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Abstract 

A new algorithm for finding a maximum 
matching in a general graph is presented; its 
special feature being that the only computa- 
tionally non-trivial step required in its execu- 
tion is the inversion of a single integer 
matrix. Since this step can be parallelized, 
we get a simple parallel (RNC2) algorithm. 
At the heart of our algorithm lies a proba- 
bilistic lemma, the isolating lemma. We 
show applications of this lemma to parallel 
computation and randomized reductions. 

1. Introduction 

A new algorithm for finding a max- 
imum matching in a general graph is 
presented; its special feature being that the 
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only computationally non-trivial step 
required in its execution is the inversion of a 
single integer matrix. Since this step can be 
parallel&d, we get a simple parallel (RNC2) 
algorithm. Because of this simplicity, the 
sequential version of our algorithm has some 
merits over the conventional matching algo- 
rithms as well. 

This algorithm was obtained while 
solving the matching problem from the 
viewpoint of parallel computation. The main 
difficulty here is that the graph may contain 
exponentially many maximum matchings; 
how do we coordinate the processors so they 
seek the same matching in parallel? The key 
to achieving this coordination is a probabilis- 
tic lemma, the isolating lemma, which lies at 
the heart of our algorithm; it helps to single 
out one matching in the graph. 

In its general form, the isolating 
lemma holds for an arbitrary set system. 
This yields a relationship between the paral- 
lei complexity of an arbitrary search problem 

’ Miller Fellow, University of California, Berkeley. 

s Work done during a post-doctoral position at MSRI, 
Berkeley. 

3 Supported by NSF Grant BCR 8503611 and an IBM 
Faculty Development Award. 
Currently at AT&T Bell Labs, Murray Hill, NJ 07974. 

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 

0 1987 ACM O-89791-221-7/87/0006-0345 75c 345 



and the corresponding weighted decision 
problem. As an application, we give an 
RNC’ algorithm for the Exact Matching 
problem in general graphs. It is interesting 
to note that this problem is not known to be 
in P. The isolating lemma also yields a sim- 
ple proof for the result in IValVaz] showing 
the NP-hardness, under randomized reduc- 
tions, of instances of SAT having a unique 
solution. 

Matching was first shown to be in 
Random NC @NC3 ) by Karp, Upfal and 
Wigderson [KUW 11. Their algorithm also 
utilizes matrix operations, and in fact these 
are some of the most widely used tools for 
obtaining fast parallel algorithms. Several 
problems are known to be NC’ reducible to 
computing the determinant of an integer 
matrix. Cook [Co] defines DET to be the 
class of all such problems. DET G NC2, and 
it is not known whether this inclusion is 
proper. All problems known to be in NC2 
are either in AC1 or in DET [Co]. Our algo- 
rithm puts the matching problem in RDET. 

2. History 

The maximum matching problem is a 
natural problem, and its study has led to 
conceptual breakthroughs in the field of 
algorithms. In fact, the characterization of 
‘tractable problems’ as ‘polynomial time solv- 
able problems’ was first proposed by 
Edmonds [Edl] in the context of the general 
graph matching problem. Solving this prob- 
lem from the viewpoint of parallel computa- 
tion has also been quite fruitful. 

Whereas sequential algorithms for the 
maximum matching problem are based on 
finding ‘blossoms’ and ‘augmenting paths’ in 
graphs (see lEdl]), the known parallel algo- 
rithms require a new approach; they use pro- 
babilistic and algebraic methods. In fact, the 
matching problem emerged from algebra 
around the turn of this century in the works 
of Petersen, Frobenius and Konig (for a 
detailed history see [LPI), A key ingredient 
in the new approach is a theorem proved by 

Tutte in 1947 ~Tu], based on the work of 
Pfaff on skew-symmetric matrices. It states 
that a graph has a perfect matching iff a cer- 
tain matrix of indeterminates, called the 
Tutte matrix,, is non-singular. Motivated by 
an a1gorithmi.c use of this theorem, :Edmonds 
[Ed21 studied the complexity of computing 
determinants.. He gave a modified Gaussian 
elimination procedure for computing the 
determinant of an integer matrix in a polyno- 
mial number of bit operations, and stated the 
open problem of efficiently deciding whcthcr 
a matrix of indeterminates is non-singular. 

