Lecture2: Quantum Algorithms

1 Tensor Products
A single quantum bit is a unit vector in the Hilbert sp&€& Now suppose we have two quantum bits. How
do we write them together? We need a new Hilbert space which capturesetsetion of the two bits.

If V, W are vector spaces with basgg ...vn}, {wi...wn}, thetensor product V @ W of V andW is a
nm-dimensional vector space which is spanned by elements of thevigrm - calledelementary tensors.
These elementary tensors behave bilinearly, that is, we have the relations

a(VRW) = aVRQW=V® aw
URV+WRV=(U+W)®V URVHURW=U® (V+W).
A basis for the tensor product space consists of the vecfarsow; : 1 <i <n,1 < j<m}, and thus a
general element of ®W is of the form
Z aijVi @ W;j
1)
This definition extends analogously to tensor products with more than two terms.

The tensor product space is also a Hilbert space with the inherited irodwgir

(vaw,V ew) = (v,V)(ww)

As it turns out, a two bit system is conveniently represented by a unit viectbe Hilbert spac& @ 2.

€2 ® € is necessarily isomorphic t&'* since there is only one complex four dimensional Hilbert space,
but as we will see, in the world of quantum mechanics it is convenient to leet@bconstruct” the larger
space from the smaller ones.

Using Dirac “ket” notation, we write the basis @ 42 as
{10 ®10),|0) ®[1),]1) ®(0),[1) ®|1)}

We will often write |0) @ |0) as|0)|0) or |00).

In general, we represent amparticle system by copies of¢? tensored together. We will often write
(€2)2" = ¢?". So the state of an-qubit system can be written as

W) = Orx[X).
xe%l}n

This means that the state of afparticle system is represented by"admensional space! The idea behind
guantum computation is to harness the ability of nature to manipulate the expbnantlzer ofays.

1.1 The Signiﬁcance of Tensor Products

Classically, if we put together a subsystem that stérbfts of information with one that stordshits of
information, the total capacity of the composite systek-id bits.

From this viewpoint, the situation with quantum systems is extremely paradoxicalne&dk complex
numbers to describe the state df-Eevel quantum system. Now consider a system that consist&-téael
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subsystem and dnrlevel subsystem. To describe the composite system wekieminplex numbers. One
might wonder where nature finds the extra storage space when we patiesubsystems together.

An extreme case of this phenomenon occurs when we consideigabit quantum system. The Hilbert
space associated with this system is the n-fold tensor prodi€t ef 2". Thus nature must “remember”
of 2" complex numbers to keep track of the state ofagubit system. For modest valuesobf a few
hundred, 2 is larger than estimates on the number of elementary particles in the Universe.

This is the fundamental property of quantum systems that is used in quarfarmation processing.

Finally, note that when we actually a measurenagubit quantum state, we see only rubit string - so we
can recover from the system omyrather than 2, bits of information.

1.2 Tensor product of operators

Suppos¢v> and]w} are unentangled states @' and¢™", respectively. The state of the combined system is
|v> ® |w> on¢™. If the unitary operatoA is applied to the first subsystem, aBdio the second subsystem,
the combined state becomaf/) © B|w).

In general, the two subsystems will be entangled with each other, so the @airdiate is not a tensor-
product state. We can still apply to the first subsystem ari8l to the second subsystem. This gives the
operatorA® B on the combined system, defined on entangled states by linearly extendintjdts @t
unentangled states.

(For example(A® B)(|0) ®|0) ) = A|0) ®B|0). (A®B)(|1) ®|1)) = A|1) ®B|1). Therefore, we define
(A®B)(75]00) + % |11)) to be 75 (A® B)[00) + % (A®B)|11) = 5 (A[0) ®B|0) +A|1) ®B[1)).)
Let|er),...,|em) be a basis for the first subsystem, and wite ANIEE:T l&)(ej]| (thei,jth element ofA
isa;j). Let|f1),...,|f,) be a basis for the second subsystem, and \BriteS ;_, b | fi)( fi|. Then a basis

for the combined system 13) ® ] fj> ,fori=1,....mandj=1,...,n. The operatoA® B is

(sakicel) o (gmlmc)

= 2 aibufa)(ei]@[f(h
— %aijbkl(\a>®}fk>)(<ej‘®<f|‘)‘

A®B

Therefore the(i k), (j,1)th element ofA® B is &;by. If we order the basise) @ |f;) lexicographically,
then the matrix foA® B is

a;nB a;oB

a»1B axB

in thei, jth subblock, we multiply;j by the matrix forB.

