- 1. Consider an arbitrary qubit state $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$. If we think of this state as a vector on the Bloch sphere, then what is the action of a phase flip gate on the vector? (I.e. how does the vector get rotated on the Bloch sphere?)
- 2. Starting from the commutation relationship $[x, p] = i\hbar$ and the definition $\vec{L} = \vec{r} \times \vec{p}$, show that $[L_x, L_y] = i\hbar L_z$ and $[L^2, L_z] = 0$.
- 3. Find the eigenvectors of the \hat{S}_x and \hat{S}_y operators using the eigenvectors of \hat{S}_z as a basis. Where do all of these eigenvectors sit on the Bloch sphere?
- 4. Consider two possible spin states:

$$\begin{array}{lll} |\Psi_1\rangle &=& |0\rangle \\ |\Psi_2\rangle &=& \sqrt{\frac{1}{4}}|0\rangle + i\sqrt{\frac{3}{4}}|1\rangle \end{array}$$

a) What is the expectation value for S_z for these states? (Expectation value = $\langle S_z \rangle = \langle \Psi | S_z | Psi \rangle$)

- b) What is $\langle S_x \rangle$ for these states?
- c) What is $\langle S_y \rangle$ for these states?
- 5. Consider the spin state $|\Psi\rangle = \sqrt{\frac{1}{4}}|0\rangle + i\sqrt{\frac{3}{4}}|1\rangle$
 - a) What is the probability that a measurement of the z-component of spin leads to $\hbar/2?$
 - b) What is the probability that a measurement of the x-component of spin leads to $\hbar/2?$

[Hint: use solution to problem #3 for this problem.]

- 6. Show that the Pauli Matrices are Hermitian.
- 7. Prove that \hat{S}_{-} transforms the spin eigenstate $|s,m\rangle$ into the state $|s,m-1\rangle$.
- 8. Find A_+ and A_- , where

$$\begin{array}{rcl} S_{+} \big| s,m \big\rangle & = & A_{+} \big| s,m+1 \big\rangle \\ S_{-} \big| s,m \big\rangle & = & A_{-} \big| s,m-1 \big\rangle \end{array}$$

Show work!

Hint: $|A_{-}|^{2} = \langle s, m | S_{+}S_{-} | s, m \rangle$

9. Calculate the 2 × 2 matrix that represents \hat{S}_y for spin- $\frac{1}{2}$ systems.