
5

Expander Flows, Geometric Embeddings

and Graph Partitioning

SANJEEV ARORA

Princeton University, Princeton, New Jersey

AND

SATISH RAO AND UMESH VAZIRANI

UC Berkeley, Berkeley, California

Abstract. We give a O(
√

log n)-approximation algorithm for the SPARSEST CUT, EDGE EXPANSION,
BALANCED SEPARATOR, and GRAPH CONDUCTANCE problems. This improves the O(log n)-approxima-
tion of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality
constraints. Central to our analysis is a geometric theorem about projections of point sets in �d , whose
proof makes essential use of a phenomenon called measure concentration.

We also describe an interesting and natural “approximate certificate” for a graph’s expansion,
which involves embedding an n-node expander in it with appropriate dilation and congestion. We call
this an expander flow.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms: Algorithms,Theory

Additional Key Words and Phrases: Graph partitioning, semidefinite programs, graph separators,
multicommodity flows, expansion, expanders

A preliminary version of this article appeared in Proceedings of the ACM Symposium on Theory of
Computing, ACM, New York, 2004.
This work was done partly while S. Arora was visiting UC Berkeley (2001–2002) and the Institute
for Advanced Study (2002–2003).
The work of S. Arora was Supported by David and Lucille Packard Fellowship and NSF Grants CCR-
0098180, CCR-0205594, MSPA-MCS 0528414, CCF-0514993, ITR-0205594, and CCF 0832797.
The work of S. Rao was Partially supported by NSF award CCR-0105533, CCF-0515304, and CCF-
0635357. The work of U. Vaziranti was Partially supported by NSF ITR Grant CCR-0121555.
Authors’ addresses: S. Arora, Princeton University, Department of Computer Science, 307 Computer
Science Building, Princeton, NJ08544, e-mail: arora@cs.princeton.edu; S. Rao and U. Vazirani,
University of California-Berkeley, Department of EECS/Computer Science, 671 Soda Hall, Berkeley,
CA 94720, e-mail: Vazurani@cs.berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0004-5411/2009/04-ART5 $5.00
DOI 10.1145/1502793.1502794 http://doi.acm.org/10.1145/1502793.1502794

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:2 S. ARORA ET AL.

ACM Reference Format:

Arora, S., Rao, S., and Vazirani, U. 2009. Expander flows, geometric embeddings, and graph parti-
tioning J. ACM 56, 2, Article 5 (April 2009), 37 pages. DOI = 10.1145/1502793.1502794
http://doi.acm.org/10.1145/1502793.1502794

1. Introduction

Partitioning a graph into two (or more) large pieces while minimizing the size of the
“interface” between them is a fundamental combinatorial problem. Graph partitions
or separators are central objects of study in the theory of Markov chains, geometric
embeddings and are a natural algorithmic primitive in numerous settings, including
clustering, divide and conquer approaches, PRAM emulation, VLSI layout, and
packet routing in distributed networks. Since finding optimal separators is NP-
hard, one is forced to settle for approximation algorithms (see Shmoys [1995]).
Here we give new approximation algorithms for some of the important problems
in this class.

Graph partitioning involves finding a cut with few crossing edges conditioned on
or normalized by the size of the smaller side of the cut. The problem can be made
precise in different ways, giving rise to several related measures of the quality of the
cut, depending on precisely how size is measured, such as conductance, expansion,
normalized or sparsest cut. Precise definitions appear in Section 2. These measures
are approximation reducible within a constact factor Leighton and Rao [1999], are
all NP-hard, and arise naturally in different contexts.

A weak approximation for GRAPH CONDUCTANCE follows from the connection—
first discovered in the context of Riemannian manifolds Cheeger [1970] —between
conductance and the eigenvalue gap of the Laplacian: 2�(G) ≥ λ ≥ �(G)2/2
[Alon and Milman 1985; Alon 1986; Jerrum and Sinclair 1989]. The approximation
factor is 1/�(G), and hence �(n) in the worst case, and O(1) only if �(G) is a
constant. This connection between eigenvalues and expansion has had enormous
influence in a variety of fields (see, e.g., Chung [1997]).

Leighton and Rao [1999] designed the first true approximation by giving
O(log n)-approximations for SPARSEST CUT and GRAPH CONDUCTANCE and O(log n)-
pseudo-approximations1 for c-BALANCED SEPARATOR. They used a linear program-
ming relaxation of the problem based on multicommodity flow proposed in
Shahrokhi and Matula [1990]. These ideas led to approximation algorithms for
numerous other NP-hard problems, see Shmoys [1995]. We note that the integral-
ity gap of the LP is �(log n), and therefore improving the approximation factor
necessitates new techniques.

In this article, we give O(
√

log n)-approximations for SPARSEST CUT, EDGE EX-
PANSION, and GRAPH CONDUCTANCE and O(

√
log n)-pseudo-approximation to c-

BALANCED SEPARATOR. As we describe below, our techniques have also led to new
approximation algorithms for several other problems, as well as a breakthrough in
geometric embeddings.

The key idea underlying algorithms for graph partitioning is to spread out the
vertices in some abstract space while not stretching the edges too much. Finding a

1 For any fixed c′ < c the pseudo-approximation algorithm finds a c′-balanced cut whose expansion
is at most O(log n) times expansion of the best c-balanced cut.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:3

good graph partition is then accomplished by partitioning this abstract space. In the
eigenvalue approach, the vertices are mapped to points on the real line such that the
average squared distance is constant, while the average squared distance between
the endpoints of edges is minimized. Intuitively, snipping this line at a random
point should cut few edges, thus yielding a good cut. In the linear programming
approach, lengths are assigned to edges such that the average distance between
pairs of vertices is fixed, while the average edge length is small. In this case, it can
be shown that a ball whose radius is drawn from a particular distribution defines
a relatively balanced cut with few expected crossing edges, thus yielding a sparse
cut.

Note that by definition, the distances in the linear programming approach form
a metric (i.e., satisfy the triangle inequality) while in the eigenvalue approach they
don’t. On the other hand, the latter approach works with a geometric embedding of
the graph, whereas there isn’t such an underlying geometry in the former.

In this article, we work with an approach that combines both geometry and the
metric condition. Consider mapping the vertices to points on the unit sphere in �n

such that the squared distances form a metric. We refer to this as an �2
2-representation

of the graph. We say that it is well-spread if the average squared distance among
all vertex pairs is a fixed constant, say ρ. Define the value of such a representation
to be the sum of squared distances between endpoints of edges. The value of the
best representation is (up to a factor 4) a lower bound on the capacity of the best
c-balanced separator, where 4c(1− c) = ρ. The reason is that every c-balanced cut
in the graph corresponds to a �2

2 representation in a natural way: map each side of
the cut to one of two antipodal points. The value of such a representation is clearly
4 times the cut capacity since the only edges that contribute to the value are those
that cross the cut, and each of them contributes 4. The average squared distance
among pairs of vertices is at least 4c(1 − c).

Our approach starts by finding a well-spread representation of minimum value,
which is possible in polynomial time using semidefinite programming. Of course,
this minimum value representation will not in general correspond to a cut. The crux
of this paper is to extract a low-capacity balanced cut from this embedding.

The key to this is a new result (Theorem 1) about the geometric structure of
well-spread �2

2-representations: they contain �(n) sized sets S and T that are well-
separated, in the sense that every pair of points vi ∈ S and v j ∈ T must be at least
� = �(1/

√
log n) apart in �2

2 (squared Euclidean) distance. The set S can be used
to find a good cut as follows: consider all points within some distance δ ∈ [0, �]
from S, where δ is chosen uniformly at random. The quality of this cut depends
upon the value of representation. In particular, if we start with a representation of
minimum value, the expected number of edges crossing such a cut must be small,
since the length of a typical edge is short relative to �.

Furthermore, the sets S and T can be constructed algorithmically by projecting
the points on a random line as follows (Section 3): for suitable constant c, the
leftmost cn and rightmost cn points on the line are our first candidates for S and T .
However, they can contain pairs of points vi ∈ S, v j ∈ T whose squared distance is
less than �, which we discard. The technically hard part in the analysis is to prove
that not too many points get discarded. This delicate argument makes essential use
of a phenomenon called measure concentration, a cornerstone of modern convex
geometry (see Ball [1997]).

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:4 S. ARORA ET AL.

The result on well-separated sets is tight for an n-vertex hypercube—specifically,
its natural embedding on the unit sphere in �log n which defines an �2

2 metric—where
measure concentration implies that any two large sets are within O(1/

√
log n)

distance. The hypercube example appears to be a serious obstacle to improving the
approximation factor for finding sparse cuts, since the optimal cuts of this graph
(namely, the dimension cuts) elude all our rounding techniques. In fact, hypercube-
like examples have been used to show that this particular SDP approach has an
integrality gap of �(log log n) [Devanuretal et al. 2006; Krauthgamer and Rabani
2006].

Can our approximation ratio be improved over O(
√

log n)? In Section 8, we
formulate a sequence of conditions that would imply improved approximations.
Our theorem on well-separated sets is also important in study of metric embeddings,
which is further discussed below.

1.1. EXPANDER FLOWS. While SDPs can be solved in polynomial time, the run-
ning times in practice are not very good. Ideally, one desires a faster algorithm,
preferably one using simple primitives like shortest paths or single commodity
flow. In this article, we initiate such a combinatorial approach that realizes the
same approximation bounds as our SDP-based algorithms, but does not use SDPs.
Though the resulting running times in this article are actually inferior to the SDP-
based approach, subsequent work has led to algorithms that are significantly faster
than the SDP-based approach.

