\sum_{j=3D1}^{\infty} e^{-\epsilon j} j! \]
\[e^{\epsilon^{-\epsilon}} \Leftrightarrow 1 \]

This finishes the proof.

2 DFT over \(\mathbb{Z}_n \)

We now consider the Discrete Fourier Transform over the group \(\mathbb{Z}_n \). Following the same principle as before, we consider the functions \(f : \mathbb{Z}_n \rightarrow \mathbb{C} \). This time the \(\mathbb{C} \) homomorphisms, and thus the proper Fourier basis functions, are \(\{ \chi^k(j) = 3D\omega^{jk} \} \), where \(\omega = 3D e^{2\pi i/n} \) is a primitive \(n \)th root of unity. (Once again, these are the characters of \(\mathbb{Z}_n \).) Consequently, we can once again define the Fourier transform of \(f \) as \(\hat{f}(x) = 3D \sum_y \omega^{xy} f(y) \).

Notice that the Fourier transform in this case has an elegant matrix representation:

\[
\begin{bmatrix}
\hat{f}(1) \\
\hat{f}(\omega) \\
\hat{f}(\omega^2) \\
\vdots \\
\hat{f}(\omega^n)
\end{bmatrix} = 3D \\
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
201 & \omega & \omega^2 & \cdots & \omega^{n-1} \\
1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2}
\end{bmatrix}
\begin{bmatrix}
\hat{f}(1) \\
\hat{f}(\omega) \\
\hat{f}(\omega^2) \\
\vdots \\
\hat{f}(\omega^n)
\end{bmatrix}
\]

In other words, the transformation matrix \(F \) can be expressed as \(\left[[\omega^{jk}] \right] \). Also important is that \(F \) is invertible and that \(F^{-1} \) has a nice form, namely that \(20 \hat{F}^{-1} = 3D \frac{1}{2} \hat{F} = 3D \frac{1}{2} \left[[\omega^{-jk}] \right] \). We also have the usual property concerning convolution: \(f * g(x) = 3D \hat{f}(x) \hat{g}(x) \). (These last two properties are fairly easy exercises.)

FFT

Calculating the \(\hat{f} \) vector using straightforward matrix multiplication would require time \(O(n^2) \), but the well-known FFT algorithm requires only time \(O(n \log n) \). FFT relies on the fact that a clever rearrangement of the columns of the \(F \) matrix significantly reduces the number of needed operations. More precisely, we move the columns representing the even powers of \(\omega \) to the left, = and those representing the odd powers to the right, and rearrange the \(\hat{f} \) vector to place the even values on top = and the odd values on bottom. This gives \(20 \) us the following:

\[
\begin{bmatrix}
\hat{f}(1) \\
\hat{f}(\omega) \\
\hat{f}(\omega^2) \\
\vdots \\
\hat{f}(\omega^n)
\end{bmatrix} = 3D = 20
\begin{bmatrix}
\{ \omega^{jk} \} = 3DA & \{ \omega^j \omega^{2jk} \} = 3DB = \\
20 \{ \omega^{2(j+n/2)k} \} = 3DA & \{ \omega^{j+n/2} \omega^{2(j+n/2)k} \} = 3D \Leftrightarrow B
\end{bmatrix}
\]
The operations now required include the recursive calls of computing = each of \(Af_0 \) and \(Bf_1 \) and then=20 performing the additions. The total running time now becomes \(T(n) = 3D = 2T(n/2) + O(n) \) =\(3DO(n \log n) \).

Application: Polynomial multiplication

The FFT algorithm leads to an immediate application in polynomial = multiplication. Given two polynomials of degree \(n \gg 1 \), \(P(x) = 3Da_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \) and \(Q(x) = 3Db_0 + b_1 x + b_2 x^2 + \cdots + b_{n-1} x^{n-1} \), we notice that the coefficients = of their product \(P(x)Q(x) \) is the convolution of their original coefficients. Thus to compute the = product, all we need do is take the FFT of the original coefficients, multiply them, and take the inverse FFT, all = of which can be done in time \(O(n \log n) \).

