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Abstra
t

We provide positive and negative results 
on
erning the \standard

method" of identifying a hidden subgroup of a nonabelian group using a

quantum 
omputer.

1 Introdu
tion

1.1 Overview

The hidden subgroup problem is at present the keystone problem in quantum


omputation. We are given a fun
tion f : G ! S, with the property that f is


onstant on 
osets of an unknown subgroup H � G, and distin
t on distin
t


osets. Here f is given as an ora
le or as an eÆ
ient 
lassi
al program, and S

is an arbitrary set. The problem is to determine the hidden subgroup H .

The diÆ
ulty of the task depends on the type of group G. The abelian 
ase


an be e�e
tively 
omputed with a quantum 
omputer by repetition of 
oset

state preparation and Fourier sampling | the \standard method" developed by

Simon [13℄ and Shor [12℄. In parti
ular this method is the heart of Shor's solution

of the dis
rete logarithm and fa
toring problems. In [7℄ Kitaev formulated the

\abelian stabilizer" problem, whi
h he solved by his somewhat di�erent \phase

estimation" te
hnique. Stabilizer problems are a spe
ial 
ase of hidden subgroup

problems, but in
lude the key examples.

The status of the nonabelian hidden subgroup problem is one of the most

fundamental open problems in quantum algorithms. In parti
ular, the graph au-

tomorphism and isomorphism problems may be formulated as hidden subgroup

�
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problems over the symmetri
 group S

n

(see [8℄). It is natural to generalize

the standard method for the abelian hidden subgroup problem to nonabelian

groups. Fourier transforms over nonabelian groups are de�ned in terms of the

irredu
ible 
omplex representations of the group. There are eÆ
ient quantum


ir
uits for 
omputing these transforms for some groups of interest su
h as the

symmetri
 group (see for example [1, 3, 9℄). However, sin
e the dimension

of these irredu
ible representations is in general greater than one, the Fourier

transform is not unique, and is de�ned only up to a unitary 
hange of basis for

ea
h irredu
ible. The Fourier sampling step in the standard method now yields

the name of an irredu
ible representation �, together with the indi
es i; j of the

entry within that irredu
ible. The main question, then, is whether the statisti
s

of a sample from the Fourier transform of a 
oset state reveal suÆ
ient infor-

mation about the hidden subgroup, to allow for eÆ
ient re
onstru
tion. One

would hope that this approa
h is robust, in the sense that the answer to this

question should not depend on the arbritary 
hoi
e of basis within ea
h irre-

du
ible. Our main result is that with respe
t to a random 
hoi
e of basis, the

Fourier sampling statisti
s reveal, in general, an exponentially small amount of

information about the hidden subgroup. It is still possible that a 
lever 
hoi
e

of basis within ea
h irredu
ible 
an solve the hidden subgroup problem.

Given how algebrai
ally arbitrary this basis 
hoi
e is, this seems somewhat

unlikely. Ideally, one might hope to go beyond the standard method, whi
h is

the basis of almost all exponential speedups of quantum algorithms over their


lassi
al 
ounterparts. A re
ent ex
eption to this rule is [14℄.

Our lower bound on the runtime of the standard method, for subgroups of

a group G, depends upon two parameters: the size of the hidden subgroup H

(naturally the problem be
omes easy if H is very large), and 
(G), the number

of 
onjuga
y 
lasses in G. We give a lower bound showing that approximately

�

p

jGj

jHj

p


(G)

�

1=3

rounds of Fourier sampling are required before the standard

method 
an identify H .

For the spe
ial 
ase of hidden subgroups of order 2 in S

n

, this yields a

lower bound of approximately (k!)

1=6

repetitions of Fourier sampling in order

to determine the 
orre
t non-identity element of H , where k is the number of

transpositions in this element. Hallgren, Russell and Ta-Shma [6℄ independently

obtained a similar bound for the weak form of the standard method, where only

the name of the irredu
ible representation � is measured, and the indi
es i; j

are ignored.

On the positive side, Hallgren, Russell and Ta-Shma [6℄ showed that the weak

form of the standard method for abelian groups eÆ
iently �nds hidden normal

subgroups in nonabelian groups. We 
onsider a measure of nonabelianness of

a group G | the size of M(G), the interse
tion of all normalizer subgroups.

