
Network Flows, and Linear Programming Duality

1. Network Flows

Suppose that we are given the network of the Figure (top), where the numbers indicate ca-
pacities, that is, the amount of 
ow that can go through the edge in unit time. We wish to
�nd the maximum amount of 
ow that can go through this network, from S to T .

This problem can also be reduced to linear programming. We have a nonnegative variable
for each edge, representing the 
ow through this edge. These variables are denoted fSA; fSB; : : :
We have two kinds of constraints: Capacity constraints such as fSA � 5 (a total of 9 such
constraints, one for each edge), and 
ow conservation constraints (one for each node except S
and T ), such as fAD+ fBD = fDC + fDT (a total of 4 such constraints). We wish to maximize
fSA + fSB, the amount of 
ow that leaves S, subject to these constraints. It is easy to see
that this linear program is equivalent to the max-
ow problem. The simplex method would
correctly solve it.

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

2

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

2

2

Figure 1: Max 
ow

More on the simplex algorithm:



So far you have only seen a vague description of the simplex algorithm: as an algorithm
that walks from vertex to vertex of the convex polytope that forms the feasible region (satis�es
all the constraints of the given linear program). Moreover, the algorithm performs the `hill
climbing' heuristic on these vertices | from its current vertex it moves to a vertex with a
better value of the linear function that the linear program asks to optimize. What prevented
us from describing the simplex method in more detail are the complications of the linear algebra
necessary to describe how to move from one vertex to another in n dimensional Euclidean space
Rn. In this section, we will describe what the simplex algorithm does in the special case of
network 
ows. It is quite remarkable that even though the simplex algorithm works purely
by relying on the linear algebra of the given problem, when it is interpreted in the concrete
example of the network 
ow problem, it can be described in terms of repeated depth-�rst
searches from the source vertex.

In the case of max-
ow, it is very instructive to \simulate" the simplex method, to see
what e�ect its various iterations would have on the given network. Simplex would start with
the all-zero 
ow, and would try to improve it. How can it �nd a small improvement in the

ow? Answer: It �nds a path from S to T (say, by depth-�rst search), and moves 
ow along
this path of total value equal to the minimum capacity of an edge on the path (it can obviously
do no better). This is the �rst iteration of simplex (see the bottom of Figure 3).

How would simplex continue? It would look for another path from S to T . Since this time
we already partially (or totally) use some of the edges, we should do depth-�rst search on the
edges that have some residual capacity, above and beyond the 
ow they already carry. Thus,
the edge CT would be ignored, as if it were not there. The depth-�rst search would now �nd
the path S � A � D � T , and augment the 
ow by two more units, as shown in the top of
Figure 4.

Next, simplex would again try to �nd a path from S to T . The path is now S�A�B�D�T

(the edges C � T and A �D are full are are therefore ignored), and we augment the 
ow as
shown in the bottom of Figure 4.

Next simplex would again try to �nd a path. But since edges A � D, C � T , and S � B

are full, they must be ignored, and therefore depth-�rst search would fail to �nd a path, after
marking the nodes S;A; C as reachable from S. Simplex then returns the 
ow shown, of value

6, as maximum.

How can we be sure that it is the maximum? Notice that these reachable nodes de�ne
a cut (a set of nodes containing S but not T ), and the capacity of this cut (the sum of the
capacities of the edges going out of this set) is 6, the same as the max-
ow value. (It must be
the same, since this 
ow passes through this cut.) The existence of this cut establishes that
the 
ow is optimum!

There is a complication that we have swept under the rug so far: When we do depth-�rst
search looking for a path, we use not only the edges that are not completely full, but we
must also traverse in the opposite direction all edges that already have some non-zero 
ow.
This would have the e�ect of canceling some 
ow; canceling may be necessary to achieve
optimality, see Figure 5. In this �gure the only way to augment the current 
ow is via the
path S�B�A�T , which traverses the edge A�B in the reverse direction (a legal traversal,
since A�B is carrying non-zero 
ow).

To summarize: The max-
ow problem can be easily reduced to linear programming and
solved by simplex. But it is easier to understand what simplex would do by following its
iterations directly on the network. It repeatedly �nds a path from S to T along edges that are
not yet full (have non-zero residual capacity), and also along any reverse edges with non-zero

ow. If an S � T path is found, we augment the 
ow along this path, and repeat. When a
path cannot be found, the set of nodes reachable from S de�nes a cut of capacity equal to the
max-
ow. Thus, the value of the maximum 
ow is always equal to the capacity of the minimum



cut. This is the important max-
ow min-cut theorem. One direction (that max-
ow�min-cut)
is easy (think about it: any cut is larger than any 
ow); the other direction is proved by the
algorithm just described.

6. Duality As it turns out, the max-
ow min-cut theorem is a special case of a more general

phenomenon called duality. Basically, duality means that a maximization and a minimization
problem have the property that any feasible solution of the min problem is greater than or equal
any feasible solution of the max problem (see Figure). Furthermore, and more importantly,
they have teh same optimum. We will see this in greater detail in the next lecture.



S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

4

S
T

A C

B D

5

2

1

2
1

2

5

3

3

S
T

A C

B D

5

2

1

2
1

2

5

3

3

4

2

2

2

4

2

2

2

2

2

minimum cut

with capacity

2+2+2=6

maximum flow of value 6

4

Figure 2: Max 
ow (continued)

1

1

1

1

1 1

S T

A

B

1
1

Figure 3: Flows may have to be canceled


