- Using the "standard basis" (i.e. |0⟩ and |1⟩, eigenstates of Ŝ_z), calculate the eigenvalues and eigenvectors associated with measuring the component of spin along an arbitrary direction n̂ for a spin-1/2 system. (S_{n̂} = Ŝ_xn_x + Ŝ_yn_y + Ŝ_zn_z as in class.) Show your work.
- 2. Suppose 10,000 electrons are prepared in the $|\Psi\rangle = |0\rangle$ spin state and then shot through a Stern-Gerlach device oriented with North \rightarrow South magnet poles aligned 60° from the $+\hat{z}$ -direction. About how many electrons go into each of the two resulting beams?

- 3. Consider a qubit comprised of a single spin- $\frac{1}{2}$ electron. How would you construct a NOT gate in the laboratory to act on this qubit? If your gate involves building a magnet, then please specify the exact orientation, amplitude, and time duration of any proposed applied magnetic fields.
- 4. An electron is shot with well-defined momentum at a 2-slit device. Does it get through to the detector? Consider the details below and explain your answer:

In case you are worried about the different spatial trajectories the particles take, let's take a quick look at the full quantum state with the spatial dependence factored in:

 $\begin{aligned} |\Psi\rangle_{electron} &= |\Psi_{spatial}\rangle \cdot |\Psi_{spin}\rangle \\ \Psi_{electron}(x) &= \langle x | \Psi_{spatial}\rangle \cdot |\Psi_{spin}\rangle = \Psi_{spatial}(x) |\Psi_{spin}\rangle = e^{ikx} |\Psi_{spin}\rangle \\ \text{We further specify that } \Psi_{electron}(x) &= |0\rangle \text{ and } \Psi_{electron}(x = x_o) = \Psi_{path1} + \Psi_{path2}, \text{ where:} \\ \Psi_{path1} &= e^{ikx_o} |0\rangle \\ \Psi_{path2} &= e^{ikx_o} e^{-i\frac{\xi_c}{\hbar}\Delta\phi} |0\rangle \end{aligned}$

Further, $\Delta \phi = \frac{eB_o}{m} \Delta t$ and $\Delta t = \frac{x_o}{v} = \frac{x_o}{\frac{\hbar k}{m}}$. Assume that we are clever enough to experimentally engineer $\Delta \phi = 2\pi$.

5. Consider the total spin of a system having 2 electrons: $\hat{S}_T = \hat{S}_1 + \hat{S}_2$. Show that the entangled state $|\psi\rangle_{total} = |0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2$ has a net spin of zero. In other words, show that it is an eigenstate of \hat{S}_T^2 with eigenvalue = 0.

Hint: Use $\hat{S}_T^2 = (\hat{S}_1 + \hat{S}_2)^2 = \hat{S}_1^2 + \hat{S}_2^2 + 2\hat{S}_1 \cdot \hat{S}_2$, and recall that $\hat{S}_1 \cdot \hat{S}_2 = \hat{S}_{1x}\hat{S}_{2x} + \hat{S}_{1y}\hat{S}_{2y} + \hat{S}_{1z}\hat{S}_{2z}$.

- 6. Consider an atomic qubit system made from a single hydrogen atom. The qubit levels are the ground state and first excited state of hydrogen.
 - $|0\rangle$ = ground state, E_o
 - $|1\rangle$ = first excited state, E_1

Suppose a laser at the resonant frequency $\omega = \frac{E_1 - E_o}{\hbar}$ is directed at the atom with an intensity such that $\langle 0 | eE\hat{z} | 1 \rangle = 10^{-6}$ eV. How long should the laser be pointed at the atom to act as a Hadamard gate?