We say that the group is almost abelian if the index of M(G) in G is small,

and we show that there is a polynomial time algorithm (no longer just Fourier

sampling on
e) for the HSP for any almost abelian group. The new 
lass of

groups for whi
h there is an eÆ
ient quantum algorithm for the HSP in
ludes
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the parti
ular example of the semidire
t produ
t C

3

oC

m

for large m (here C

k

is the 
y
li
 group with k elements).

Some other interesting previous work on the positive side 
on
erns query


omplexity. Ettinger, H�yer and Knill [5℄ show that for any group there exists

a sequen
e of polynomially many queries, from whi
h, with exponentially many

measurements, we 
an re
onstru
t the hidden subgroup. For the spe
ial 
ase of

the dihedral group D

n

Ettinger and H�yer [4℄ showed how to obtain suÆ
ient

statisti
al information about the hidden subgroup using polynomially many

queries and polynomially many measurements; leaving open the question of

whether there is an eÆ
ient re
onstru
tion algorithm using that data. The

dihedral group is interesting be
ause by some measures it is not far from abelian,

for instan
e none of its irreps have dimension greater than 2; on the other hand

by our measure de�ned above, it is highly nonabelian, sin
e jM(D

n

)j � 2.

1.2 The Fourier transform and the standard method for

hidden subgroup 
omputation

We �rst re
all some basi
 group representation theory [11℄. Given a group G,

a matrix representation is a group homomorphism �: G ! GL(d

�

; C ), where

GL(d; C ) is the group of invertible d�d 
omplex matri
es. A �nite group G has

a �nite list of inequivalent irredu
ible representations f�g, whi
h we hen
eforth


all its irreps. Without loss of generality we may assume the irreps are unitary.

The sum of the squares of irrep dimensions

P

�

d

2

�

equals jGj, the order of the

group.

To every group element g we asso
iate a 
omplex ve
tor of dimension jGj,

indexed by triples �; i; j where � is an irrep and 1 � i; j � d

�

indi
ate an entry

of the matrix �. The ve
tor asso
iated with g has value

p

d

�

�

ij

(g)

p

jGj

in the �; i; j

entry.

The Fourier transform over G is the extension of this mapping by linear-

ity to the ve
tor spa
e C

G

of 
omplex linear 
ombinations of group elements.

This linear mapping (whose matrix we will denote F ) is unitary; this fa
t is a


onsequen
e of the orthogonality relations for group representations.

The trivial representation is the 1-dimensional homomorphism whi
h as-

signs to every group element the number 1. For a subset S of G, de�ne

jSi =

1

p

jSj

P

g2S

jgi and �(S) = �(jSi) =

1

p

jSj

P

g2S

�(g). The orthogonal-

ity relations imply that �(G) is

p

jGj when � is the trivial representation, and a

zero matrix otherwise. (As mentioned above, the Fourier transform has a s
alar

fa
tor

p

d

�

=jGj, so this 
orresponds to the fa
t that the Fourier transform of

the unit norm uniform superposition on G, is 1 on the trivial representation and

0 elsewhere.)

C

G

has an additional stru
ture beyond its ve
tor spa
e stru
ture: it is also an

algebra over C , using the produ
t whi
h is the extension of the group produ
t by

linearity. This stru
ture is preserved by the Fourier transform, simply be
ause

ea
h irrep is a group homomorphism. This is what is often known, for abelian
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groups (where ea
h irrep is 1-dimensional), as the \
onvolution-multipli
ation"

property of the Fourier transform.

In the \standard method" for the hidden subgroup problem we begin by

forming the uniform superposition over a random 
oset gH of the hidden sub-

group H : in other words, we form

1

the uniform distribution over ve
tors jgHi.

First suppose that we know g (or at least gH), then we have the pure superposi-

tion jgHi. We then apply the Fourier transform to this superposition, obtaining

the ve
tor

1

p

jGjjH j

X

�;i;j

p

d

�

X

h2H

�

ij

(gh) j�; i; ji :

This gives rise to the probability distribution

P

gH

(j�; i; ji) =

d

�

jGjjH j

�

�

�

�

�

X

h2H

�

ij

(gh)

�

�

�

�

�

2

=

d

�

jGj

j�(gH)

ij

j

2

:

Sin
e we a
tually do not know g, and g is distributed uniformly, we sample �; i; j

with the probability

P

H

(j�; i; ji) =

1

jGj

X

g2G

P

gH

(j�; i; ji):

The su

ess of this method depends on how mu
h statisti
al information

about H is present in this distribution. In parti
ular: do a polynomial number

of samples suÆ
e to identify H with high probability? In the following �

�

(g)

denotes the 
hara
ter of � at g, whi
h is simply the tra
e of �(g).