We design our combinatorial algorithm using the notion of expander flows, which
constitute an interesting and natural “certificate” of a graph’s expansion. Note
that any algorithm that approximates edge expansion α = α(G) must implicitly
certify that every cut has large expansion. One way to do this certification is to
embed2 a complete graph into the given graph with minimum congestion, say
μ. (Determining μ is a polynomial-time computation using linear programming.)
Then, it follows that every cut must have expansion at least n/μ. (See Section 7.)
This is exactly the certificate used in the Leighton-Rao paper, where it is shown that
congestion O(n log n/α(G)) suffices (and this amount of congestion is required on
some worst-case graphs). Thus, embedding the complete graph suffices to certify
that the expansion is at least α(G)/ log n.

Our certificate can be seen as a generalization of this approach, whereby we
embed not the complete graph but some flow that is an “expander” (a graph whose
edge expansion is �(1)). We show that for every graph there is an expander flow
that certifies an expansion of �(α(G)/

√
log n) (see Section 7). This near-optimal

embedding of an expander inside an arbitrary graph may be viewed as a purely
structural result in graph theory. It is therefore interesting that this graph-theoretic
result is proved using geometric arguments similar to the ones used to analyse our
SDP-based algorithm. (There is a natural connection between the two algorithms
since expander flows can be viewed as a natural family of dual solutions to the
above-mentioned SDP, see Section 7.4.) In fact, the expander flows approach was
the original starting point of our work.

2 Note that this notion of graph embedding has no connection in general to geometric embeddings of
metric spaces, or geometric embeddings of graphs using semidefinite programming. It is somewhat
confusing that all these notions of embeddings end up being relevant in this article.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:5

How does one efficiently compute an expander flow? The condition that the
multicommodity flow is an expander can be imposed by exponentially many lin-
ear constraints. For each cut, we have a constraint stating that the amount of flow
across that cut is proportional to the number of vertices on the smaller side of the
cut. We use the Ellipsoid method to find the feasible flow. At each step, we have
to check if any of these exponentially many constraints are violated. Using the fact
that the eigenvalue approach gives a constant factor approximation when the edge
expansion is large, we can efficiently find violated constraints (to within constant
approximation), and thus find an approximately feasible flow in polynomial time
using the Ellipsoid method. Arora et al. [2004] used this framework to design an
efficient Õ(n2) time approximation algorithm, thus matching the running time of
the best implementations of the Leighton–Rao algorithm. Their algorithm may be
thought of as a primal-dual algorithm and proceeds by alternately computing eigen-
values and solving min-cost multicommodity flows. Khandekar et al. [2006] use
the expander flow approach to break the Õ(n2) multicommodity flow barrier and
rigorously analyse an algorithm that resembles some practially effective heuristics
[Lang and Rao 2004]. The analysis gives a worse O(log2 n) approximation for
SPARSEST CUT but requires only O(log2 n) invocations of a single commodity max-
imum flow algorithm. Arora and Kale [2007] have improved this approximation
factor to O(log n) with a different algorithm. Thus one has the counterintuitive re-
sult that an SDP-inspired algorithm runs faster than the older LP-inspired algorithm
a la Leighton-Rao, while attaining the same approximation ratio. Arora and Kale
also initiate a new primal-dual and combinatorial approach to other SDP-based
approximation algorithms.

1.2. RELATED PRIOR AND SUBSEQUENT WORK.

1.2.1. Semidefinite Programming and Approximation Algorithms. Semidef-
inite programs (SDPs) have numerous applications in optimization. They are
solvable in polynomial time via the ellipsoid method Grötschel et al. [1993], and
more efficient interior point methods are now known [Alizadeh 1995; Nesterov
and Nemirovskii 1994]. In a seminal paper, Goemans and Williamson [1995] used
SDPs to design good approximation algorithms for MAX-CUT and MAX-k-SAT.
Researchers soon extended their techniques to other problems [Karger et al. 1998;
Karloff and Zwick 1997; Goemans 1998], but lately progress in this direction had
stalled. Especially in the context of minimization problems, the GW approach of
analyzing “random hyperplane” rounding in an edge-by-edge fashion runs into
well-known problems. By contrast, our theorem about well separated sets in �2

2
spaces (and the “rounding” technique that follows from it) takes a more global view
of the metric space. It is the mathematical heart of our technique, just as the region-
growing argument was the heart of the Leighton-Rao technique for analyzing
LPs.

Several papers have pushed this technique further, and developed closer analogs
of the region-growing argument for SDPs using our main theorem. Using this they
design new

√
log n-approximation algorithms for graph deletion problems such as

2CNF-DELETION and MIN-UNCUT [Agarwal et al. 2005], for MIN-LINEAR ARRANGEMENT
[Charikar et al. 2006; Feige and Lee 2007], and VERTEX SEPARATORS [Feige et
al. 2005]. Similarly, MIN-VERTEX COVER can now be approximated upto a factor
2 − �(1/

√
log n) [karakostas 2005], an improvement over 2 − �(log log n/ log n)

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:6 S. ARORA ET AL.

achieved by prior algorithms. Also, a O(
√

log n) approximation algorithm for node
cuts is given in Feige et al. [2005].

However, we note that the Structure Theorem does not provide a blanket improve-
ment for all the problems for which O(log n) algorithms were earlier designed using
the Leighton-Rao technique. In particular, the integrality gap of the SDP relaxation
for MIN-MULTICUT was shown to be �(log n) [Aggarwal et al. 2005], the same (upto
a constant factor) as the integrality gap for the LP relaxation.

1.2.2. Analysis of Random Walks. The mixing time of a random walk on a
graph is related to the first nonzero eigenvalue of the Laplacian, and hence to the
edge expansion. Of various techniques known for upper bounding the mixing time,
most rely on lower bounding the conductance. Diaconis and Saloff-Coste [1993]
describe a very general idea called the comparison technique, whereby the edge
expansion of a graph is lower bounded by embedding a known graph with known
edge expansion into it. (The embedding need not be efficiently constructible; ex-
istence suffices.) Sinclair [1992] suggested a similar technique and also noted that
the Leighton–Rao multicommodity flow can be viewed as a generalization of the
Jerrum–Sinclair [1989] canonical path argument. Our results on expander flows im-
ply that the comparison technique can be used to always get to within O(

√
log n)

of the correct value of edge expansion.

1.2.3. Metric Spaces and Relaxations of the Cut Cone. The graph partitioning
problem is closely related to geometric embeddings of metric spaces, as first pointed
out by Linial et al. [1995] and Aumann and Rabani [1998]. The cut cone is the
cone of all cut semi-metrics, and is equivalent to the cone of all �1 semi-metrics.
Graph separation problems can often be viewed as the optimization of a linear
function over the cut cone (possibly with some additional constraints imposed).
Thus, optimization over the cut cone is NP-hard. However, one could relax the
problem and optimize over some other metric space, embed this metric space in
�1 (hopefully, with low distortion), and then derive an approximation algorithm.
This approach is surveyed in Shmoys’s survey [1995]. The integrality gap of the
obvious generalization of our SDP for NONUNIFORM SPARSEST CUT is exactly the
same as as the worst-case distortion incurred in embedding n-point �2

2 metrics into
�1. A famous result of Bourgain shows that the distortion is at most O(log n), which
yields an O(log n)-approximation for NONUNIFORM SPARSEST CUT. Improving this
has been a major open problem.

The above connection shows that an α(n) approximation for conductance and
other measures for graph partitioning would follow from any general upper bound
α(n) for the minimum distortion for embedding �2

2 metrics into �1. Our result on
well-separated sets has recently been used [Arora et al. 2008] to bound this dis-
tortion by O(

√
log n log log n), improving on Bourgain’s classical O(log n) bound

that applies to any metric. In fact, they give a stronger result: an embedding of �2
2

metrics into �2. Since any �2 metric is an �1 metric, which in turn is an �2
2 metric, this

also gives an embedding of �1 into �2 with the same distortion. This almost resolves
a central problem in the area of metric embeddings, since any �2 embedding of
the hypercube, regarded as an �1 metric, must suffer an �(

√
log n) distortion

[Enflo 1969].
A key idea in these new developments is our above-mentioned main theorem

about the existence of well-separated sets S, T in well-spread �2
2 metrics. This can

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:7

be viewed as a weak “average case” embedding from �2
2 into �1 whose distortion is

O(
√

log n). This is pointed out by Chawla et al. [2005], who used it together with
the measured descent technique of Krauthgamer et al. [2005] to show that n-point
�2

2 metrics embed into �2 (and hence into �1) with distortion O(log3/4 n). Arora
et al. [2008] improved this distortion to O(

√
log n log log n), which is optimal up

to log log n factor.
To see why our main theorem is relevant in embeddings, realize that usually the

challenge in producing such an embedding is to ensure that the images of any two
points from the original �2

2 metric are far enough apart in the resulting �1 metric. This
is accomplished in Arora et al. [2008] by considering dividing possible distances
into geometrically increasing intervals and generating coordinates at each distance
scale. Our main theorem is used to find a well-separated pair of sets, S and T ,
for each scale, and then to use “distance to S” as the value of the corresponding
coordinate. Since each node in T is at least �/

√
log n away from every node in

S, this ensures that a large number of �-separated pairs of nodes are far enough
apart. The O(

√
log n log log n) bound on the distortion requires a clever accounting

scheme across distance scales.
We note that above developments showed that the integrality gap for NONUNIFORM

SPARSEST CUT is O(
√

log n log log n). There was speculation that the integrality gap
may even be O(1), but Khot and Vishnoi [2005] have shown it is at least (log log n)ε

for some ε > 0.