The first algorithm based on Tuttc’s 
theorem was given by Lovasz l&01]. Using 
the fundamlental insight that polynomial 
identities can be efficiently tested by ran- 
domization [SC], Lovasz reduced, the deci- 
sion problem, ‘Does the given graph have a 
perfect matching? ’ to testing if a given 
integer matrix is non-singular. Since the 
latter problem is in NC2 [Cs], this yields a 
(Monte Carlo) RNC2 algorithm for the 
former problem (see also [BGH]). Rabin and 
Vazirani IRV] extended this approach, using 
a theorem of Frobenius, to give a simple ran- 
domizing algorithm which finds a perfect 
matching by sequentially inverting IV I /2 
matrices. 

The search problem, i.e. actually find- 
ing a perfect matching in parallel, is much 
harder. The first parallel (RNC3) algorithm 
for this long-standing open problem was 
given by Karp, Upfal and Wigderson 
[KUWl]. Tbey use the Tutte matrix to 
implement (in RNC2) a ‘rank’ function. 
Their algorithm probabilistically prunes out 
edges from the graph; the rank function 
guarantees that the remaining graph has a 
perfect matching, and a probabilistic lemma 
ensures that a constant fraction of the edges 
are pruned at each stage. Hence, after 
O(Iog IVI) stages only a perfect matching 
remains. This algorithm is also Monte Carlo 
in that it may fail to give a perfect matching. 
Using the Gallai-Edmonds Structure 
Theorem (see [LOO]) Karloff [Ka] gives a 
complementary Monte Carlo (RNC2) algo- 
rithm for bounding the size of a maximum 
matching from above, thus yielding a Las 
Vegas extension. 
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Our algorithm is conceptually different 
in that it directly finds a perfect matching in 
the graph. It is somewhat faster (RI@) and 
requires 0 (n3*‘m) processors. 

3. The Isolating Lemma 

Definition: A set system (S, F) consists of a 
finite set S of elements, 
s = {Xl, x2, . ..) x,), and a family F of sub- 
sets of S, i.e. F = {S,, S2, * - - Sk}, SQ, 
for 1 5 j I k. 

Let us assign a weight wi to each ele- 
ment Xi E S and let us define the weight of 
the set Sj to be C Wi. 

x&sj 

Lemma 1: Let (S, F) be a set system whose 
elements are assigned integer weights chosen 
uniformly and independently from 11, 2n], 
Then, 

Pr [There is a unique minimum weight set 

in Fl2 
1 
2’ 

Proof: Fix the weights of all elements except 
Xi. Define the threshold for element Xi, to be 
the real number a; such that if wi I oi then 
Xi is contained in some minimum weight sub- 
set, Si, and if wi > oi then Xi is in no 
minimum weight subset. 

Clearly, if Wi < oi, then the element Xi 
must be in every minimum weight subset. 
Thus ambiguity about element Xi occurs iff 
Wi = (xi, since in this case there is a 
minimum weight subset that contains Xi and 
another which does not. In this case we shall 
say that the element Xi is singular. 

We now make the crucial observation 
that the threshold, a;, was defined without 
reference to the weight, Wi, of Xi. It follows 
that ai is independent of Wi. Since Wi is a 
uniformly distributed integer in [1, 2n], 

Pr [Element xi is singular, i.e. 

Since S contains n elements, 

Pr [There exists a singular 

element] 5 ( ‘1 2n 
xn= l/2. 

Thus, with probability at least l/2, no ele- 
ment is singular. The lemma follows from 
the observation that there is a unique 
minimum weight set iff no element is singu- 
lar. 

Notice that by the same argument, the 
maximum weight set will be unique with pro- 
bability at least l/2 as well. An extension of 
the isolating lemma is required in Theorem 
2(a). In this extension we are given integers 
al,a2r ’ ’ ’ at, and the weight of set Si is 
defined to be aj + C Wi, 15 j5 k. The 

proof given above works for this case as 
well. 

4. The Matching Algorithm 

We will first consider the simpler case 
of a bipartite graph: 

Input: A bipartite graph G(iJ,V,E), having 
a perfect matching. 

Problem : Find a perfect matching in G. 

We will view the edges in E and the 
set of perfect matchings in G as a set system. 
Let us assign random integer weights to the 
edges of the graph, chosen uniformly and 
independently from [I, 2m1, where 
m = [El. Now by lemma 1, the minimum 
weight perfect matching in G will be unique 
with probability at least l/2. Our parallel 
algorithm will pick out this perfect matching. 