Lemma 1 �(H) =

1

p

jHj

P

h2H

�(h) is

p

jH j times a proje
tion matrix, and

rank(�(H)) =

1

jHj

P

h2H

�

�

(h).

Proof: Restri
ted to H , � de
omposes into the dire
t sum of several irreps

�

1

; :::; �

k

. �(H) is the dire
t sum of �

i

(H); as dis
ussed above �

i

(H) is

p

jH j if

�

i

is the trivial representation of H , and zero otherwise. 2

A 
ertain amount of information about H is given just by sampling �, and

ignoring the matrix indi
es i and j. We refer to this as the \weak form" of

the standard method. In the normal 
ase this more limited information is al-

ready enough, and in fa
t no further information is available in the indi
es.

For general subgroups further information is present in the indi
es, and in the

\strong form" of the method, these are sampled as well; we will dis
uss this issue

1

To form this mixture of superpositions, we �rst form the uniform-amplitudes superposition

1

p

jGj

P

g2G

jg; 0i, and then 
ompute f , obtaining the superposition

1

p

jGj

P

g2G

jg; f(g)i.

We then measure f(g), whi
h determines the 
oset gH. The result is the superposition

1

p

jHj

P

h2H

jghi for a uniformly random g.

By not using f(g) to a�e
t the subsequent 
omputation, we are dis
arding some potentially

useful information. No proposal exists, however, for taking advantage of this information.
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below. First we show that, when we Fourier sample the unit norm uniform su-

perposition on gH , (i.e. sample from the probability distribution de�ned by the

Fourier transform of this superposition), the probability P

gH

(j�i) of sampling �

is independent of g.

Lemma 2

2

The probability of measuring � is the same for the uniform super-

position on the 
oset gH (or Hg), as for the superposition on H.

Proof: �(gH) = �(g)�(H) and �(g) is unitary. 2

Corollary 3 P

gH

(j�i) = P

H

(j�i) =

d

�

jGj

P

h2H

�

�

(h) =

jHjd

�

jGj

rank(�(H)).

Corollary 4 The probability of sampling � is the same for the subgroup H as

it is for a 
onjugate subgroup g

�1

Hg.

2 Normal H

Hallgren, Russell, and Ta-Shma [6℄ showed that the weak form of the stan-

dard method qui
kly obtains enough information to identify hidden normal

subgroups. This se
tion brie
y des
ribes how.

Re
all that in the standard method we sample from the Fourier transform

of the uniform superposition over a random 
oset gH of the hidden subgroup

H . In the weak form of this method, we just sample the name of the irredu
ible

� that results from this transform, and let N =

T

�

ker(�) for a sequen
e of

O(log jGj) su
h samples.

Theorem 5 [6℄ The interse
tion of ker(�) from O(log jGj) repetitions of Fourier

sampling is with high probability equal to the largest normal subgroup of the hid-

den subgroup.

We �rst show that when we restri
t attention to normal subgroups, all the

information about H is present in the label of the sampled irrep. By lemma 2,

the probability of sampling � is independent of the parti
ular 
oset gH : so we

will examine the uniform superposition on H .

Lemma 6 If H is a normal subgroup of G and � is an irrep of G, �(H) is a

nonnegative s
alar multiple of the identity I, nonzero if and only if H � ker(�).

Proof: Let �

1

; :::; �

k

be the de
omposition of � for H . We 
laim that if �

1

is

trivial, so are all the rest.