2. Definitions and Results

We first define the problems considered in this article; all are easily proved to be
NP-hard [Leighton and Rao 1999]. Given a graph G = (V, E), the goal in the
UNIFORM SPARSEST CUT problem is to determine the cut (S, S) (where |S| ≤ ∣∣S∣∣
without loss of generality) that minimizes∣∣E(S, S)

∣∣
|S| ∣∣S∣∣ . (1)

Since |V | /2 ≤ ∣∣S∣∣ ≤ |V |, up to a factor 2 computing the sparsest cut is the same
as computing the edge expansion of the graph, namely,

α(G) = min
S⊆V,|S|≤|V |/2

∣∣E(S, S)
∣∣

|S| .

Since factors of 2 are inconsequential in this article, we use the two problems inter-
changeably. Furthermore, we often shorten UNIFORM SPARSEST CUT to just SPARSEST
CUT. In another related problem, c-BALANCED-SEPARATOR, the goal is to determine
αc(G), the minimum edge expansion among all c-balanced cuts. (A cut (S, S) is
c-balanced if both S, S have at least c |V | vertices.) In the GRAPH CONDUCTANCE
problem, we wish to determine

�(G) = min
S⊆V,|E(S)|≤|E |/2

∣∣E(S, S)
∣∣

|E(S)| , (2)

where E(S) denotes the multiset of edges incident to nodes in S (i.e., edges with
both endpoints in S are included twice).

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:8 S. ARORA ET AL.

There are well-known interreducibilities among these problems for approxima-
tion. The edge expansion, α, of a graph is between n/2 and n times the optimal
sparse cut value. The conductance problem can be reduced to the sparsest cut prob-
lem by replacing each node with a degree d with a clique on d nodes; any sparse
cut in the transformed graph does not split cliques, and the sparsity of any cut (that
does not split cliques) in the transformed graph is within a constant factor of the
conductance of the cut. The sparsest cut problem can be reduced to the conductance
problem by replacing each node with a large (say sized C = n2 size) clique. Again,
small cuts don’t split cliques and a (clique nonsplitting) cut of conductance � in
the transformed graph corresponds to the a cut in the original of sparsity �/C2.
The reductions can be bounded degree as well [Leighton and Rao 1999].

As mentioned, all our algorithms depend upon a geometric representation of the
graph.

Definition 1 (�2
2-representation). An �2

2-representation of a graph is an assign-
ment of a point (vector) to each node, say vi assigned to node i , such that for all
i, j, k: ∣∣vi − v j

∣∣2 + ∣∣v j − vk
∣∣2 ≥ |vi − vk |2 (triangle inequality) (3)

An �2
2-representation is called a unit-�2

2 representation if all points lie on the unit
sphere (or equivalently, all vectors have unit length.)

Remark 1. We mention two alternative descriptions of unit �2
2-representations

that however will not play an explicit role in this article. (i) Geometrically speaking,
the above triangle inequality says that every vi and vk subtend a nonobtuse angle
at v j . (ii) Every positive semidefinite n × n matrix has a Cholesky factorization,
namely, a set of n vectors v1, v2, . . . , vn such that Mi j = 〈vi , v j 〉. Thus, a unit-
�2

2-representation for an n node graph can be alternatively viewed as a positive
semidefinite n × n matrix M whose diagonal entries are 1 and ∀i, j, k, Mi j +
M jk − Mik ≤ 1.

We note that an �2
2-representation of a graph defines a so-called �2

2 metric on the
vertices, where d(i, j) = |vi − v j |2. We’ll now see how the geometry of �2

2 relates
to the properties of cuts in a graph.

Every cut (S, S) gives rise to a natural unit-�2
2-representation, namely, one

that assigns some unit vector v0 to every vertex in S and −v0 to every vertex
in S.

Thus, the following SDP is a relaxation for αc(G) (scaled by cn).

min
1

4

∑
{i, j}∈E

|vi − v j |2 (4)

∀i |vi |2 = 1 (5)

∀i, j, k |vi − v j |2 + |v j − vk |2 ≥ |vi − vk |2 (6)∑
i< j

|vi − v j |2 ≥ 4c(1 − c)n2 (7)

This SDP motivates the following definition.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:9

Definition 2. An �2
2-representation is c-spread if equation (7) holds.

Similarly, the following is a relaxation for SPARSEST CUT (up to scaling by n; see
Section 6).

min
∑

{i, j}∈E

|vi − v j |2 (8)

∀i, j, k |vi − v j |2 + ∣∣v j − vk
∣∣2 ≥ |vi − vk |2 (9)∑

i< j

|vi − v j |2 = 1 (10)

As we mentioned before, the SDPs subsume both the eigenvalue approach and
the Leighton–Rao approach [Goemans 1998]. We show that the optimum value of
the SPARSEST CUT SDP is �(α(G)n/

√
log n), which shows that the integrality gap

is O(
√

log n).

2.1. MAIN THEOREM ABOUT �2
2-REPRESENTATIONS. In general, �2

2-
representations are not well-understood.3 This is not surprising since in �d

the representation can have at most 2d distinct vectors [Danzer and Branko
1962], so our three-dimensional intuition is of limited use for graphs with more
than 23 vertices. The technical core of our article is a new theorem about unit
�2

2-representations.

Definition 3 (�-separated). If v1, v2, . . . , vn ∈ �d , and � ≥ 0, two disjoint
sets of vectors S, T are �-separated if for every vi ∈ S, v j ∈ T ,

∣∣vi − v j
∣∣2 ≥ �.

THEOREM 1 (MAIN). For every c > 0, there are c′, b > 0 such that every
c-spread unit-�2

2-representation with n points contains �-separated subsets S, T
of size c′n, where � = b/

√
log n. Furthermore, there is a randomized polynomial-

time algorithm for finding these subsets S, T .

Remark 2. The value of � in this theorem is best possible up to a constant
factor, as demonstrated by the natural embedding (scaled to give unit vectors)
of the Boolean hypercube {−1, 1}d . These vectors form a unit �2

2-representation,
and the isoperimetric inequality for hypercubes shows that every two subsets of
�(n) vectors contain a pair of vectors — one from each subset — whose squared
distance is O(1/

√
log n) (here n = 2d). Theorem 1 may thus be viewed as saying

that every �(1)-spread unit �2
2-representation is “hypercube-like” with respect to

the property mentioned in the theorem. Some may view this as evidence for the
conjecture that �2

2-representations are indeed like hypercubes (in particular, embed
in �1 with low distortion). The recent results in Chawla et al. [2005] and Arora
et al. [2008], which were inspired by our article, provide partial evidence for this
belief.

2.1.1. Corollary to Main Theorem,
√

log n-approximation. Let W = ∑
{i, j}∈E

1
4

∣∣vi − v j
∣∣2

be the optimum value for the SDP defined by Eqs. (4)–(7). Since the
vectors vi ’s obtained from solving the SDP satisfy the hypothesis of Theorem 1,

3 As mentioned in the introduction, it has been conjectured that they are closely related to the better-
understood �1 metrics.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:10 S. ARORA ET AL.

FIG. 1. Vr is the set of nodes whose distance on the weighted graph to S is at most r . Set of edges
leaving this set is Er .

as an immediate corollary to the theorem we show how to produce a c′-
balanced cut of size O(W

√
log n). This uses the region-growing argument of

Leighton–Rao.

COROLLARY 2. There is a randomized polynomial-time algorithm that finds
with high probability a cut that is c′-balanced, and has size O(W

√
log n).

PROOF. We use the algorithm of Theorem 1 to produce �-separated subsets S, T
for � = b/

√
log n. Let V0 denote the vertices whose vectors are in S. Associate

with each edge e = {i, j} a length we = 1
4

∣∣vi − v j
∣∣2

. (Thus, W = ∑
e∈E we.) S

and T are at least � apart with respect to this distance. Let Vs denote all vertices
within distance s of S. Now we produce a cut as follows: pick a random number r
between 0 and �, and output the cut (Vr , V − Vr). Since S ⊆ Vr and T ⊆ V \ Vr ,
this is a c′-balanced cut. (See Figure 1)

To bound the size of the cut, we denote by Er the set of edges leaving Vr . Each
edge e = {i, j} only contributes to Er for r in the open interval (r1, r2), where
r1 = d(i, V0) and r2 = d(j, V0). Triangle inequality implies that |r2 − r1| ≤ we.
Hence

W =
∑

e

we ≥
∫ �

s=0
|Es | .

Thus, the expected value of |Er | over the interval [0, �] is at most W/�. The al-
gorithm thus produces a cut of size at most 2W/� = O(W

√
log n) with probability

at least 1/2.

3. � = �(Log−2/3n)-Separated Sets

We now describe an algorithm that given a c-spread �2
2 representation finds �-

separated sets of size �(n) for � = �(1/ log2/3 n). Our correctness proof assumes
a key lemma (Lemma 7) whose proof appears in Section 4. The algorithm will be
improved in Section 5 to allow � = �(1/

√
log n).

The algorithm, SET-FIND, is given a c-spread �2
2-representation. Constants c′, σ >

0 are chosen appropriately depending on c.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:11

FIG. 2. The sets Su and Tu found during SET-FIND. The figure assumes m = 0.

SET-FIND:
Input: A c-spread unit-�2

2 representation v1, v2, . . . , vn ∈ �d .
Parameters: Desired separation �, desired balance c′, and projection gap, σ .

Step 1: Project the points on a uniformly random line u passing through the origin, and compute
the largest value m where half the points v , have 〈v, u〉 ≥ m. (See Figure 2)
Then, we specify that

Su =
{

vi : 〈vi , u〉 ≥ m + σ√
d

}
,

Tu = {vi : 〈vi , u〉 ≤ m}.
If |Su | < 2c′n, HALT.a

Step 2: Pick any vi ∈ Su, v j ∈ Tu such that
∣∣vi − v j

∣∣2 ≤ �, and delete vi from Su and v j from Tu .
Repeat until no such vi , v j can be found and output the remaining sets S, T .

a We note that we could have simply chosen m to be 0 rather than to be the median, but this version
of the procedure also applies for finding sparsest cuts.

