Course Outline:

- Introduction and Fibonacci Numbers.
- Divide and conquer: integer multiplication.
- Number theory and cryptography
 - Euclid’s GCD algorithm and Modular arithmetic.
 - Modular exponentiation, Factoring versus Primality testing.
 - Fermat’s little theorem and randomized primality testing.
 - RSA public-key cryptosystem
- Fast fourier transform.
- Interpolation of polynomials.
- Error correcting codes, and secret sharing.
- MIDTERM I
 - Graph Algorithms
 - Depth-first search.
 - Strongly connected components, 2SAT.
 - Breadth first search, Dijkstra’s algorithm.
 - Bellman-Ford Algorithm.
 - Minimum spanning trees
 - Union find
 - Huffman coding
- Dynamic programming
 - Longest common subsequence, chain matrix multiplication.
 - string matching, and other examples
- MIDTERM II
 - Linear programming
 - Problem definition and solution by improvement.
 - Reductions to linear programming.
 - network flows, maximum matching.
- NP-completeness
- Cook’s theorem, Satisfiability, Traveling Salesman problem.
- Techniques for proving NP-completeness.
- Branch and Bound
- Approximation algorithms
- Simulated annealing, go with the winners
- zero-knowledge protocols.