Let W be the spa
e � a
ts on. Let V be the 1-dimensional subspa
e of W

whi
h �

1

a
ts on. Sin
e � is irredu
ible over G, the elements g of G 
arry V

to a set of subspa
es spanning W . Sin
e H = gHg

�1

for every g, ea
h of the

images gV is invariant for H . 2

2

For methods that measure � but dis
ard i and j, Lemma 2 implies that there is no loss

in dis
arding f(g) as well. In parti
ular we may dis
ard f(g) when G is 
ommutative.
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To prove theorem 5, it suÆ
es to show that if N is the 
urrent interse
tion

of the kernels, but N 6� H , then with probability at most 1=2, the next Fourier

sampling will yield an irrep � su
h that N � ker(�). This probability is given

by:

X

�:N�ker(�)

d

�

jH jrank(�(H))

jGj

Observe that sin
e N is normal in G, Fourier sampling the superposition

jNHi (where NH is the set of ordered produ
ts of elements of N and H) yields

only irreps whose kernels 
ontain N . Again sin
e N is normal in G, NH is a

group, so we 
an write

1 =

X

�:N�ker(�)

d

�

jNH jrank(�(NH))

jGj

:

Next observe that �(NH) = �(N)�(H), whi
h is a nonzero s
alar multiple of

�(H) for any � whose kernel 
ontainsN . Hen
e when we Fourier sample from the

superposition jHi, the probability of obtaining an irrep � whose kernel 
ontains

N is

X

�:N�ker(�)

d

�

jH jrank(�(H))

jGj

=

=

X

�:N�ker(�)

d

�

jH jrank(�(NH))

jGj

�

1

2

X

�:N�ker(�)

d

�

jNH jrank(�(NH))

jGj

=

1

2

:

2

3 \Almost Abelian" Groups

3.1 Algorithm

The 
ase of normal subgroups was one way of extending the standard method

beyond the abelian 
ase. Another extension is to 
onsider the 
ase in whi
h the

interse
tion of the normalizers of all subgroups of G, is large. We will 
all this

interse
tion M(G). (Thus M(G) =

T

H

N(H) where the interse
tion ranges

over subgroups H of G.) For abelian groups, of 
ourse, M(G) = G. In order

for our algorithm to run in polynomial time (in n = log jGj), [G : M(G)℄ should

be exp(O(log

1=2

n)).

The basi
 method to identify the unknown H for \almost abelian" G begins

again with the observation that M(G) � N(H) � G.
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Lemma 7 M(G) is normal in G.

Proof: Let g 2 M(G) and a 2 G. We wish to show that aga

�1

2 N(H) 8H .

Fix H , then for any h 2 H ,

(aga

�1

)h(aga

�1

)

�1

= aga

�1

hag

�1

a

�1

:

Now a

�1

ha 2 a

�1

Ha, and sin
e g 2 M(G) � N(a

�1

Ha), it follows that

ga

�1

hag

�1

2 a

�1

Ha. But then, as desired,

aga

�1

hag

�1

a

�1

2 H:

2

The algorithm to determine H is this: for ea
h subgroup J of G 
ontaining

M(G), run the normal-subgroups algorithm on J and determine (with high

probability) its hidden subgroup H

J

. Then output the union of the H

J

.

Theorem 8 With high probability H =

S

J

H

J

, and, if [G :M(G)℄ 2 exp(O(log

1=2

n)),

the algorithm runs in polynomial time.

Proof: AlthoughN(H) is unknown,N(H)=M(G) is a subgroup ofG=M(G),

and the algorithm examines all possibilities. A group of order a has at most

2

lg

2

a

subgroups. Thus a bound of exp(O(log

1=2

n)) on [G : M(G)℄ guarantees

that we only need 
onsider polynomially many subgroups.

All of the hidden subgroups of the various J are subgroups of H ; at least

one of them is equal to H . The guarantees for the normal hidden subgroup

algorithm ensure that there is only a small probability that any H

J

produ
ed

by the algorithm di�ers from the hidden subgroup of J .

3.2 Example: extensions of groups

One way to 
onstru
t an almost abelian group is by extending one abelian group

A by another B. We say G is an extension of A by B if A is normal in G and

G=A ' B.

Here we'll 
onsider the spe
ial 
ase when G is the semidire
t produ
t of A

by B, written G = A o B. In other words, A is a normal subgroup of G, B is

isomorphi
 to a subgroup of G, AB = G and A \ B = f1g. The representation

theory of G = AoB is well understood in terms of that of A and B.

To de�ne the semidire
t produ
t, we need a homomorphism � : B ! Aut(A).