Remark 3. The procedure SET-FIND can be seen as a rounding procedure of sorts.
It starts with a “fat” random hyperplane cut (cf. Goemans–Williamson [1995]) to
identify the sets Su, Tu of vertices that project far apart. It then prunes these sets to
find sets S, T .

Notice that if SET-FIND does not HALT prematurely, it returns a �-separated pair
of sets. It is easy to show that the likelihood of premature halting is small, and we
defer it to the next section. The main challenge is to show that that the �-separated
sets are large, that is, that no more than c′n pairs of points are deleted from Su and
Tu . This occupies the bulk of the article and we start by giving a very high level
picture.

3.1. BROAD OUTLINE OF PROOF. First, observe that the Theorem is almost trivial
if we desire O(log n)-separated sets S and T (in other words, � = �(1/ log n)).
The reason is that the expected projection of a vector of length � is �/

√
d and

the chance that it is k times larger is exp(−k2) (see Lemma 5). Since a pair is
deleted only if the projection of vi − v j on u exceeds �(1/

√
d), the chance that

a pair satisfying |vi − v j | = O(1/
√

log n) or |vi − v j |2 = O(1/ log n) is deleted

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:12 S. ARORA ET AL.

is exp(−O(log n)), which is polynomially small. So, with high probability no pair
is deleted. Unfortunately, this reasoning breaks for the case of interest, namely
� = �(log−2/3 n), when many pairs may get deleted.

So assume the algorithm fails with high probability when � = �(log−2/3 n).
We show that for most directions u there is a sequence of k = log1/3 n points
v1, v2, . . . , vk such that every successive pair is close, that is, |vi − vi+1|2 ≤ �, and
their difference has a large projection on u, that is, 〈vi − vi+1, u〉 ≥ 2σ/

√
d. The

main point is that these projections all have the same sign, and thus, adding them we
obtain 〈v1 − vk, u〉 ≥ 2σk/

√
d. Thus, the projection scales linearly in k whereas

the Euclidean distance between the first and last point in the sequence scales as√
k, since the points come from an �2

2 metric. For the chosen values of k, �, this
means that Euclidean distance between the first and last point is O(1) whereas the
projection is �(

√
log n/

√
d) — large enough that the probability that such a large

projection exists for any of the
(n

2

)
pairs is o(1). This is a contradiction, allowing

us to conclude that the algorithm did not fail with high probability (in other words,
did manage to output large �-separated sets).

The idea in finding this sequence of points is to find them among deleted pairs
(corresponding to different directions u). This uses the observation that the deleted
pairs for a direction u form a matching, and that the path for a direction u can in
fact use deleted pairs from a “nearby” direction u′; something that is made formal
using measure concentration. The argument uses induction, and actually shows the
existence of many sequences of the type described above, not just one.

3.2. COVERS AND MATCHING COVERS. Let us start by formalizing the condition
that must hold if the algorithm fails with high probability, that is, for most choices
of directions u, �(n) pairs must be deleted. It is natural to think of the deleted pairs
as forming a matching.

Definition 4. A (σ, δ, c′)-matching cover of a set of points in �d is a set M of
matchings such that for at least a fraction δ of directions u, there exists a matching
Mu ∈ M of at least c′n pairs of points, such that each pair (vi , v j) ∈ Mu, satisfies

〈vi − v j , u〉 ≥ 2σ/
√

d.

The associated matching graph M is defined as the multigraph consisting of the
union of all matchings Mu .

In the next section, we will show that Step (1) succeeds with probability δ. This
implies that if with probability at least δ/2 the algorithm did not produce sufficiently
large �-separated pair of sets, then with probability at least δ/2 many pairs were
deleted. Thus, the following lemma is straightforward.

LEMMA 3. If SET-FIND fails with probability greater than 1 − δ/2, on a unit
c-spread �2

2-representation, then the set of points has a (σ, δ/2, c′)-matching cover.

The definition of (σ, δ, c′)-matching cover M of a set of points suggests that for
many directions there are many disjoint pairs of points that have long projections.
We will work with a related notion.

Definition 5 ((σ, δ)-uniform-matching-cover). A set of matchings M (σ, δ)-
uniform-matching-covers a set of points V ⊆ �d if for every unit vector u ∈ �d ,
there is a matching Mu of V such that every (vi , v j) ∈ Mu satisfies

∣∣〈u, vi − v j 〉
∣∣ ≥

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:13

2σ√
d

, and for every i , μ(u : vi matched in Mu) ≥ δ. We refer to the set of matchings
M to be the matching cover of V .

Remark 4. The main difference from Definition 4 is that every point par-
ticipates in Mu with constant probability for a random direction u, whereas in
Definition 4 this probability could be even 0.

LEMMA 4. If a set of n vectors is (σ, γ, β)-matching covered by M, then they
contain a subset X of �(nδ) vectors that are (σ, δ)-uniformly matching covered by
M, where δ = �(γβ).

PROOF. Consider the multigraph consisting of the union of all matchings Mu’s
as described in Definition 4. The average node is in Mu for at least γβ measure
of directions. Remove all nodes that are matched on fewer than γβ/2 measure of
directions (and remove the corresponding matched edges from the Mu’s). Repeat.
The aggregate measure of directions removed is at most γβn/2. Thus, at least
γβn/2 aggregate measure on directions remains. This implies that there are at least
γβn/4 nodes left, each matched in at least γβ/4 measure of directions. This is the
desired subset X .

To carry out our induction we need the following weaker notion of covering a
set:

Definition 6 ((ε, δ)-cover). A set {w1, w2, . . . , } of vectors in �d is an (ε, δ)-
cover if every

∣∣w j
∣∣ ≤ 1 and for at least δ fraction of unit vectors u ∈ �d , there

exists a j such that 〈u, w j 〉 ≥ ε. We refer to δ as the covering probability and ε as
the projection length of the cover.

A point v is (ε, δ)-covered by a set of points X if the set of vectors {x −v|x ∈ X}
is an (ε, δ)-cover.

Remark 5. It is important to note that matching covers are substantially
stronger notion than covers. For example, the d-dimensional hypercube 1√

d
{−1, 1}d

is easily checked to be an (�(1), �(1))-cover (equivalently, the origin is
(�(1), �(1)) covered), even though it is only (�(1), �(1/

√
d)) uniformly matching

covered. This example shows how a single outlier in a given direction can cover all
other points, but this is not sufficient for a matching cover.

3.3. GAUSSIAN BEHAVIOR OF PROJECTIONS. Before we get to the main lemma
and theorem, we introduce a basic fact about projections and use it to show that
Step (1) of SET-FIND succeeds with good probability.

LEMMA 5 (GAUSSIAN BEHAVIOR OF PROJECTIONS). If v is a vector of length � in
�d and u is a randomly chosen unit vector, then

(1) for x ≤ 1, Pr[|〈v, u〉| ≤ x�√
d

] ≤ 3x.

(2) for x ≤ √
d/4, Pr[|〈v, u〉| ≥ x�√

d
] ≤ e−x2/4.

Formally, to show that Step (1) of SET-FIND succeeds with good probability, we
prove that the point sets satisfy conditions in the following definition.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:14 S. ARORA ET AL.

Definition 7. A set of n points {v1, . . . , vn} ∈ �d is (σ, γ, c′)-projection sepa-
rated if for at least γ fraction of the directions u, |Su| ≥ 2c′n, where

Su = {i : 〈vi , u〉 ≥ m + σ/
√

d},
with m being the median value of {〈vi , u〉}.

Using part (i) of Lemma 5, we show that the points are sufficiently projection
separated. Here, it is convenient for the points to be on the surface of the unit sphere.
Later, for approximating SPARSEST CUT we prove a similar statement without this
condition.

LEMMA 6. For every positive c < 1/3, there are c′, σ, δ > 0, such that every
c-spread unit �2

2-representation is (σ, δ, c′)-projection separated.

PROOF. The c-spread condition states that
∑

k, j

∣∣vk − v j
∣∣2 ≥ 4c(1−c)n2. Since∣∣vk − v j

∣∣ ≤ 2, we can conclude that
∑

k, j

∣∣vk − v j
∣∣ ≥ 2c(1 − c)n2. Applying

Markov’s inequality, we can conclude that
∣∣vi − v j

∣∣ ≥ c(1−c) for at least c(1−c)n2

pairs.
For these pairs i, j , condition (1) of Lemma 5 implies that for a random u, that

|〈vi , u〉 − 〈v j , u〉| is at least c(1 − c)/(9
√

d) with probability at least 1/3.
This implies that for σ = c(1 − c)/18, the expected number of pairs where

|〈vi , u〉−〈v j , u〉| ≥ 2σ/
√

d is at least (2/3)c(1−c)n2. Each such pair must have at
least one endpoint whose projection is at least σ/

√
d away from m; and each point

can participate in at most n such pairs. Therefore, the expected number of points
projected at least σ/

√
d away from m is at least (2/3)c(1 − c)n.

Applying Markov’s bound (and observing that the number of points is at most n)
it follows that with probability at least (1/3)c(1 − c) at least (1/3)c(1 − c)n points
are projected at least σ/

√
d away from m. By symmetry, half the time a majority

of these points are in Su . Thus, the lemma follows with δ = c′ = (1/6)c(1 − c).
c′ = (1/6)c(1 − c).

3.4. MAIN LEMMA AND THEOREM. We are now ready to formally state a lemma
about the existence, for most directions, of many pairs of points whose difference
vi −v j has a large projection on this direction. (Sometimes, we will say more briefly
that the “pair has large projection.”) For each k, we inductively ensure that there is a
large set of points which participate as one endpoint of such a (large projection) pair
for at least half the directions. This lemma (and its variants) is a central technical
contribution of this article.

