- 1. Consider two quantum systems each with two qubits, where the first is in the state $1/2|00\rangle + i/2|10\rangle + 1/\sqrt{2}|11\rangle$, and the second is in the state $1/\sqrt{3}|00\rangle + i/\sqrt{3}|10\rangle 1/\sqrt{3}|01\rangle$. What is the state of the composite system? If we apply a CNOT to the first system and the transformation $H \otimes Z$ to the second, what is the new state of the system. Write out the matrix corresponding to the unitary transformation you applied to the second system.
- 2. Suppose that Alice has two qubits in an entangled state $|\psi\rangle \in \mathscr{C}^2 \otimes \mathscr{C}^2$. If she teleports each of her two qubits to Bob using the teleportation protocol presented in lecture, can Bob faithfully reconstruct the (entangled) state of Alice's two qubits? Justify your answer.
- 3. The uncertainty principle bounds how well a quantum state can be localized simultaneously in the standard basis and the Fourier basis. In this question, we will derive an uncertainty principle for a discrete system of *n*-qubit.

Let $|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ be the state of an *n*-qubit system. A measure of the spread of $|\psi\rangle$ is $S(|\psi\rangle) \equiv \sum_x |\alpha_x|$. For example, for a completely localized state $|\psi\rangle = |y\rangle$ ($y \in \{0,1\}^n$), the spread is $S(|\psi\rangle) = 1$. For a maximally spread state $|\psi\rangle = \frac{1}{\sqrt{2^n}} \sum_x |x\rangle$, $S(|\psi\rangle) = 2^n \cdot \frac{1}{\sqrt{2^n}} = \sqrt{2^n}$.

a) Prove that for any quantum state $|\psi\rangle$ on *n* qubits, $S(|\psi\rangle) \leq 2^{n/2}$.

b) Suppose that $|\alpha_x| \le a$ for all *x*. Prove that $S(|\psi\rangle) \ge \frac{1}{a}$.

Now let $H^{\otimes n}|\psi\rangle = \sum_{x} \beta_{x}|x\rangle$, where (by homework 2) $\beta_{x} = \frac{1}{2^{n/2}} \sum_{y} (-1)^{x \cdot y} \alpha_{y}$. $(x \cdot y \equiv \sum_{i=1}^{n} x_{i}y_{i})$.

c) Prove that for all y, $|\beta_y| \le \frac{1}{2^{n/2}} S(|\psi\rangle)$.

d) Prove the uncertainty relation $S(|\psi\rangle)S(H^{\otimes n}|\psi\rangle) \ge 2^{n/2}$. Justify why it makes sense to call this an uncertainty relation.

4. Show that the trace of an operator is independent of the basis in which it is evaluated.