Notation: We will represent the (i, j)rh ele- 
ment of matrix A by (lower case) aii, the 
submatrix obtained by removing the ifh row 
and the jfh column by Aij, the determinant of 
A by IA I, and the adjoint of A by adj(A). 

Wi= CXi]I 
1 

2n * 
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Let U= {ul, - - - u,}, ‘V= {vl, - - - v,}, 
and let D be the nx n adjacency matrix of G, 
i.e. dij= 1 if (ui,vi)EE, an.d 0 otherwise. 
Obtain an integer’ matrix B from D by 
replacing the l’s in D by 2”+, where wii is 
the weight assigned to the edge (Ui,Vj). 

Lemma 2: Suppose the minimum weight 
perfect matching in G(U, V,E) is unique. 
Let this matching be M and its weight be w. 
Then IB I# 0; moreover, the highest power 
of 2 which divides IB I is 2”. 

Proof: First notice that each perfect match- 
ing in G corresponds to a permutation in S,. 
For each permutation cr on (1, 2, . . . . n), 
define 

Thus VU~U~(CT) f 0 iff (Ui., V.(i)) E E, for 
1 5 i I n, i.e. if 0 represents a perfect 
matching in G. By definition., 

IB I = Csign(a)x vulue~(o) 
a 

where sign(o) is + 1 if CJ is an even permuta- 
tion, and -1 otherwise. 

Let oM be the permutation correspond- 
ing to M. Then vaZue(crM)= :!“. The value of 
each of the remaining permutations is either 
zero, or a higher power of 2. The lemma fol- 
lows. 

Thus by evaluating IB I, we can deter- 
mine the weight of the minimum weight 
matching. The next lemma will enable us to 
obtain the matching itself. 

Lemma 3: Let M be the unique minimum 
weight matching in G, and let w be its 
weight. The edge (Ui, Vi) belongs to M iff 

I Bij 12”” 
is odd. 

2” 

Proof: First notice that 

IB~~12”V = x sign(cr)v ‘J 
0:0(i)= j 

Let cry be the permutation correspond- 
ing to M. If (Uj, vi) E M, one permutation, 

i.e. aM, in the above sum will have value 2”. 
The remaining permutations have value zero, 
or a higher power of 2. Hence IBij 12”“/2’+ 
will be odd. On the other hand, if (Us, Vi) 4 
M, all permutations in the sum have value 
zero, or a power of 2 higher than 2”. Hence 
IB~j12”“/2” will be even. The lemma fol- 
lows. 

The algorithm to find M is now 
straightforward: 

Procedure: Perfect Matching (G, B); 

Step 1: Compute IB I, and obtain W. 

Step 2: Compute udj(B); its (j, Qrh entry 
will be the minor IBij I. 

Step 3: For each edge (Ui, Vi) do in parallel: 
IB.. 12”” 

Compute ‘&, ; 

:If this quantity is odd, include 
(ui, vj) in the matching. 

end; 

The algorithm for general graphs is 
essentially the same. The main difference is 
that we need to operate with the Tutte 
matrix of the graph. 

Definition: Given a graph G (V, E), the 
adjacency matrix of G is an nx n symmetric 
matrix D SU& that dij = 1 if (Vi, vj)EE, and 
0 otherwise. The Tutte matrix of G is an 
nx n skew-symmetric matrix A, obtained as 
follows from D: if dij = dji = 1, replace 
them by indeterminates Xii and -Xi;, so that 
the entries above the diagonal are positive, 
and leave the 0 entries of D unchanged. 

Theorem (Tutte [Tu]): Let G(V, E) be a 
graph and let A be its Tutte matrix. Then 
IA I# 0 iff there is a perfect matching in G. 

Obtain an integer matrix B from the 
Tutte matrix by substituting for the indeter- 
minates Xii the integers 2w’j, where Wij is the 
weight assigned to the edge (Vi, Vj). The 
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algorithm given above, operated with B, 
gives a perfect matching in G. The proof of 
Lemmas 2 and 3 is more involved for gen- 
eral graphs, and it appears in the final paper 
(to appear in Combinatorics). 