Definition 8. Given a set of n points that is (σ, δ, c′)-matching covered by M
with associated matching graph M , we define v to be in the k-core, Sk, if v is
(k σ

2
√

d
, 1/2)-covered by points that are within k hops of v in the matching graph M .

LEMMA 7. For every set of n points {v1, . . . , vn} that is (σ, δ, c′)-matching
covered by M with associated matching graph M, there are positive constants
a = a(δ, c′) and b = b(δ, c′) such that for every k ≥ 1:

(1) Either |Sk | ≥ akn.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:15

(2) Or there is a pair (vi , v j) with distance at most k in the matching graph M,
such that ∣∣vi − v j

∣∣ ≥ bσ/
√

k.

We use this lemma below to show that SET-FIND finds �(1/log1/3 n)-separated
sets. Later, we develop a modified algorithm for finding �(1/

√
log n)-separated

sets.
Subsequently, the aforementioned paper by J. R. Lee [2005] strengthened Case

(1) of the lemma to show the existence of Sk of size at least |M |/2, and thus that
Case (2) meets the stronger condition that

∣∣vi − v j
∣∣ ≥ gσ for some constant g. This

implies that SET-FIND without any modification finds large �(1/
√

log n)-separated
sets.

We can now prove the following theorem.

THEOREM 8. Set-find finds an �-separated set for a c-spread unit �2
2-

representation {v1, . . . , vn} with constant probability for some � = �(1/ log2/3 n).

PROOF. Recall, that, by Lemma 3, if SET-FIND fails, then the set of points is
(σ, δ, c′)-matching covered. Moreover, each pair (vi , v j) in any matching Mu for a
direction u satisfies

∣∣vi − v j
∣∣ ≤ √

� and 〈vi − v j , u〉 ≥ 2σ/
√

d.
We will now apply Lemma 7 to show that such a matching covered set does not

exist for � = �(1/ log2/3 n), which means that SET-FIND cannot fail for this �.
Concretely, we show that neither case of the Lemma holds for k = bσ/

√
� where

b is the constant defined in the Lemma.
Let us start by dispensing with Case (2). Since the metric is �2

2, a pair of points
(vi , v j) within distance k in the matching graph satisfies |vi − v j |2 ≤ k�, and thus
|vi − v j | ≤ √

k�. For our choice of k, this is less than bσ/
√

k, so Case (2) does
not happen.

Case (1) requires that for at least 1
2 of the directions u there is a pair of vectors

(vi , v j) such that |vi − v j | ≤ √
k� and where 〈vi − v j , u〉 ≥ kσ/2

√
d.

For any fixed i, j , the probability that a randomly chosen direction satisfies this
condition is at most exp(−kσ 2/16�), which can be made smaller than 1/2n2 by
choosing some � = �(1/ log2/3 n) since k = �(log1/3 n). Therefore, by the union
bound, the fraction of directions for which any pair i, j satisfies this condition is
less than n2/2n2 ≤ 1/2. Thus, Case (1) also cannot happen for this value of �.

This proves the theorem.

4. Proof of Lemma 7

4.1. MEASURE CONCENTRATION. We now introduce an important geometric
property of covers. If a point is covered in a non-negligible fraction of directions,
then it is also covered (with slightly smaller projection length) in almost all direc-
tions. This property follows from measure concentration, which can be stated as
follows.

Let Sd−1 denote the surface of the unit ball in �d and let μ(·) denote the standard
measure on it. For any set of points A, we denote by Aγ the γ -neighborhood of A,
namely, the set of all points that have distance at most γ to some point in A.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:16 S. ARORA ET AL.

LEMMA 9 (CONCENTRATION OF MEASURE). If A ⊆ Sd−1 is measurable and γ >
2
√

log(1/μ(A))+t√
d

, where t > 0, then μ(Aγ) ≥ 1 − exp(−t2/2).

PROOF. Levy’s isoperimetric inequality (see Ball [1997]) states that
μ(Aγ)/μ(A) is minimized for spherical caps.4 The lemma now follows by a simple
calculation using the standard formula for (d-1)-dimensional volume of spherical
caps, which says that the cap of points whose distance is at least s/

√
d from an

equatorial plane is exp(−s2/2).

The following lemma applies measure concentration to boost covering probabil-
ity.

LEMMA 10 (BOOSTING LEMMA). Let {v1, v2, . . .} be a finite set of vectors that
is an (ε, δ)-cover, and |vi | ≤ �. Then, for any γ >

√
2 log(2/δ)+t√

d
, the vectors are also

an (ε − �γ, δ′)-cover, where δ′ = 1 − exp(−t2/2).

PROOF. Let A denote the set of directions u for which there is an i such that
〈u, vi 〉 ≥ ε. Since |vi − u|2 = 1 + |vi |2 − 2〈u, vi 〉 we also have:

A = Sd−1 ∩
⋃

i

Ball

(
vi ,

√
1 + |vi |2 − 2ε

)
,

which also shows that A is measurable. Also, μ(A) ≥ δ by hypothesis. Thus, by
Lemma 9, μ(Aγ) ≥ 1 − exp(−t2/2).

We argue that for each direction u in Aγ , there is a vector vi in the (ε, δ) cover with
〈vi , u〉 ≥ ε −2�γ as follows. Let u ∈ A, u′ ∈ Aγ ∩ Sd−1 be such that

∣∣u − u′∣∣ ≤ γ .
We observe that 〈u′, vi 〉 = 〈u, vi 〉 + 〈u′ − u, vi 〉 ≥ ε − γ �, since |vi | ≤ �.
Combined with the lower bound on μ(Aγ), we conclude that the set of directions

u′ such that there is an i such that 〈u′, vi 〉 ≥ ε − 2�γ has measure at least 1 −
exp(−t2/2).

4.2. COVER COMPOSITION. In this section, we give the construction that lies at
the heart of the inductive step in the proof of Lemma 7.

Let X ⊆ �d be a point set that is uniform (ε, δ)-matching-covered, where Mu
denotes as usual the matching associated with direction u. Suppose Z ⊆ X consists
of points in X that are (ε1, 1 − δ/2)-covered, and for vi ∈ Z let Zi denote points
that cover vi .

The following lemma shows how to combine the cover and matching cover to
produce a cover for a set Z ′ with projection length the sum of the projection lengths
of the original covers.

LEMMA 11 (COVER COMPOSITION). If |Z | ≥ τ |X |, then there is a set Z ′ con-
sisting of at least δτ/4 fraction of points in X that are (ε1 + ε, δτ/4)-covered (see
Figure 3). Furthermore, the cover for each such point vk can even be found with

4 Levy’s isoperimetric inequality is not trivial; see Schechtman [2003] for a sketch. However, results
qualitatively the same— but with worse constants —as Lemma 9 can be derived from the more
elementary Brunn-Minkowski inequality; this “approximate isoperimetric inequality” of Ball, de
Arias and Villa also appears in Schechtman [2003].

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:17

FIG. 3. Direction u is chosen randomly. The vector v j − vk has projection ε1 + ε on u and it gets
“assigned” to k.

only vectors v j − vk that can be expressed as

v j − vk = v j − vi + vi − vk,

where (i) v j − vi ∈ Zi (ii)
{
vi , v j

}
is an edge in Mu for some direction u.

Remark 6. This is called “cover composition” because each vector v j − vk
in the new cover can be written as a sum of two vectors, one of which is in the
matching cover and the other in the cover of vi .

PROOF. Let vi ∈ Z . For 1−δ/2 fraction of directions u, there is a point v j ∈ Zi
such that 〈v j − vi , u〉 ≥ ε1. Also for δ fraction of directions u, there is a point in
vk ∈ X such that 〈vk − vi , u〉 ≤ −ε and vk is matched to vi in the matching Mu .
Thus for a δ/2 fraction of directions u, both events happen and thus the pair (v j , vk)
satisfies 〈v j − vk, u〉 ≥ ε1 + ε. Since v j ∈ Zi and vk ∈ X , we “assign” this vector
v j − vk to point vk for direction u, as a step towards building a cover centered at
vk . Now we argue that for many vk’s, the vectors assigned to it in this way form an
(ε1 + ε, δ |Z | /2 |X |)-cover.

For each point vi ∈ Z , for δ/2 fraction of the directions u the process above
assigns a vector to a point in X for direction u according to the matching Mu . Thus,
on average for each direction u, at least δ|Z |/2 vectors get assigned by the process.
Thus, for a random point in X , the expected measure of directions for which the
point is assigned a vector is at least δ|Z |/2 |X |.

Furthermore, at most, one vector is assigned to any point for a given di-
rection u (since the assignment is governed by the matching Mu). Therefore,
at least δ |Z | /4 |X | fraction of the points in X must be assigned a vector for
δ |Z | /4 |X | = δτ/4 fraction of the directions.

We will define all such points of X to be the set Z ′ and note that the size is at
least δ |Z | /4 as required.

For the inductive proof of Lemma 7, it is useful to boost the covering probability
of the cover obtained in Lemma 11 back up to 1−δ/2. This is achieved by invoking
the boosting lemma as follows.

COROLLARY 12. If the vectors in the covers for Z ′ have length at most

ε
√

d

4
√

log 8
τδ

+ 2
√

log 2
δ

,

then the (ε1 + ε, τδ/4)-covers for Z ′ are also (ε1 + ε/2, 1 − δ/2)-covers.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:18 S. ARORA ET AL.

PROOF. This follows from Lemma 10, since the loss in projection in this corol-
lary is ε/2, which should be less than γ � where � is the length of the vectors in the
cover and γ is defined as in Lemma 10. Solving for � yields the upper bound in the
corollary.

