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1 Photons
Photons are pretty versatile, and there are may ways to use photons as qubits! First, let’s think about what a
photon is.

Consider classical electricity and magnetism, which are governed by Maxwell’s equations. Let’s have a look
at Maxwell’s equations in an insulating, non-magnetic dielectric material:

∇ · ε~E = 0 ∇×~E = −1
c

∂~B
∂ t

∇ ·~B = 0 ∇×~B =
ε
c

∂~E
∂ t

(1)

For a dielectric material,ε is the dielectic constant which determines the polarizability of the material.

The great triumph of Maxwell’s equations is the prediction of traveling E and Mwaves. (The behavior of
a photon is closely linked to the classical~E and~B fields.) A wave solution for the electric field might look
like:

~E (~r, t) = ~Eocos
(

~k ·~r−ωt
)

(2)

We also have that the magnetic field must be perpendicular to the electric field for a wave solution, so
~B(~r, t) = ~Bocos

(

~k ·~r−ωt
)

, with ~Bo perpendicular to~Eo. Maxwell’s equations also force~E and~B to be

perpendicular to the propagation vector~k, so we are given a natural orthogonal basis set for 3D, with~Eo×~Bo

parallel to~k.

In cgs units,|~B| = |~E|, so let’s ignore the~B-field entirely since if we know~E then we know~B. Also in a
material it’s the~E-field that couples more strongly to electrons (~F = q~E), so the~E-field is more important.

So, we have traveling wave solutions. The phase velocity of any wave is given byvph = ω
k = c√

ε , wherek =
ω
c

√
ε. Perhaps more familiar is the index of refraction,n =

√
ε. For light, we havevlight = c

n , with
√

ε = 1

for vacuum.ε depends on material properties, and relates to thepolarizability of a material:ε = 1+ 4π|~p|
|~E| ,

where~p = (dipole moment)/volume.

The more they polarize the biggerε is and the slower light travels! Note: some materials might polarize
more in one direction than another. The speed of light would thus be different for different polarizations of
light.
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Definition: Thepolarization of light is the direction that~E points.

So what is a polarizer? This is a material that only allows light to pass with~E polarized in a particular
direction.

What about the energy of light? Classically a light wave fills a volume and has an energy density associated
with it:

ρ =
energy
volume

=
|~E|2
8π

(3)

So the energy of a light wave in a volume of space (V) is:

U = ρV =
|~E|2
8π

V (4)

Fact: Light actually travels in packets of energy called photons. Each photon has an~E-field and a frequency
(ω) associated with it. In quantum mechanics, we know that the energy of a particle is proportional to its
frequency, so we should have thatUphoton = h̄ω . This is thequanta of energy associated with a the particle
of light, the photon.

So why is light quantized? There are different ways to approach this. The full treatment is known as
quantum electro-dynamics. We will not derive this, but if you are interested there is an excellent book by
Richard Feynman on the subject entitledQED.

One way to think about the quantization of light is that if I have a light in a cavity (i.e. a box), the space
inside the cavity can be thought of as a bunch of simple harmonic oscillators withdifferent frequencies.
Each frequency is a mode of the cavity, and just like waves on a string (or particle in a box!!), we have a
discrete spectrum of allowable modes which fit in the cavity:

Consequence of Quantization:

1. The number of photons (N) in a light wave depends on magnitude of~E-field:

U =
E2

o

8π
V = Nh̄ω ⇒ N =

E2
oV

8π h̄ω
(5)
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2. Probabilistic behavior: Suppose we shine light on a polarizer. How do we interpret the behavior in terms
of photons?

In region 1 we have N photons, all identical with~Eo andω . The number of photons in region 1 is given by

N = E2
oV

8π h̄ω .