Notice that the only non-trivial compu- 
tational effort required in the matching algo- 
rithm is the evaluation of the determinant 
and adjoint of B. We will use Pan’s IPa] 
randomized matrix-inversion algorithm, 
which computes IBI and a&(B) in order to 
compute B- i. It requires 0 (log2n) time and 
O(n3.‘m) processors for inverting an nx n 
matrix whose entries are m-bit integers, In 
comparison, there is a processor-efficient 
RNC3 implementation of the algorithm of 
[KUW 11 which requires 0 (n3.5) processors 
WI. 

Theorem 1: There is an RNC2 algorithm for 
finding a perfect matching in general graphs. 
The algorithm requires 0 (n3.‘m) parallel 
processors. 

Although the sequential version of our 
algorithm is less efficient than conventional 
matching algorithms (the most efficient of 
these takes O(mJ T) steps [MV]), it has the 
advantage of being easy to program, espe- 
cially if a subroutine for matrix inversion is 
available, In BV] a simple matching algo- 
rithm is presented, addressing the issue of 
ease of programming. It would be informa- 
tive to compare these two algorithms. 

graph G (V, E), given edge-weights w(e) for 
each edge OS?? in unary. First notice that if 
the weight of each edge is scaled up by a fac- 
tor of mn,’ the minimum weight perfect 
matchings will be lighter than the rest by at 
least mn. We can now use the isolating 
lemma to isolate one of I these minimum 
weight matchings: to edge e& assign the 
weight mnw(e) + re, where T, is chosen uni- 
formly and independently from [l, 2m]. The 
proof of Lemma 1 works in this setting as 
well. As such this algorithm will require 
O(n3.‘mW) processors, where W is the 
weight of the heaviest edge. Hence if the 
edge-weights are in unary, this problem is in 
RNC2. The parallel complexity of this prob- 
lem when the edge-weights are given in 
binary is as yet unresolved. 

b). The problem of finding a maximum 
matching in a graph can now be reduced to 
minimum weight perfect matching as follows: 
extend G into a complete graph by throwing 
in new edges. Assign weight 0 to each edge 
of G, and 1 to each of the new edges, and 
find a minimum weight perfect matching (for 
an alternative method see [RV]). 

c). The vertex-weighted matching problem is 
the following: 

input : Graph G (V, E), and a positive weight 
for each vertex VEV. 

Problem: Find a matching in G whose 
vertex-weight is maximum. The vertex- 
weight of a matching is defined to be the 

5. Parallel Algorithms for Related 
sum of the weights of the vertices covered by 

Problems 
the matching. 

First notice that the desired matching 

A parallel algorithm for the perfect 
matching problem easily yields parallel algo- 
rithms for the following related problems. 
RNC3 algorithms for these problems are 
given in [KUWl]. Here we give RNC2 algo- 
rithms. 

a). We first address the problem of finding a 
minimum weight perfect matching in a 

will be a maximum matching. This is so 
because any non-maximum matching can be 
augmented into a maximum matching 
without unmatching any vertex in the pro- 
cess. Define V’GV to be a matching set if V’ 
is the set of vertices covered by a maximum 
matching in G. The solution now consists of 
finding the heaviest matching set, and a per- 
fect matching in the subgraph induced by 
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these vertices. Sort the v’ertices of G by 
decreasing weight. Two matching sets can 
be compared lexicographically in this sorted 
order. 

Lemma 4: The lexicographically largest 
matching set is the heaviest matching set. 

Proof: Let L and H be maximum matchings 
which give the lexicographically largest and 
the heaviest matching sets respectively. Sup- 
pose these matching sets are: different. Let u 
be the first vertex in the sorted order where 
the two sets differ. The vertex u will be 
matched in L but not in 1Fi. Consider the 
symmetric difference of L and H. This will 
have an alternating even length path from 1( 
to a vertex v, say. The symmetric difference 
of this path and H will yield a matching 
heavier than H, since v is lighter than u. The 
contradiction proves the lemlma. 

We now use the A?NC2 algorithm 
presented in [VV] for obtaining the lexico- 
graphically largest matching set. This algo- 
rithm is based on a generalization of Tutte’s 
Theorem. 

Theorem 2: The following problems are in 
RNC2: 
a). Finding a maximum matching in a graph. 
b). Finding a minimum weight perfect 
matching when the edge weights are given in 
unary. 
c). Finding a maximum vertex-weighted 
matching (even if the vertex weights are 
given in binary). 