Though the upper bound on the length in the hypothesis appears complicated,
we only use the lemma with ε = �(1/

√
d) and constant δ. Thus, the upper bound

on the length is �(1/
√

log(1/τ)). Furthermore, 1/τ will often be �(1).

4.3. PROOF OF LEMMA 7. The proof of the lemma is carried out using Lemma 10
and Corollary 12 in a simple induction.

Before proving the lemma, let us restate a slight strengthening to make our
induction go through.

Definition 9. Given a set of n points that is (σ, δ, c′)-matching covered by M
with associated matching graph M , we define v to be in the (k, ρ)-core, Sk,ρ , if v is
(k σ

2
√

d
, 1 − ρ)-covered by points that are within k hops of v in the matching graph

M .

CLAIM 13. For constant δ, and every k ≥ 1,

(1) |Sk,δ/2| ≥ (δ
4)k |X |

(2) or there is a pair (vi , v j) such that
∣∣vi − v j

∣∣ = �(σ/
√

k) and vi and v j are
within k hops in the matching graph M.

PROOF. Since the set of points is (σ, δ, c′)-matching covered, Lemma 4 implies
that there exists a (σ, δ)-uniform matching cover M of a subset X of the point set.
For k = 1, the claim follows by setting S1,δ/2 = X .

Now we proceed by induction on k.
Clearly if case (2) holds for k, then it also holds for k +1. So assume that case (1)

holds for k, that is, Sk,δ/2 satisfies the conditions of case (1). Composing the covers
of Sk,δ/2 with the matching cover M using Lemma 11 yields a cover for a set Z ′ of
size at least δ

4 |Sk | with covering probability �(|Sk |/|X |), but with projection length
that is larger by ε = �(1/

√
d). To finish the induction step the covering probability

must be boosted to 1 − δ/2 that, by Lemma 10, decreases the projection length by

�
√

log �(|X |/|Sk |)/
√

d = O(�
√

k/
√

d), (11)

where � upper-bounds the length of the vectors in the cover. If this decrease is less
than ε/2, then the points in Z ′ are (kε/2 + ε/2, 1 − δ/2)-covered and Sk+1,δ/2 is
large as required in case 1. Otherwise we have ε/2 = �(σ/

√
d) = O(�

√
k/

√
d),

which simplifies to � ≥ gσ/
√

k, for some constant g and thus case 2 holds for
k + 1.

Remark 7. An essential aspect of this proof is that the k-length path (from Mk)
pieces together pairs from many different matchings Mu . Consider, for example,
given a direction u and a matching Mu with projection ε on u, how we produce any
pair of points with larger projection on u. Clearly, edges from the matching Mu do
not help with this. Instead, given any pair (x, y) ∈ Mu , we extend it with a pair

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:19

(y, z) ∈ Mu′ for some different direction u′ where (y, z) also has a large projection
on u. The existence of such a pair (y, z) follows from the boosting lemma.

5. Achieving � = �(1/
√

Log n)

Theorem 1 requires � = �(1/
√

log n) whereas we proved above that SET-FIND finds
large �-separated sets for � = �(log−2/3 n). Now we would like to run SET-FIND for
� = �(1/

√
log n). The main problem in proving that SET-FIND succeeds for larger

� is that our version of Lemma 7 is too weak. Before seeing how to remedy this it
is useful to review how the proof of Theorem 1 constrains the different parameters
and results in a �(1/ log2/3 n) upper boundon �.

(1) In the proof of Lemma 7, we can continue to inductively assert case (1) (pro-
ducing covered set Sk) of Claim 13 as long as the right-hand side of Eq. (11) is
less than σ/2

√
d, that is, as long as �2 � 1/k, where � bounds the lengths of

the vectors.
(2) By the triangle inequality, � = O(

√
k�).

(3) Deriving the final contradiction in the proof of Theorem 8 requires that
exp(−k/�) � 1/n2.

The limit on the vector lengths in item (1), combined with item (2), requires that
k ≤ 1/�1/2, and thus item (3) constrains � to be O(1/ log2/3 n).

The improvement derives from addressing the limit on vector lengths in item 1,
which arises from the need to boost the covering probability for Sk (whose size
decreases exponentially in k) from �(|Sk |/|X |) to 1 − δ/2 as detailed in Eq. (11).
Thus, we would like to prevent the size of Sk from decreasing below �(|X |). This
will allow the induction to continue until the vectors have length �(1). To do so,
we will use the fact that any point close to a point which is (ε, δ)-covered is also
(ε′, δ′)-covered where ε′ ≈ ε and δ′ ≈ δ. This is quantified in Lemma 14.

LEMMA 14 (COVERING CLOSE POINTS). Suppose v1, v2, . . . ∈ �d form an
(ε, δ)-cover for v0. Then, they also form an (ε − ts√

d
, δ − e−t2/4)-cover for every v ′

0

such that
∣∣v0 − v ′

0

∣∣ ≤ s.

PROOF. If u is a random unit vector, Pru[〈u, v0 − v ′
0〉 ≥ ts√

d
] ≤ e−t2/4.

Remark 8. Lemma 14 shows that (ε, δ) covers of a point are remarkably robust.
In our context, where we can afford to lose �(1/

√
d) in projection length, even a

�(1)-neighborhood of that point is well covered.

Definition 10 (ζ -proximate graph). A graph G on a set of points v1, . . . , vn ∈
�d is called ζ -proximate if for each edge (vi , v j) in G, satisfies

∣∣vi − v j
∣∣ ≤ ζ. A

set of vertices S is nonmagnifying if |S ∪ �(S)| < |V |/2, where �(S) is the set of
neighbors of S in G.

Notice that, for any set S, if the ζ -proximate graph is chosen to have edges
between all pairs with distance at most ζ that if T = V − S − �(S) then S, T is a
ζ 2-separated pair of sets. We will use ζ 2 = �, thus, if we ever find a nonmagnifying
set S of size �(n) then we are done.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:20 S. ARORA ET AL.

We prove a stronger version of Lemma 7 where case (2) only occurs when vectors
have �(1) length by ensuring in case (1) that the (k, δ/2)-core, Sk,δ/2, has size at
least |X |/2.

The induction step in Lemma 11 now yields a set, which we denote by S′
k+1,

of cardinality δ|X |, which is covered by X with constant covering probability and
with projection length increased by �(1/

√
d). If S′

k+1 is a non-magnifying set in
the ζ -proximate graph, we can halt (we have found a ζ -separated pair of sets for
the ζ -proximate graph above). Otherwise, S′

k+1 can be augmented with �(S′
k+1) to

obtain a set T of size |X |/2, which, by Lemma 14, is covered with projection length
that is smaller by O(ζ/

√
d) and is contained in Sk+1,δ/2.

Then, we boost the covering probability at a cost of reducing the projection
length by O(�/

√
d) where � is the length of the covering vectors. Thus when

ζ � 1, we either increase the projection length by �(1/
√

d) or � is too large or we
produce a nonmagnifying set. This argument yields the following enhanced version
of Lemma 7:

LEMMA 15. For every set of points X, that is (δ, σ)-uniform matching covered
by M with associated matching graph M, and a ζ -proximate graph on the points
for ζ ≤ ζ0(δ, c′, σ), at least one of the following is true for every k ≥ 1, where
g = g(δ, c′) is a positive constant.

(1) The (k, δ/2)-core, Sk,δ/2, has cardinality at least |X |/2
(2) There is a pair (vi , v j) with distance at most k in the matching graph M, such

that ∣∣vi − v j
∣∣ ≥ g.

(3) The set, S′
k ′ , is nonmagnifying in the ζ -proximate graph for some k ′ < k.

We can now prove Theorem 1. We use set-find with some parameter � =
�(1/

√
log n). If it fails to find a �-separated set, the point set must have been

(σ, δ, c′)-matching covered where δ, c′, and σ are �(1). We first apply Lemma 4
to obtain a (σ, δ′)-uniform matching covered set X of size �(n). We then apply
Lemma 15 where the edges in the ζ -proximate graph consist of all pairs in X
whose �2

2 distance is less than some ζ 2 = �(1/
√

log n). If case (3) ever occurs,
we can produce a pair of ζ -separated of size �(n). Otherwise, we can continue
the induction until k = �(

√
log n) at which point we have a cover with projection

length �(
√

log n/
√

d) consisting of vectors of O(1) length. As in our earlier proof,
this contradicts the assumption that set-find failed.

Thus, either SET-FIND gives a �-separated pair of large sets, or for some k, the
ζ -neighborhood of Sk , �(Sk), is small and thus, Sk, V − �(S′

k) forms a ζ -separated
pair of large sets. Clearly, we can identify such an Sk by a randomized algorithm
that uses random sampling of directions to check whether a vertex is well covered.

This proves Theorem 1.

Remark 9. Lee’s direct proof that SET-FIND [2005] produces �(1/
√

log n)-
separated sets relies on the following clever idea: rather than terminating the in-
duction with a nonmagnifying set (in the ζ -proximate graph), he shows how to use
the nonmagnifying condition to bound the loss in covering probability. The main
observation is that after cover composition, the covering probability is actually
|Sk |/|�(Sk)| rather than our pessimistic bound of |Sk |/|X |. Thus, by insisting on

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:21

the invariant that |�(Sk)| = O(|Sk |), he ensures that the covering probability falls
by only a constant factor, thus incurrring only a small boosting cost and allowing the
induction to continue for k = �(1/�) steps. Maintaining the invariant is easy since
Sk can be replaced by �(Sk) with small cost in projection length using Lemma 14.
The point being that over the course of the induction this region growing (replacing
Sk by �(Sk)) step only needs to be invoked O(log n) times.