2 The Princip]e of Safe Storage

In the last lecture we learned that performing a measurement changeatthefsa quantum system. For
example, consider this circuit:
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0)———H] [H——{M]

The second Hadamard gate cancels out the first, sitfce: |. If the circuit is given the pure staﬂé)}
as input, the bit will again be in the std@} before the measurement, and so the bit “0” will always be
observed:

State before measuring: p0) | =1
Prioj=1 Pif1]=0
Now, consider the same circuit with an additional measurement inserteddretiaeetwo gates:

0)——fH— [} [A—— (W]

The first measurement collapses the state of the qulml>tor \1) , SO the input to the final measurement is
+> or \ — > and are no longer certain to observe the bit 0 in the final measuremenall(Ra notations

+) = 510+ 1) and| =) = o) - 511))

1 1
State before measuring:  Pr-) | = 5 Pri|—)] = >
1 1
Pr[0] = > Pr{l] = >
What if we replaced the first measurement with CNOT gate, which usesutnitr ag the control bit with
th bit as the t t?
another qubit as the targe ]0> . @ @
}0> t=0 t=1 t=2 t=3

Let's compute the state of our qubits at each step.
t=0 [0)®]|0)

Recall the Hadamard matri% (i _11).

t=1 |+)®][0) = 0)

1 1
—100) + —|1
25100+
The CNOT gate acts on the base states by flipping the second bit iff theiffissbhe.

1 1
t=2 —]00) + —=|11) = |®*
5100+ [11) = o)
The second Hadamard gate mgps) + | +) @[0) = |00) + 75[10) and [11) — | —) ®[1) =
\%]Ol} — \%\11>. Adding these together, we have:
t=3 %(\00>+\01>+\1o>—}11>)

We now see that our final measurement behaves exactly the same wagrasve/nad a measurement in

the place of the CNOT gate:
1 1

Pr0] = > Pr1] = >
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3 Quantum Teleportation
3.1 The No Gloning Theorem

TheNo Cloning Theorem states that no quantum system can copy a qubit; that is, there is no unicagap
U sending|y) ®[0) — @) @ |y).
Proof: Suppose our operatbr exists. Then for any stat¢$/1> and\w2>,
(W g2) =(|un) ©10),[¢2) ©]0))
=(U(|y1) ®]0)),U(|gr) ®|0)))
=(|yn) @), |U2) @ |W2))
=(un| 4/2>2,

which is impossibled

3.2 Quantum Teleportation

Despite the No Cloning Theorem, it is possible to transmit a qubit, even to a rencatily if we are
willing to destroy the original.

Suppose has access to a quantum stage = ag|0) +as1|1), which she wants to transmit to a remote party
B. She can accomplish this by transmitting only classical bits of information, prdvidand B share the
entangled two-qubit state

9 ==
"=

The technique is known agiantum tel eportation.

(100) +11)).

The basic idea is thigA controls|() and the first qubit of@). A's strategy, roughly speaking, is to forcibly
entangle|y) with the first qubit|@). A then measures the first qubit (@), resolving it completely, and
hopes this will causéy) to become entangled with trsecond qubit of |@). PresumablyB could then
transfer|) to the second qubit dfp).

As a first try, consider the following diagram. The top line represgmtsthe bottom two represent the two
qubits of|@).

! o

That is, A passesy) and the first qubit ofg) through a CNOT gate, and then measures the first qubit of
|@). Now the input into the system as a whole is

1
poly)= > ali)o > —l|i,i)
2,2 2,72
After passing through the CNOT gate this becomes

Saliio] ).
1)
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Now A measures the middle qubit. Suppose it is measurégdtiasnl =i @ j. The state is now
za16|“@|7j>
]

Next, A transmitsl to B. If | = 0, B takes no action, while if = 1, thenB performs a bit flip on his qubit

(the bottom qubit in the diagram.) A bit flip is just the transformat@rg é > Thus we have
Z Ajol } J y J>
]

Finally, B does a phase flip on his qubit, yielding

This is almost exactly what we want. The only problem is that now, the qubiesponding tqy) is
entangled withB’s qubit. The entanglement that was necessary to get the whole praagssl $s now a
liability. One way to disentangle them would be farto measure her remaining qubit. But this would
destroyB’s qubit as well.

The ideal solution would be to send the entangle qubits through a CNOT gateA-dontrols the first
qubit andB controls the second. This would require quantum communication betiveeid B, which is
prohibited.