More explicitly, if we write \(P(x)Q(x) = 3Dc_0 + c_1 x + \cdots + c_{2n-2} x^{2n-2} \), then our algorithm will first compute FFT(\(a_0, \ldots, a_{n-1}, 0, \ldots, 0 \)) and \(= \) FFT(\(b_0, \ldots, b_{n-1}, 0, \ldots, 0 \)) to obtain \((\hat{a}_0, \ldots, \hat{a}_{2n-2}) \) and \(= (\hat{b}_0, \ldots, \hat{b}_{2n-2}) \). We then multiply these componentwise to obtain \((\hat{c}_0, \ldots, \hat{c}_{2n-2}) \) and then = do the inverse FFT to obtain the \(\{c_i\} \).

Application: Integer multiplication

A more interesting application of FFT is the integer multiplication = algorithm of Schönhage and Strassen, which allows us to multiply two \(n \) =bit integers in time \(O(n \log n \log \log n) \) rather than the naive \(O(n^2) \). The=20 idea is to treat \(n \) =bit integers as polynomials and use the \(O(n \log n = n) \) polynomial multiplication algorithm. If we are still allowed to assume that primitive operations still take = \(O(1) \) time, then we might imagine that given two \(n \) =bit integers \(A \) and \(B \) we might divide each of them into the = concatenation of \(n/\log n \) pieces. For example, we would write \(A = 3D_{n-1} a_{n-1} \cdots a_0 \). We can = then write the polynomial

\[
A(x) = 3D_{n-1} a_{n-1} x^{n-1} + \cdots + a_1 x + a_0
\]

and realize that \(A(n) = 3DA \). After = following a similar procedure for \(B \), we would then apply the FFT polynomial multiplication algorithm to recover the = \(c_i \). We can then evaluate the polynomial at \(n \) in time \(O(n \log n) \), as the \(c_i x^i \) terms have small overlap.

The problem, of course, is that the primitive operations in the FFT take = longer than \(O(1) \). Furthermore, this approach requires precise arithmetic computations. The solution to = these problems is to work in the ring \(\mathbb{Z}_m \) and to divide the \(n \) =bit numbers in a different manner.

Fortunately for our purposes, it is not difficult to choose appropriate = values for \(m \) and \(n \) so that performing FFT is possible. If we let \(n \) and \(\omega \) be some powers of \(2 \) and = let \(m = 3D \omega^{n/2} + 1 \), then we have the following properties, which turn out to be sufficient for FFT: \(\varepsilon=20 \)

- \(\omega^n = 3D1 \)
- \(\omega^0, \omega^1, \ldots, \omega^{n-1} \) are distinct
- \(\forall 1 \leq k \leq n \sum_{j=0}^{n-1} \omega^{jk} = 3D0 \)
- \(n^{-1} \) exists.

Notice that the time to perform FFT has increased, however. Since our = addition operations are potentially=20 over \(n \) =bit numbers, we have an extra factor of \(n \), so that the cost = of FFT is now \(O(n^2 \log n) \).

=20 (Note that as the only multiplications in FFT involve powers of = \(\omega \), multiplications consist only of shifts and additions.)
The algorithm is now straightforward. We now divide each of our \(n \)-numbers into \(\sqrt{n} \) pieces each of size \(\sqrt{n} \). As before, we do an FFT on these \(\sqrt{n} \) values, perform a componentwise multiplication, and then do the inverse FFT. Each FFT now takes time \(O(n \log \sqrt{n}) = 3D = O(n \log n) \). If \(T(n) \) is the time required to multiply two \(n \)-bit integers, we can write the recurrence relation \(T(n) = 3D \sqrt{n}T(\sqrt{n}) + O(n \log n) \), which works out to \(O(n \log n \log \log n) \).