In region 2, we have N’ photons, all identical with~E ′
o andω . The number of photons in region 2 is given by

N′ = E ′2
o V

8π h̄ω = 1
8π

(Eo/
√

2)2V
h̄ω = 1

2
E2

oV
8π h̄ω . We then conclude that

N′

N
=

1
2

(6)

But this is strange since all the photons in region 1 areidentical. Why do only half get through? Transmission
must be probabilistic process, and we are therefore led to a probabilistic/QMinterpretation. The probability
of transmission for the preceding example is readily given by:

prob =
E2

ox

E2
ox +E2

oy
(7)

Thus the components of the~E-field in different directions act as probability amplitudes, just like the proba-
bility for measuring

∣

∣0
〉

on a general state
∣

∣ψ
〉

= α
∣

∣0
〉

+β
∣

∣1
〉

is:

prob =
|α|2

|α |2 + |β |2 (8)

So we can think of the components of an~E-field vector as a QM observable! The photon with electric field
~E = Eoxx̂+Eoyŷ can be thought of as living in a state

∣

∣ψ
〉

where:

∣

∣ψ
〉

=

(

ψx

ψy

)

(9)

with ψx (ψy) being the x-polarized (y-polarized) component.
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The x̂ andŷ polarization vectors form a basis! Suppose we have~Eo = Eoxx̂+Eoyŷ. We can rewrite this state
in familiar QM language:

∣

∣ψ
〉

=

(

cosθ
sinθ

)

= cosθ
∣

∣x
〉

+ sinθ
∣

∣y
〉

(10)

The polarization of the photon is our new qubit variable:
∣

∣0
〉

=
∣

∣x
〉

and
∣

∣1
〉

=
∣

∣y
〉

. Nice! Now how do we
measure and transform this qubit?

Here we again draw an analogy to spin, and the polarizer plays the same rolea Stern-Gerlach device.

Consider the Bloch sphere with general quantum state vector
∣

∣ψ
〉

= cos θ
2

∣

∣0
〉

+ eiφ sin θ
2

∣

∣1
〉

. A polarizer at
angleθ ′ w.r.t. x̂ leads to:

∣

∣ψ
〉

photon = cosθ ′∣
∣x

〉

+ sinθ ′∣
∣y

〉

= cos
θ
2

∣

∣0
〉

+ eiφ sin
θ
2

∣

∣1
〉

(11)

This equality leads us to identifyθ = 2θ ′ andφ = 0 in this case.

For this to be analogous to spins, however, we must be able to varyφ . How do we do this? Is it even possible
to get a relative phase terms with polarization?

The answer of course is yes, and the way this is done is to find a material where the index of refraction is
different in x̂ andŷ directions! This means that the velocity is different for ˆx andŷ components. This is the
case inanisotropic media with different polarizability in ˆx andŷ:

C/CS/Phys 191, Spring 2005, Lecture 16 4



If this is the case, then light polarized along ˆy will go ≈ 10% faster than light polarized along the ˆx direction.
If the material has length∆l then we can calculate the phase difference for light passing through to be
∆φ = k∆l:

For light with ~E||ŷ, we haveky = ω
c ny. Similarly, for light with ~E||x̂, we havekx = ω

c nx. Thus the phase
change through the material for the y-component (x-component) is∆φy = ω

c ny∆l (∆φx = ω
c nx∆l. So, if our

input state is
∣

∣ψ
〉

in = cos θ
2

∣

∣x
〉

+ sin θ
2

∣

∣y
〉

, then the output state is:

∣

∣ψ
〉

out = cos
θ
2

ei ω
c nx∆l

∣

∣x
〉

+ sin
θ
2

ei ω
c ny∆l

∣

∣y
〉

(12)

Rewriting, we see:

∣

∣ψ
〉

out = cos
θ
2

∣

∣x
〉

+ sin
θ
2

ei ω
c (ny−nx)∆l

∣

∣y
〉

(13)

soφ on the the Bloch sphere isωc ∆l(ny −nx). Therefore we see that this anisotropic medium has played the
same role that the transverse~B-field did for spin.
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