Then the group stru
ture of G = AB is de�ned by the identity

bab

�1

= (�(b))(a):

(Sin
e 
onstru
tion of G from A and B requires spe
i�
ation of �, one 
an

more 
arefully write G = A o

�

B. This is unne
essary when A and B are

spe
i�ed as parti
ular subgroups of a given G.)

We remark that � need not be inje
tive or surje
tive. In fa
t, it will be


onvenient for us to have ker(�) be large, be
ause ker(�) � Z(G) � M(G) so

this provides us with a large M(G). (Here Z(G) denotes the 
enter of G.)
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A basi
 example of a semidire
t produ
t is the dihedral group D

n

= hx; y j

x

2

= y

n

= 1;xyx

�1

= y

�1

i = C

n

o C

2

(where C

n

denotes a 
y
li
 group of

order n). The homomorphism � sends the nontrivial element x 2 C

2

to the map

y 7! y

�1

, be
ause xyx

�1

= y

�1

.

In the 
ontext of \almost abelian" groups we are interested in the following

example: G = C

3

oC

m

where m is a power of two. Let a be a generator for the

C

3

subgroup, and b a generator for the C

m

subgroup. We have bab

�1

= a

2

.

Let ! be a primitive 3'rd root of unity and � a primitive m'th root of unity.

G has m one-dimensional representations. These 
orrespond to the trivial


hara
ter of C

3

. Ea
h is indexed by 0 � k < m, and sends (a

i

; b

j

) to �

kj

.

G has m=2 two-dimensional representations. These 
orrespond to the 
har-

a
ter � of C

3

for whi
h �(a) = !. The m=2 representations, indexed by

0 � k < m=2, are

�

k

(a) =

�

! 0

0 !

2

�

�

k

(b) =

�

0 �

k

�

k

0

�

:

It is easy to modify the standard quantum Fourier transform 
ir
uits to 
om-

pute the Fourier transform for G. Given a group element (a

i

; b

j

), represented

as the pair ji; ji, begin with a Fourier transform over the group C

3

on the �rst

index, i. Conditional on the new value of the �rst index, i

0

, being 0, perform a

quantum Fourier transform over the group C

m

on j: this yields the superposi-

tion on the one-dimensional irreps. Conditional on i

0

being 1 or 2, separate j

into its low-order bit j

0

and the high order bits j

h

. Perform a quantum Fourier

transform over the group C

m=2

on j

h

. The result of the last transform indexes

the irrep, while i

0

and j

0

index the entry within the irrep.

4 General H

Up to now we have fo
ussed on the extent to whi
h information about H 
an

be dete
ted from the measuring just the name of the irrep, �. Of 
ourse we 
an

a
tually measure more, namely the row i and 
olumn j within �. It is possi-

ble that this 
ontributes substantially to our power. (In parti
ular, 
onjugate

subgroups give rise to identi
al distributions on irreps and so 
annot be told

apart without measuring the matrix indi
es within the irreps.) In this se
tion,

we establish limits on what further information 
an be obtained from the row

and 
olumn labels.

4.1 Rows provide no information

In this se
tion we show that there is no point in measuring the row i. (Whether

row or 
olumn depends on whether the group a
ts on the left or right. Here we

suppose the group a
ts on the left.) This is be
ause, 
onditional on measuring �

8



and j, the distribution on i is independent of H (a
tually it's always uniform);

we now show how this is due to the fa
t that in the standard method we average

over random 
osets gH .

For a parti
ular 
oset gH , the probability of sampling the entry i; j of � is

proportional to the norm squared of �(gH)

ij

. Thus the probability of sampling

entry i; j is the norm squared of the jGj-dimensional ve
tor (�(gH)

ij

)

g2G

with

entries indexed by g. Sin
e �(gH) = �(g)�(H), this ve
tor is a linear 
om-

bination of the jGj-dimensional ve
tors (�(g)

ik

)

g2G

, with 
oeÆ
ients �(H)

kj

.

By the orthogonality relations, the d

�

ve
tors (�(g)

ik

)

g2G

are orthonormal, and

therefore the norm squared of the jGj-dimensional ve
tor (�(gH)

ij

)

g2G

is equal

to the norm squared of the j-th 
olumn of �(H), and independent of i.

If we keep tra
k of the leading 
onstants, this argument shows:

Theorem 9 P

H

(j�; i; ji) =

1

jGj

j�(H)

j

j

2

2

.