The correct solution is to go back and modify the original diagram, insertirigdamard gate and an
additional measurement:

Now the algorithm proceeds exactly as before. Howévgapplication of the Hadamard gate now induces
the transformation

N z a
Finally A measures and sends the measuremenBtol he state is now:
z aj(—1)"]j)-

If i =0 then we are done; if= 1 thenB applies a phase flip. In either case the state is ag@) + a;|1).

So0A has transported the quantum stat®tsimply by sending two classical bits.

4 Quantum Circuits and the class BQP

In the previous lecture, we saw some examples of quantum gates. A queintuihis a sequence of gates
composed together. Each gate acts on a subset of the bits, and leavest thechanged. For example, a
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CNOT gate acting on the first two bits of arbit system corresponds to the unitary transformation CROT
In_2. If the ith gate performs the transformatith, then the whole circuit performs the transformation
U =UrUr_1---U1. We measure the efficiency of the circuit by the number of gétes

At this point it is natural to ask what gatek we allow when constructing our circuit. We will show later
that there are small “universal” families of gates, such thatikaxyk unitary matrix can be approximated by
a circuit of size(k) composed of gates from the family. (Note that inrequbit systemk = 2".) CNOT and
arbitrary single-qubit operations together form one such family.

To perform a computation using a quantum circuit, we prepare an input\ﬂléxteapply the circuit, and
perform a measurement on the re:‘alu(qw ). We usually allow the circuit a small probability of giving the
wrong answer. The class of decision problems that can be solved withgmolgl-size quantum circuits,
where the final measurement gives the wrong answer with probability &t1yi8sis called BQP. Since
inputs have different lengths, we allow a family of circuftd, }. For uniformity, we assume there exists an
algorithm that on inpuih constructs the circultl,, in time polynomial inn.

BQP is analagous to the classical complexity class BPP, of classical algotiaimsan flip coins during
their computation, and must give the right answer in the end with probabilitysat 3. In the classical
case, the probability of error can be reduced exponentially by runnenglgforithm many times and taking
the answer that appears a majority of the time. A natural question to ask isexlgetimtum algorithms can
likewise reduce their probability of error — we’ll come back to this later on.

5 Reversible Computation

Another question we might ask is whetheCBQP. Is there a method for converting classical algorithms
to quantum ones? One problem is that since quantum operations are alwry, quantum computations
cannot erase information: given a functibn{0,1}" — {0,1}", unlessf is a bijection, we cannot construct
a quantum circuit that givexas input outputd (x).

Our solution is to convert a classical circuit for computiinnto a reversible circuiRs. A reversible circuit

is one in which each gate computes a bijection, and can therefore beetersompute its input from
its output. Given our classical circuit fdr, we construct a reversible circuit which takes as impahd a
string of zeroes, and outputs f (x) and some extra output jutk). We do this by replacing each classical
gate with a reversible equivalent: for example, NOT gates are alreadysilele, and an AND gate can be
replaced by a gate which takesy and 0 as input, and outputsy andx Ay.

In a reversible circuit, we can even eliminate the extra output(xirby replacing it with a string of zeroes.
Given a reversible circulR; mappingx, 0 — x, f(x),junk(x), we construct its inversB; . Then on input
x,0, we first applyR; to getx, f(x),junk(x),0. Then we copy the valué(x) onto some of the zeros; we
could use CNOT gates for this. Now we hayé (x), junk(x), f (x). Applying R;* gives usx, 0, f(x), which

is what we wanted.

Reversible gates correspond to unitary transformations that permutedisestates, so given a reversible

circuit for computingf, we can construct a quantum circuit for computingf. Whenever the inqup> is
a basis state, the outpu (|¢) ) is also a basis state.

In general, though, we don'’t need to fdd¢ a classical statg). If we feedUs a superposition

z ax |x) [0)

xe{0,1}"
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then, by linearity,

Uf( > nax\XHO)): > aUe((¥0) =% axX[f(x)

{0,1} x{0,1}" x€{0,1}"

and we've computed (x) simultaneously for each basis statgin the superposition. Note that if we had
not been able to eliminate the extra output jogkrom the output of our circuit, we would have ended up
with the quantum stat§ . (0 1jn ax|X) | f (X)) |junk(x)) instead, which is a very different.

