- 1. You are given one of two quantum states of a single qubit: either $|\phi\rangle = |0\rangle$ or $|\psi\rangle = \cos \theta |0\rangle + \sin \theta |1\rangle$. What measurement best distinguishes between these two states? If the state you are presented is either $|\phi\rangle$ or $|\psi\rangle$ with 50% probability each, what is the probability that your measurement correctly identifies the state? Can you generalize your result to distinguish between two arbitrary quantum states $|\phi\rangle$ and $|\psi\rangle$ on two qubits?
- 2. Alice and Bob share an arbitrarily long common string *S*. Alice is given as input a random bit a_{in} and Bob a random bit b_{in} . Without communicating with each other, Alice and Bob wish to output bits a_{out} and b_{out} respectively such that $a_{in} \cdot b_{in} = a_{out} + b_{out} \pmod{2}$. Prove that any protocol that Alice and Bob follow has success probability at most 3/4.
- 3. Prove that the Bell state $|\psi^{-}\rangle$ is rotationally invariant: i.e. $|\psi^{-}\rangle = \frac{1}{\sqrt{2}}(|vv^{\perp}\rangle |v^{\perp}v\rangle)$.
- Give a quantum circuit that outputs the four Bell states |ψ⁺⟩, |ψ⁻⟩, |φ⁺⟩, |φ⁻⟩ on input (respectively) the four basis states |00⟩, |01⟩, |10⟩, |11⟩ Use this to conclude that the Bell states form an othonormal basis for C⁴.