4.2 Random basis

The Fourier transform is uniquely de�ned only up to a 
hange of basis within

ea
h irrep; for abelian groups all irreps are one-dimensional so there is no am-

biguity in the de�nition of the transform, but for nonabelian groups there is an

arbitrary 
hoi
e of basis to be made within ea
h irrep. How mu
h statisti
al

information is available by measuring the matrix entries i; j, in addition to the

irrep �, may in general be basis dependent. In this se
tion, we show that if we


hoose a random basis for ea
h irrep, then the additional information available

is negligible, provided that the subgroup H is suÆ
iently small and the group

G is suÆ
iently nonabelian.

Given an irrep � in a parti
ular basis, the probability of sampling the j-th


olumn of � is

d

�

jGj

j�(H)

j

j

2

2

(where �(H)

j

is the j-th 
olumn of �(H)). Thanks

to the previous se
tion, the row index i is uniformly random and therefore


an be ignored. Suppose we now 
hoose a di�erent basis for �, whi
h we do by

repla
ing � by the isomorphi
 irrep A

�1

�A for a unitary A. Then the probability

of measuring the j-th 
olumn in this modi�ed irrep is

d

�

jGj

j�(H)A

j

j

2

2

.

What we 
onsider here is the e�e
t of 
hoosing A from the Haar distribution

in the unitary group. The expe
ted value of the probability of measuring the

j-th 
olumn is the same for all j, sin
e ea
h A

j

is uniformly distributed on the

unit sphere. So the averaged distribution on 
olumns is P

H

= P

H

(j�; ji) =

R

P

H

(

�

�

A

�1

�A; j

�

)dA =

1

d

�

P

H

(j�i).

Let � =

p

jGj

jHj

p


(G)

where 
(G) is the number of 
onjuga
y 
lasses in G. This

parameter re
e
ts the apparent diÆ
ulty of the hidden subgroup problem that

is due to the small size of H and the degree of nonabelianness of G.

Theorem 10 Let " =

�

1

�

54

2�

p

3

ln

4jGj

Æ

�

1=3

. Then with probability at least 1� Æ

(over the 
hoi
e of random basis for the Fourier transform),

�

�

P

H

� P

H

�

�

1

� ".
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This theorem invites the question, whether it 
an be strengthened to show

(under suitable guarantees that H is small and G is fairly nonabelian) that,

no matter what bases are 
hosen for ea
h irrep, Fourier sampling does not

signi�
antly distinguish H from a uniformly random 
onjugate subgroup.

Proof: Our task is to show the following for suÆ
iently large �. If, in

ea
h irrep, A is 
hosen from the Haar measure on the unitary group, then,

for � sampled from the distribution P

H

(j�i), almost 
ertainly the probability

d

�

jGj

j�(H)A

j

j

2

2

of measuring the j-th 
olumn is 
lose to its expe
tation

1

d

�

P

H

(j�i).

This amounts to bounding the L

1

distan
e between the ve
tors P

H

and P

H

. We


onsider separately irreps � a

ording to whether rank(�(H)) is higher or lower

than the threshold T = "�=3.

Case I. For the high rank 
ase, we show that with probability at least 1 �

Æ, for all � and all j, j�(H)A

j

j

2

2

deviates from its expe
tation by at most a

2"=3 fra
tion. (Sin
e we are 
on
erned here only with fra
tional error we have

suppressed the leading s
ale fa
tor of the proje
tion

1

p

jHj

�(H).)

What we are 
onsidering is the following pro
ess: a unit ve
tor is 
hosen

uniformly in C

d

�

, then proje
ted onto a �xed subspa
e of dimension t > T ; by

appropriate 
hange of basis we 
an without loss of generality suppose that the

subspa
e is spanned by the �rst t basis ve
tors of C

d

�

. Let s be the probability

that the squared length of the proje
ted ve
tor di�ers from its expe
tation t=d

�

by a fra
tion greater than than 2"=3. Sin
e we will apply a union bound over all

� and j, it suÆ
es to show that s � Æ=jGj. To begin with, note that, due to the

isometri
 
orresponden
e between the unit spheres in C

d

�

and R

2d

�

, the problem

is equivalent to the same problem in real spa
es of twi
e the dimensions, namely

proje
tion of the unit sphere in R

2d

�

onto a 2t-dimensional subspa
e. Let M

denote the proje
tion matrix; in the appropriate basis it is diagonal, with 2t 1's

on the diagonal.

