1 Error Correcting Codes

We will work with degree d polynomials over the field $GF(p)$ of numbers mod p. This means that we consider polynomials of the form $f(x) = c_0 + c_1 x + \cdots + c_d x^d$, where the coefficients c_0, c_1, \ldots, c_d are chosen from $GF(p)$.

The key property of degree d polynomials that we will use is that given $d + 1$ pairs of values $(a_0, b_0), (a_1, b_1), \ldots, (a_d, b_d)$ (all from $GF(p)$), there is a unique degree d polynomial $f(x)$ that takes on these values in the sense that $f(a_j) = b_j$ for $i = 0$ to d.

To construct this polynomial $f(x)$ we use Legendre interpolation: $f(x) = \sum_{j=0}^{d} b_j \prod_{k \neq j} (x - a_k) / (a_j - a_k)$

Here we may think of $\Delta_j(x) = \prod_{k \neq j} (x - a_k)$ as a “delta-function”, since it takes on value 1 at a_j and 0 at a_k for $k \neq j$.

To prove the uniqueness of this polynomial $f(x)$ we used the fact that any polynomial of degree d has at most d roots.

The coding Problem:

Suppose we wish to transmit a sequence of numbers b_0, b_1, \ldots, b_d over a noisy communication channel. The numbers are over $GF(p)$, i.e. mod p. Each number that we choose to transmit over the communication channel has some chance of getting corrupted. What we would like to do is to encode the given sequence b_0, b_1, \ldots, b_d into a longer sequence of numbers $c_0, c_1, \ldots, c_{n-1}$, and transmit this longer sequence over the noisy communication channel. The property of this encoding that we would like to ensure is that even if some constant fraction (say $1/4$) of the c_j’s are corrupted, the recipient can still reconstruct the original sequence b_0, b_1, \ldots, b_d.

The procedure for carrying out this encoding is very simple: Consider the unique polynomial $f(x)$ which takes on values b_0, b_1, \ldots, b_d at the points $0, 1, \ldots, d$. i.e. $f(j) = b_j$ for $j = 0$ to d.

Now let $c_j = f(j)$ for $j = 0$ to $n - 1$.

Recovering from errors:

Suppose that there are k errors in the transmitted numbers $c_0, c_1, \ldots, c_{n-1}$, i.e. the recipient got the sequence of numbers $f_0, f_1, \ldots, f_{n-1}$ instead, where $f_j \neq c_j$ for at most k different j’s. Can the recipient recover the original sequence b_0, b_1, \ldots, b_d despite these errors? This looks hard because the recipient does not even know which values are correct and which are erroneous. Nevertheless, if $k \leq \frac{n-d-1}{2}$ then it is possible to recover the original sequence b_0, b_1, \ldots, b_d. Notice that since there is no a priori constraint on how much larger n can be
compared to d, this bound on k can be made arbitrarily close to $n/2$. i.e. we can recover from nearly 50% of the data being erroneous.

Notice that since at least $\frac{n+d+1}{2}$ of the transmitted numbers are correct, the original polynomial $f(x)$ agrees with at least $\frac{n+d+1}{2}$ of the values that the recipient gets. Now, we claim that any degree d polynomial $g(x)$ that agrees with any $\frac{n+d+1}{2}$ of the received values (not necessarily the uncorrupted ones), must actually be the correct polynomial $f(x)$. To see this notice that only $\frac{n-d-1}{2}$ of the received values are corrupted. So among any choice of $\frac{n+d+1}{2}$ of the received numbers, at least $\frac{n+d+1}{2} - \frac{n+d+1}{2} = d + 1$ must be uncorrupted. Now, since a degree d polynomial is uniquely determined by its values at $d+1$ points, it follows that any degree d polynomial consistent with these values must in fact be the polynomial $f(x)$.

The Berlekamp-Welsch decoder:

How do we efficiently reconstruct a polynomial that is consistent with at least $\frac{n+d+1}{2}$ of the received numbers? There is an efficient (and magical) algorithm called the Berlekamp-Welsch decoding algorithm. Details to follow.