6. O(
√

Log n) Ratio for SPARSEST CUT

Now we describe a rounding technique for the SDP in (8)—(10) that gives an
O(

√
log n)-approximation to SPARSEST CUT. Note that our results on expander flows

in Section 7 give an alternative O(
√

log n)-approximation algorithm.
First we see in what sense the SDP in (8)—(10) is a relaxation for SPARSEST CUT.

For any cut (S, S) consider a vector representation that places all nodes in S at
one point of the sphere of squared radius (2|S||S|)−1 and all nodes in |S| at the
diametrically opposite point. It is easy to verify that this solution is feasible and
has value |E(S, S)|/|S||S|.

Since
∣∣S∣∣ ∈ [n/2, n], we conclude that the optimal value of the SDP multiplied

by n/2 is a lower bound for SPARSEST CUT.
The next theorem implies that the integrality gap is O(

√
log n).

THEOREM 16. There is a polynomial-time algorithm that, given a feasi-
ble SDP solution with value β, produces a cut (S, S) satisfying

∣∣E(S, S)
∣∣ =

O(β |S| n
√

log n).

The proof divides into two cases, one of which is similar to that of Theorem 1.
The other case is dealt with in the following Lemma.

LEMMA 17. For every choice of constants c, τ where c < 1, τ < 1/8, there is a
polynomial-time algorithm for the following task. Given any feasible SDP solution
with β = ∑

{i, j}∈E

∣∣vi − v j
∣∣2, and a node k such that the geometric ball of squared-

radius τ/n2 around vk contains at least cn vectors, the algorithm finds a cut (S, S)
with expansion at most O(βn/c).

PROOF. Let d(i, j) denote
∣∣vi − v j

∣∣2
, and when {i, j} is an edge e we write we

for d(i, j). The weights we turn the graph into a weighted graph.
Let X be the subset of nodes that correspond to the vectors in the geometric ball

of radius τ/n2 around vk . The algorithm consists of doing a breadth-first search on
the weighted graph starting from X . For s ≥ 0 let Vs be the set of nodes whose
distance from X is at most s, and let Es be the set of edges leaving Vs . We identify
s for which the cut (Vs, Vs) has the lowest expansion, say αobs , and output this cut.

The expansion of the cut (Vs, Vs) is

|Es |
min

{|Vs |, |Vs |
} .

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:22 S. ARORA ET AL.

Since |Vs | ≥ c · ∣∣Vs
∣∣, the expansion is at most

|Es |
c · ∣∣Vs

∣∣ ,
allowing us to conclude |Es | ≥ cαobs

∣∣Vs
∣∣ for all s.

To finish, we need to show that αobs = O(βn/c).
Since

∑
i< j d(i, j) = 1, the triangle inequality implies that each node m also

satisfies: ∑
i, j

d(i, m) + d(j, m) ≥ 1,

which implies ∑
j

d(j, m) ≥ 1/2n. (12)

Separating terms corresponding to j ∈ X and j �∈ X in (12) and using cτ < 1/8
we obtain for the special node k:∑

j �∈X

d(j, k) ≥ 1
2n − τ

n2 · cn ≥ 3
8n . (13)

The lemma’s hypothesis also says∑
e∈E

we = β. (14)

As we noticed in the proof of Corollary 2, each edge e = {i, j} only contributes
to Es for s in the open interval (s1, s2), where s1 = d(i, X) and s2 = d(j, X).
Triangle inequality implies that |s2 − s1| ≤ we.

Thus

β =
∑
e∈E

we ≥
∫

s>0
|Es | ds ≥

∫
s>0

cαobs
∣∣Vs

∣∣ ds.

Furthermore, we note that∫
s>0

∣∣Vs
∣∣ ds =

∑
i �∈X

d(i, X) ≥
∑
i �∈X

(d(i, k) − τ
n2).

Thus, from Eq. (13), we have that

∫
s>0

∣∣Vs
∣∣ ds ≥ 3

8n − n · τ

n2
>

1

4n
.

Combining the above inequalities, we obtain β ≥ cαobs/4n, or, in other words
αobs = O(βn/c).

Now, in case the conditions of Lemma 17 does not hold, we run SET-FIND.
The following lemma ensures that for any point set that is c-spread and does

not meet the conditions of Lemma 17 that the procedure proceeds to Step (2) of
SET-FIND with a reasonable probability for a value of σ that is �(1).

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:23

LEMMA 18. Given a c-spread set of points where no more than n/10 of them
are contained in a ball of diameter 1/10, there is a σ = O(c) such that Step 1 of
SET-FIND does not HALT with probability at least �(1).

PROOF. We begin with the following claim.

CLAIM 1. For at least 1/20 of the directions, at least 1/20 of the pairs are
separated by at least 1/90

√
d in the projection.

PROOF. Consider a vertex vi . The number of pairs vi , v j where
∣∣vi − v j

∣∣ ≥ 1/10
is at least 9(n − 1)/10. Over all pairs, the number is 9n(n − 1)/10. For unordered
pairs, this is 9n(n − 1)/20.

For each such pair, the probability that vi and v j fall at least 1/90
√

d apart is
at least 1/3 from Lemma 5. Thus, the expected number of pairs that are separated
by an interval of length 1/20

√
d is at least 9n(n − 1)/60. Using the fact that the

expected number can never be larger than n(n − 1)/2, we see that with probability
at least 9/120 at least 9n(n − 1)/120 pairs are separated by at least 1/90

√
d.

Notice that SET-FIND with σ = 1/180 only HALTS in step 1 if more than 90%
of the nodes are within 1/180

√
d of the median point. This does not occur with

probability more than 19/20. Thus, SET-FIND succeeds with �(1) probability.

To finish, we observe that if the procedure fails in Step (2), then the point set
must be (σ, �(1), �(1)) matching covered. We can then use Lemma 15 to produce
a cut or to derive a contradiction as we did before.

7. Expander Flows: Approximate Certificates of Expansion

Deciding whether a given graph G has expansion at least α is coNP-complete [Blum
et al. 1981] and thus has no short certificate unless the polynomial hierarchy col-
lapses. On the other hand, the value of the SDP used in the previous sections gives
an “approximate” certificate of expansion. Jerrum and Sinclair [1989] and then
Leighton and Rao [1999] previously showed how to use multicommodity flows to
give “approximate” certificates; this technique was then clarified by Sinclair [1992]
and Diaconis and Saloff-Coste [1993]. Their certificate was essentially an embed-
ding of a complete graph into the underlying graph with minimal expansion. This
certificate could certify expansion to within a �(log n) factor.

The results of this section represent a continuation of that work but with a better
certificate: for any graph with α(G) = α we can exhibit a certificate to the effect that
the expansion is at least �(α/

√
log n). Furthermore, this certificate can be computed

in polynomial time. The certificate involves using multicommodity flows to embed
(weighted) expander graphs. The previous approaches were the same except that
the expander was limited to be the complete graph. In our approach, we can choose
the expander that is the easiest to embed in the underlying graph.

We remark that this view led to recent faster algorithms of Arora et al. [2004] for
approximating sparsest cuts. We note that this view essentially follows from SDP
duality, in the sense that the certificate we use is a feasible solution to the dual of
the semi-definite program that we used in previous sections.

In this discussion, it will be more convenient to look at weighted graphs. For a
weighted graph G = (V, W) in which ci j denotes the weight on edge {i, j} the

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:24 S. ARORA ET AL.

sparsest cut is defined as

�(G) = min
S⊆V :|S|≤n/2

∑
i∈S, j∈S ci, j

|S| ∣∣S∣∣ .

We similarly define α(G).
A word on convention. Weighted graphs in this section will be symmetric, that

is, ci j = c ji for all node pairs i, j . We call
∑

j ci j the degree of node i . We say that
a weighted graph is d-regular if all degrees are exactly d. We emphasize that d can
be a fraction.

7.1. MULTICOMMODITY FLOWS AS GRAPH EMBEDDINGS. A multicommodity flow
in an unweighted graph G = (V, E) is an assignment of a demand di j ≥ 0 to each
node pair i, j such that we can route di j units of flow from i to j , and can do this
simultaneously for all pairs while satisfying capacity constraints. More formally,
for each i, j and each path p ∈ Pi j , there exists f p ≥ 0 such that

∀i, j ∈ V
∑
p∈Pi j

f p = di j (15)

∀e ∈ E
∑
p�e

f p ≤ 1. (16)

Note that every multicommodity flow in G can be viewed as an embedding of
a weighted graph G ′ = (V, E ′, di j) on the same vertex set such that the weight
of edge {i, j} is di j . We assume the multicommodity flow is symmetric, that is,
di j = d ji . The following inequality is immediate from definitions, since flows do
not exceed edge capacities.

α(G) ≥ α(G ′). (17)

The following is one way to look at the Leighton–Rao result where Kn is the
complete graph on n nodes. The embedding mentioned in the theorem is, by (17),
a certificate showing that expansion is �(α/ log n).

THEOREM 20 (LEIGHTON±RAO [1999]). If G is any n-node graph with α(G) =
α, then it is possible to embed a multicommodity flow in it with each fi j = α/n log n
(in other words, a scaled version of Kn).

Remark 10. The same theorem is usually stated using all fi j = 1 (i.e., an
unweighted copy of Kn) and then bumping up the capacity of each edge of G to
O(n log n/α). A similar restatement is possible for our theorem about expander
flows (Theorem 24).

We note that the embedding of Theorem 20 can be found in polynomial time using
a multicommodity flow computation, and that this embedding is a “certificate” via
(17) that α(G) = �(α/ log n).

7.2. EXPANDERS AND EIGENVALUES. Expanders can be defined in more than one
way. Here, we first define the edge expansion ratio of a cut as the ratio of the weight
of edges across the cut to the total weighted degree of edges incident to the side
that is smaller with respect to total weighted degree. The edge expansion ratio of
a graph is the minimum edge expansion ratio of any cut. Furthermore, a regular
weighted graph, is a weighted graph where all the nodes have the same weighted

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:25

degree where the weighted degree of a node is the sum of the weights of the incident
edges. We note that the conductance is the edge expansion ratio divided by the total
weighted degree of the big side of the cut.