We analyze the uniform sampling from the unit sphere indire
tly, approxi-

mating it by the pro
ess of sampling a ve
tor v from the spheri
ally symmetri
,

2d

�

-dimensional unit varian
e Gaussian distribution. Let the proje
tion of v

be v

0

= Mv. (Note that v

0

is distributed a

ording to a 2t-dimensional Gaus-

sian distribution of varian
e t=d

�

.) Then

v

0

jvj

2

has the same distribution as

1

p

jHj

�(H)A

j

(with the understanding that pairs of real 
oordinates in the �rst

ve
tor form individual 
omplex 
oordinates in the se
ond). The probability s

that

�

�

�

v

0

jvj

2

�

�

�

2

deviates from its expe
tation by fra
tion 2"=3 is bounded by the

sum of the probabilities that jvj

2

and jv

0

j

2

deviate from their expe
tations by

fra
tion "=3.

We use the following large deviation bound: if a

1

; :::; a

�

are independent

Gaussian random variables ea
h with unit standard deviation, then

P (j

1

�

X

(a

2

i

� 1)j > ") < 2[(1 + ")

1=2

e

�"=2

℄

�

:

10



For " � 2, (1 + ")

1=2

e

�"=2

� exp(�"

2

2�

p

3

4

), and therefore

P (j

1

�

X

(a

2

i

� 1)j > ") < 2 exp(��"

2

2�

p

3

4

):

Sin
e this bound is de
reasing in � , and we are applying it with � = 2t > 2T ,

we 
on
lude that

s < 4 exp(�2T ("=3)

2

2�

p

3

4

) = 4 exp(��"

3

2�

p

3

54

):

In order to ensure that s � Æ=jGj it suÆ
es therefore that

�"

3

�

54

2�

p

3

ln

4jGj

Æ

as assumed. Therefore the L

1

distan
e between P

H

and P

H

due to high rank

irreps is at most 2"=3.

Case II. In the 
ase that the rank of � is low, rank(�(H)) � T , we 
an no

longer obtain a strong 
on
entration bound on the probability of sampling ea
h


olumn. Instead we will show that Fourier sampling pi
ks su
h an irrep with

probability p

T

� "=3.

Let K =

P

�

d

�

. We upper bound K by applying the Cau
hy-S
hwartz

inequality to the two ve
tors (1)

�

and (d

�

)

�

. The norm squared of the �rst

ve
tor is simply 
(G), the number of irreps of G. Now

K � (

X

�

1)

1=2

(

X

�

d

2

�

)

1=2

= 
(G)

1=2

jGj

1=2

:

By Corollary 3, P

H

(j�i) =

jHjd

�

jGj

rank(�(H)). So

p

T

=

X

�: rank(�(H))�T

P

H

(j�i)

�

jH jT

jGj

X

�: rank(�(H))�T

d

�

�

jH jT

jGj

X

�

d

�

=

jH jTK

jGj

whi
h from the pre
eding argument is bounded above by

jHjT

p


(G)

p

jGj

= T=�.

Sin
e we 
hose T = "�=3, this gives p

T

� "=3. 2

Corollary 11 With probability at least 1� Æ (over the 
hoi
e of random basis

for the Fourier transform), 
((

�

log(jGj=Æ)

)

1=3

) repetitions of Fourier sampling

are required in order to a
hieve 
onstant bias in distinguishing any two (a priori

equally probable) 
onjugate subgroups H and H

0

.
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Proof: The Hellinger distan
e D

H

(~p; ~q) =

P

(p

1=2

� q

1=2

)

2

between two distri-

butions ~p and ~q is additive a
ross independent samples, and obeys the inequal-

ities

j~p� ~qj

2

1

=4 � D

H

(~p; ~q) � j~p� ~qj

1

:

2

As an example 
onsider the symmetri
 group G = S

n

; we know that 
(G) =

exp(�(

p

n)). If jH j � jGj

1=2�


for a �xed 
 > 0 then we need exponentially

many samples to gain useful information from j.