The procedure for converting classical circuits into quantum cirtiits a useful primitive which we will
use extensively in this course. A second primitive, introduced in the lasiré&eds the Hadamard transform
H, also called the Fourier transforn is the unitary transformation on one qubit defined by the matrix

11
( f _\/i ) ‘
V2.2
In other wordsH maps|0) onto % |0) + \i@ 1), and|1) onto % 0) — \% |1). Given ann-qubit system,
we’ll often want to applyH separately to each of the qubits in turn. We call the resulting transformation

Hon = H®™; it equalsH tensored with itself times. For alln > 0, H®" can also be defined recursively by
the matrix

1 gon-1 1 gen-1
vl vaH
LH@Bn—l _LH®n—1 :
V2 V2

whereH®? = (1 ). (Incidentally, it is an exercise to show that for atk n matricesU andV, if U andV
are unitary then the tensor prodlittz V is also unitary.)

6 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm was published in 1992, and providedfahe first formal indications that
guantum computers can solve some problems more efficiently than classsal on

Suppose we're given a Boolean functién {0,1}" — {0,1}. We're promised thaf is either identically
zero (meaning that (x) = O for all inputsx € {0,1}"), or else balanced (meaning tHgk) = O for precisely

half of all inputsx, and f (x) = 1 for the other half). The challenge is to decide which is the case. To
do this, we can make queries of the form fi$x) equal to 1?” for particular values af Our goal is to
minimize the number of queries that have to be made.

Clearly, a deterministic classical algorithm requir€s'2- 1 queries in the worst case: if"2 bits have been
gueried and all turned out to be 0, we still need to query one more bit toedetidther the function is zero
or balanced.

On the other hand, the problem admits an efficient randomized algorithmlj@sso Choose a value of
uniformly at random; iff (x) = 1 then conclude that is balanced, otherwise repeat. If, afteiterations
(for some constark), we still haven’t found arx such thatf (x) = 1, then we halt and conclude thét
is zero. This algorithm uses onf (1) queries. However, has a nonzero probability of error, equal to

CS 294, Spring 20009, 7



27K or slightly less if we choose values without replacement. This is because, evérisfbalanced, the
randomized algorithm has a nonzero probability of never seeingsanh thatf (x) = 1.

What Deutsch and Jozsa showed is that a quantum computer can deeithenihis balanced, with cer-
tainty, using only two queries tb. What follows is an algorithm to accomplish this.

The algorithm uses two quantum registers, the first hamingbits and the second having only one qubit.
We initialize the system to the basis stéle--0) |0). Then we apply the Hadamard transfokp to the
first register (or equivalently, the Hadamard transfétrto each qubit of the first register separately). This
results in the superposition

1
on/2

%) 10).
x€{0,1}"

We then computd (x) and store the result in the second register. How is this donePRislf black-box
oracle, then (by assumption) we don't need to worry about how it's ddh@n the other handf is given
explicitly (say, as a Boolean circuit), then we've seen that we can confpeteersibly using Fredkin gates.
In either case, the resultant superposition is

1
on/2

) [ (X)) -

x€{0,1}"

Next we apply the one-qubit transformation

(6 %)

to the second register. This transformation, which is easily seen to be urgtariphase flip”: iff (x) =0
then it leaves the amplitude of) | f (x)) alone, whereas if (x) = 1 then it inverts the amplitude. So we get

(=1 %) £ (x).

/2 xe{0,1}"

At this point we want to erasé(x) from the second register, to allow for proper interference among the
states. (What goes wrong if we don't eraSg) is left as an exercise.) We can't do this directly, since
erasure is not a unitary operation. But since we have an oracle fee can simply computé a second
time and CNOT the result into the second register, so that the bit in that ragi$teq & f (x) = 0. Doing

so, we obtain

(=1 x)0).
2n/2 xe{0,1}"

The final step is to perform another Hadamard transfelgmon the first register. We could work out the
result of this algebraically, but would rather reason about it to obtain rimsight. We've seen that the
Hadamard transform is its own inverse, and that
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1 :
Ha(Y) =2z > (=1)"*[%).
x€{0,1}"

From these it follows that if is identically zero, then applyinig,n brings us back t¢0---0) |0). If, on the
other handf is balanced, then the state

(1) |x)

/2 xe{0,1}"

is a linear combination dfixn (|y)) for various values of. However, none of these values canybeO, since
the state is orthogonal té (|0)) in the vector spacgl (the two having inner product’2! — 21 = 0).

Therefore, iff is zero, therx = 0 at the end of the computation, wherea$ i6 balanced, ther# 0. So
by observing théx) register, we can decide with certainty whetligs zero or balanced. We've done this
using two queries td and® (n) steps of computation.
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