6. Other Applications of the Isolating 
Lemma 

a) Parallel Complexity of Search vs. Deci- 
sion Problems 

For the case of sequential computation, 
search problems are reducible to the 
corresponding decision problems via self- 
reducibility. Can such al reduction be 

parallelized? Notice that the self-reduction 
process yields the lexicographically first solu- 
tion. For several problems, such as maximal 
independent set and depth first search, find- 
ing such a solution is P-complete (see [Co]), 
even though efficient parallel algorithms 
exist for the unrestricted search problem (the 
parallel complexity of finding the lexico- 
graphically first perfect matching or the lexi- 
cographically first maximal matching is as 
yet unresolveld). This issue was first studied 
by Karp, Upfal and Wigderson [KUW2]. 
Motivated from matroid theory, they give an 
RNC2 procedure for the search problem, 
using an oracle for the ‘rank’ function. Via 
the isolating lemma, we reduce a general 
search problem to the weighted decision 
problem, where the weights are polynomially 
bounded. 

Theorem 3: Let (S, F) be an arbitrary set 
system, and let 0 be an oracle for the 
weighted decision problem, ‘Given polynomi- 
ally bounded positive integral weights for the 
elements of ,S and a positive integer k, is 
there a set j7 whose weight is k or less?’ 
There is an RNC’ procedure which uses 0 to 
solve the search problem ‘Find a set in F’. 

The procedure is similar to the perfect 
matching algorithm of Section 3. The weight 
of the minimum weight set is determined by 
binary search on k, using O(logn) calls to 
the weighted decision procedure. Its ele- 
ments are identified in parallel by the follow- 
ing observati.on: an element Xi is in the 
minimum weight set iff upon increasing its 
weight by 1, the weight of the minimum 
weight set increases. Hence we can deter- 
mine the elements of the minimum weight 
set in parallel. 

Using this procedure we obtain an 
RNC2 algorithm for the following problem 
posed by Papadimitriou and Yannakakis 
[PY]. Interestingly enough, it is not known 
if this problem can be solved in (determinis- 
tic) polynomial time. 

Exact Matching: 
Input: A graph G (V, E), a subset E‘cE of 
red edges, and a positive integer k. 
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Output: Find a perfect matching involving 
exactly k red edges. 

In this case the set system will consist of all 
perfect matchings which have exactly k red 
edges. Assume that polynomially bounded 
weights w, are given to the edges ee.E of G, 
and there is a unique minimum weight per- 
fect matching with k red edges. The follow- 
ing NC2 procedure, suggested by Lovasz, 
will find the weight of this perfect matching: 
in the Tutte matrix of G, substitute 2w’ for a 
variable x, if eczE- E’ and 2w’y if eEE’, 
where y is an indeterminate. Let B be the 
resulting (skew-symmetric) matrix. Now, 

IBI = @f(B))2 

where pf(B) is the Pfaffian of B. Compute 
IB I using the parallel determinant algorithm 
of [BCP], and then compute its square-root 
by interpolation. The power of 2 in the coef- 
ficient of yk will be the weight of the 
minimum weight perfect matching involving 
exactly k red edges. 

Theorem 4: The exact matching problem is 
in RNC2. 

b) Randomized Reductions 

We now turn to another application of 
the isolating lemma. Valiant and Vazirani 
[ValVaz] studied the complexity of finding 
solutions to instances of SAT having unique 
solutions. They show that this problem is 
M-hard under randomized reductions. Their 
proof is based on the hash-function property 
of GF [2] inner products. The isolating 
lemma yields a simpler proof. 

For simplicity, we consider the 
CLIQUE problem, which is parsimoniously 
inter-reducible with SAT. The core of the 
proof is illustrated by showing a randomized 
reduction from CLIQUE to UNIQUE 
CLIQUE. The CLIQUE problem is ‘Given a 
graph G(V, E) and an integer k, is there a 
clique of size k in the graph?’ On the other 
hand, UNIQUE CLIQUE asks if there is 
exactly one clique of size k. 