4.3 Distinguishing jHj = 2 from jHj = 1

The graph automorphism problem redu
es, via polynomial time redu
tions [8℄,

to determining the size of the automorphism group in the spe
ial 
ase where

that is known to be either 1 or 2. So, although the weak form of the standard

method 
annot distinguish 
onjugate subgroups, one may still hope that it is

useful for the graph automorphism problem.

In this se
tion we show, however, that the weak form of the method is not

useful for this task. Taken in 
onjun
tion with the previous se
tion, this means

that even the strong form of the method, implemented with random bases,


annot solve the graph automorphism problem eÆ
iently.

Consider the problem of distinguishing H = fe; sg from H

0

= feg. Let C(s)

be the 
onjuga
y 
lass of s.

Theorem 12 The L

1

distan
e between the distributions on irreps due to Fourier

sampling from jHi and jH

0

i, is at most 1=

p

jC(s)j.

The equation P

H

(j�i) =

d

�

jGj

P

h2H

�

�

(h) implies that for H

0

, � is sampled with

probability d

2

�

=jGj; while forH , � is sampled with probability d

�

(d

�

+�

�

(s))=jGj.

So the L

1

distan
e between the distributions is

1

jGj

P

�

d

�

j�

�

(s)j.

We upper bound this using the Cau
hy-S
hwartz inequality and the following

equalities:

1.

P

�

d

2

�

= jGj.

2. jZ(s)j � jC(s)j = jGj.

3.

P

�

(�

�

(s))

2

= jZ(s)j.

Here Z(s) is the 
entralizer of s.

(1) is basi
. (2) follows by 
onsidering the a
tion of G on itself by 
onju-

gation, sin
e under this a
tion Z(s) is the stabilizer of s and C(s) is the orbit

of s. (3), whi
h generalizes (1), holds for the following reason. Re
all that the

unitary 
hara
ter table of G has 
onjuga
y 
lasses labeling 
olumns, irreps la-

beling rows, and the (�; s) entry is

q

jC(s)j

jGj

�

�

(s). Now sin
e ea
h 
olumn is unit

norm,

1 =

X

�

jC(s)j

jGj

(�

�

(s))

2

:

12



With (2) this shows (3). Now we 
an apply Cau
hy-S
hwartz.

�

�

jF jHi j

2

� jF jH

0

i j

2

�

�

1

=

1

jGj

X

�

d

�

j�

�

(s)j

�

1

jGj

[

X

�

d

2

�

℄

1=2

[

X

�

(�

�

(s))

2

℄

1=2

= (

jZ(s)j

jGj

)

1=2

= jC(s)j

�1=2

:

2

There are examples in whi
h it is 
hallenging to 
ompute s even though the


onjuga
y 
lass C(s) is known. Observe that in su
h 
ases this quantum algo-

rithm has at most a quadrati
 advantage over the simple probabilisti
 strategy

of 
he
king whether f(s

0

) = f(e) for a random 
onjugate s

0

.

We apply Theorem 12 in the 
ase that s is an involution in G = S

n

, i.e. s is

a produ
t of some k disjoint transpositions. In this 
ase jC(s)j =

n!

2

k

k!(n�2k)!

; as

a 
onvenient lower bound on this quantity, 
ount only those 
onjugates whi
h

transpose odd elements with even elements, of whi
h there are

�

dn=2e

k

��

bn=2


k

�

k! �

k!. So the L

1

distan
e between the distributions on irreps is at most (k!)

�1=2

.

In the graph automorphism appli
ation k 
an be proportional to n, in whi
h


ase this is exponentially small. A similar bound was independently obtained

by Hallgren, Russell and Ta-Shma [6℄.

Finally we 
ombine this bound with Theorem 10. Note that � =

p

n!

2�2

�(

p

n)

2

exp(

1

2

n lnn�O(n)), so:

Corollary 13 If we apply the standard method, using a random basis, to the

graph automorphism problem, then with probability at least 1�Æ the L

1

distan
e

between the Fourier sampling distribution given that the automorphism group

is trivial, and the Fourier sampling distribution given that the automorphism

group is of size 2 and 
ontains an involution with k transpositions, is at most

exp(�

1

6

n lnn+O(n)) log

1

3

1

Æ

+ (k!)

�1=2

.

Just as in Corollary 11, the upper bound on L

1

distan
e implies a lower

bound on the number of samples whi
h must be 
olle
ted in order to distinguish

the hypotheses reliably.
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