The reduction is as follows. First 
assign a random and independent weight 

w(v) to each vertex VEV, chosen from [l, 
2n1, where n = IVI. By the isolating 
lemma, with probability at least l/2, the 
maximum weight clique will be unique in 
this graph. The transformed graph G’ is now 
obtained as follows: corresponding to vertex 
WV, G’ will have 2nk + w(v) vertices, with 
a clique on them. Corresponding to each 
edge (u, v) in G, each copy of u is joined to 
each copy of v in G’. Next choose a random 
integer r in [l, 2nk], and let k’ = 2nk2 + r. 
The transformed problem is (G’, k’). 

The following hold by Lemma 1: 

(1) (G, k) $ CLIQUE = > (G’, k’) d 
UNIQUE CLIQUE. 

(2) (G, k) E CLIQUE = > Pr [(G’, k’) 
E UNXQUE CLIQUE] 2 114n. 

7, Discussion and Future Directions 

One difficulty in solving combinatorial 
problems in parallel is the following: on the 
one hand it is crucial to coordinate the pro- 
cessors so they seek the same solution in 
parallel; on the other hand, the problem of 
finding a solution with any special proper- 
ties, such as the lexicographically first one, is 
typically P-complete. The isolating lemma 
gets around this; it induces a probability dis- 
tribution on the set of matchings in the 
graph, and it picks one matching from this 
distribution. The distribution assigns a non- 
zero probability to each matching in the 
graph. Can the methods presented here be 
extended to achieve a uniform probability 
distribution, thereby obtaining random 
matching in the given graph? This will help 
solve a long-standing open problem, that of 
estimating the permanent of a O/l matrix. 
Computing the permanent exactly is #P- 
complete [Va]; however, the problem of 
estimating the permanent is equivalent to the 
problem of generating a random perfect 
matching in a bipartite graph [Br], [JVV]. 

The main step in the matching algo- 
rithm, matrix inversion, can be accomplished 
in several ways: by Guassian elimination, a 
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greedy algorithm, or by Strassen’s method 
(see [AHU]), which is based on divide and 
conquer. Thus by suitably implementing 
matrix inversion, the matlching algorithm 
acquires a greedy/divide-and-conquer fla- 
vour. This opens the possibility of a com- 
binatorial algorithm for matching which has 
this flavour. Notice that the algorithm 
presented relies critically on the choice of a 
suitable generalization of matching: the 
weighted problem with the additional condi- 
tion that there is a unique minimum weight 
perfect matching. Whereas it is unlikely that 
there is a greedy/divide-and-conquer algo- 
rithm for matching itself, the results 
presented in this paper indicate that it is not 
unreasonable to expect a combinatorial algo- 
rithm for the generalized problem, or a suit- 
able modification. 

In applying the isolating lemma to the 
case of perfect matchings, it seems that sub- 
stituting random integers from [l, 2n3 
should suffice where IVI = n. This will 
improve the processor-efficiency of the paral- 
lel algorithm and the running time of the 
sequential Las Vegas algorithm. 

Notice that the proof of the isolating 
lemma relies on the independence of the 
weights of the elements. It would be interest- 
ing to study how crucial the role of indepen- 
dence is. The semi-random source, intro- 
duced in [SV] and [Vaz], mathematically 
models dependence using the notion of an 
adversary. Thus one could study the proba- 
bility that the minimum weight set is unique, 
if the weights of the elements are assigned 
by a semi-random source. One possible for- 
mulation is the following: 

Let (S,F) be a set system with 
s= {Xl, * - * x,}. Each element of S is 
assigned a label by the roll of an m+ k sided 
dice whose k faces are labelled with *, and 
the remaining faces are numbered from 1 to 
m. Each face is equally likeby to appear. The 
adversary now looks at all the outcomes and 
assigns weights from [1, * * u m] to the *‘ed 
elements, trying to ensure that the minimum 
weight set in F is not unique. The problem 
is to place good bounds on .m and k so that 
despite the adversary, the minimum weight 

set in F is u:niclue with probability at Ileast 
half. 

An important open problem remaining 
is whether the maximum matching probIem 
is in (determmistic) NC. Currently, incom- 
parability graphs is the largest class of 
graphs for which this problem is known to be 
in NC [KVV]. It may be easier to solve the 
decision problem, ‘Does the given graph 
have a perfect matching?‘, before tackling 
the general search problem. The following 
modified decision problem is known to be in 
hTC, ‘Does the given bipartite graph have a 
unique perfect matching?’ [KVV]. 
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