Definition 11 (Expanders). For any c > 0, a d-regular weighted graph (wi j) is
a β-expander if for every set of nodes S, w(S, S) = ∑

i∈S, j∈S wi j is at least βd |S|.
That is, its edge expansion ratio is at least β.

If a regular weighted graph is a β-expander, then the second eigenvalue of its
Laplacian lies in the interval [β2/2, 2β] (see, e.g., Alon [1986] and Sinclair [1992].)
In fact, we have the following algorithmic version from Alon[1986] as well as Alon-
Milman[1985].

LEMMA 21. There is a polynomial time algorithm that given a regular weighted
graph with edge expansion ratio γ , finds a cut of weighted edge expansion ratio√

γ /2.

The next lemma extends the algorithm to output a balanced cut of small edge
expansion ratio.

LEMMA 22. For any constant c > 0 there is a polynomial-time algorithm that,
given any regular weighted graph and a number γ > 0 behaves as follows. If the
graphs has a c-balanced cut of edge expansion ratio less than γ then the algorithm
outputs a c/2-balanced cut of edge expansion ratio 2

√
γ . If the graph does not

have such a cut, the algorithm finds a set of at least (1 − c/2)n nodes such that
the induced subgraph (with deleted edges replaced by self-loops) on them has edge
expansion ratio at least 2γ .

PROOF. First, we find a nonexpanding cut in the weighted graph using the
algorithm of Lemma 21 with this value of γ . It either outputs a cut with edge
expansion ratio at most

√
γ or else fails, in which case we have verified that the

graph has edge expansion ratio at least 2γ . In the former case, we delete the nodes
on the small side of the cut and repeat on the remaining graph, where a self-loop
is added to each node with weight equal to the removed degree for that node. We
continue until the number of deleted nodes first exceeds a c/2 fraction of the nodes.
Now there are three cases to consider.

First, if the process deletes less than c/2 fraction of the vertices, then the remain-
ing graph (which has at least (1 − c/2)n vertices) has edge expansion ratio 2γ , and
thus in the original graph every c-balanced cut has edge expansion ratio at least γ .

Second, if the process deletes between c/2 and 1/2 of the nodes, then the union
of the deleted sets gives a cut with edge expansion ratio at most

√
γ and we can

therefore just output this union.
Finally, if the process deletes more than half the nodes in total then the final

removed set had size greater than c/2 and has edge expansion ratio 2
√

γ , so the
algorithm can output this final removed set.

Usually the word “expander” is reserved for the case when β > 0 is a fixed
constant independent of the graph size, in which case the second eigenvalue is bigger
than some fixed positive constant. Thus, an expander family can be recognized in
polynomial time by an eigenvalue computation, and this motivates our definition
of expander flows.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:26 S. ARORA ET AL.

7.3. EXPANDER FLOWS. An expander flow is a multicommodity flow that is a
β-expander for some constant β. Such flows can be used to certify the expansion
of a graph.

LEMMA 23. If a graph G contains a multicommodity flow (fi j) that is d-regular
and is a β-expander, then α(G) ≥ βd.

PROOF. For every set S of nodes, the amount of flow leaving S is at least βd,
and hence this is a lower bound on the number of graph edges leaving S.

The previous lemma is most useful if β is constant, in which case an eigenvalue
computation can be used to verify that the given flow is indeed an expander. Thus a
d-regular expander flow may be viewed as a certificate that the expansion is �(d).
The following Theorem says that such flows exist for d = α/

√
log n in every graph

G satisfying α(G) = α. This is an interesting structural property of every graph, in
the same spirit as Theorem 20. It also yields a certificate that α(G) = �(α/

√
log n).

THEOREM 24. There is a constant β > 0 such that every n-vertex graph G
contains a d-regular multicommodity flow in it that is a β-expander, where d =
α(G)/

√
log n.

The theorem above is implied by the following algorithmic version of the theo-
rem.

THEOREM 25. There is a β0 > 0 and a polynomial-time algorithm that, given
a graph G = (V, E) and a degree bound d, either finds a d-regular β0-expander
flow in G or else finds a cut of expansion O(d

√
log n).

The following lemma implies that to prove Theorem 25 it suffices to find a flow
that expands on sets of size �(n) rather than all sets. It shows that given a flow that
expands on large sets, one can either extend this flow to expand on all sets or find
a small cut.

LEMMA 26. There is a polynomial time algorithm with the following property.
Given a d-regular flow in a graph G = (V, E) where for all S ⊂ V , |S| ≥ cn,
satisfies ∑

i∈S, j∈S

fi j ≥ βd|S|,

the algorithm either finds a cut of expansion O(d) or finds a 2d-regular �(β2)
expander flow as long as β = O(1).

PROOF. We apply Lemma 22 to the weighted graph induced by the flow and
obtain a subgraph B (with self loops corresponding to the removed edges) which
has (1 − c/2)n ≥ 3n/4 nodes and has edge expansion ratio at least β2.

We now augment the given flow by embedding a single flowpath to each of
the deleted nodes, A, as follows. We form a flow network, with each vertex in A
being the source of d units of flow and each vertex in the remaining expander to
be a possible sink of d units of flow, and place capacity one on each edge. We
run a max-flow computation and either route d|A| units of flow or find a cut that
cuts off some number say l of the sources from any remaining sink. In the latter
case, the number of edges is at most dl, and thus the cut has expansion at most d.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:27

Otherwise, the union of this flow and the previous d-regular flow can be embedded
with constant congestion in G.

Furthermore, the resulting union is an �(β2) expander flow: Any cut S where at
least 1/3 of S is in B has edge expansion ratio in the induced flow graph of β2/3.
Otherwise, at least 2/3 of S is in A, in which case the flow sends at least 2d|S|/3
units of flow into B at least d|S|/3 of which must go to nodes not in S. Thus, the
cut has edge expansion ratio at least 1/3 which is �(β2) when β = O(1).

To make the final expander flow regular, we can add self-loops to augment the
degree of each vertex to 2d. This changes the edge expansion ratio by at most a
factor of two.

Thus, to prove Theorem 25, it suffices to prove the following lemma.

LEMMA 27. For every β > 0, there is a γ = γ (β) > 0 and a polynomial-time
algorithm that, given a graph G = (V, E) and a degree bound d, either computes
a d-regular flow (fi j) satisfying for all S ⊂ V , |S| ≥ |V | /6∑

i∈S, j∈S

fi j ≥ βd|S|,

or finds a cut of expansion γ d
√

log n.

PROOF. The algorithm tries to find a feasible solution to the following linear
program, where the goal is to find a flow that expands on all large sets. Let Pi j be
the set of paths that go from i to j .

∀i
∑

j

∑
p∈Pi j

f p ≤ d (18)

∀e
∑

j

∑
e∈p

f p ≤ 1 (19)

∀S ⊆ V, |V |/6 ≤ |S| ≤ |V |/2
∑

i∈S, j∈S

∑
p∈Pi j

f p ≥ βd |S| . (20)

We note that if constraint (20) was enforced for all sets rather than just large sets,
the resulting linear program would specify an expander flow. Note also that we
only require the degree of the demand graph to be at most d rather than exactly d.
Any flow with max degree d can be trivially changed to a d-regular flow by adding
self-loops at each node, which represent fictitious flows that use up no capacity.

Even though this linear program has exponentially many constraints, we can
use the Ellipsoid algorithm to solve it approximately in the following sense. Using
the algorithm of Lemma 22 as an approximate separation oracle in the Ellipsoid
algorithm, we can guarantee that if the LP is feasible for a certain β, then we can
find a solution that satisfies all constraints for a somewhat smaller value �(β2).
Furthermore, if the LP is infeasible for this value of β, then this algorithm finds a
dual feasible solution of negative value to the closely related linear program where
the constraints (20) apply to sets of size down to |V |/6.

Thus, the heart of the proof is to show how to produce a cut with expansion
O(d

√
log n) given such a dual feasible solution. We will use ideas from our earlier

SDP rounding algorithm, even though we are reasoning about a linear program, not
an SDP.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:28 S. ARORA ET AL.

The dual has nonnegative variables zS for each S of size between |V |/6 and
|V |/2 and the following constraints.

min
∑

e

we + d
∑

i

si − βd
∑

S

zS |S|
∑
e∈p

we + si + s j ≥
∑

S:i∈S, j∈S

zS ∀i, j∀p ∈ Pi j . (21)

zS, we, si ≥ 0

We can assume that
∑

S zS = 1 by rescaling, since scaling does not affect the
sign of the dual objective function.

Clearly, if the dual optimum is positive then the primal was feasible and hence
an expander flow exists for that value of β. To prove Lemma 27, we show that if β
is such that the dual has a negative valued solution, then we can use it to produce a
cut of expansion O(d

√
log n), where the constant in O(·) depends upon β.

Let us consider the we’s as weights on the edges. Then, use the zS variables to
define a well-spread �2

2-representation of the graph in �M , where each of the M
coordinates stands for a cut S where zS > 0. Each vertex x is mapped to a vector
vx where the Sth coordinate is ±√

zS depending on which side of S it lies. Now
|vi − v j |2 is up to a constant factor the same as the sum of zS’s for all cuts (S, S)
where i, j are on opposite sides. This is the so-called “cut-metric,” and hence the
vector representation is �2

2. (That is, |vi −v j |2 is a valid distance function satisfying
triangle inequality.) Moreover, the sum of |vi − v j |2 over all pairs is �(n2). This
is because zS is non-zero only for S’s that have size �(n), and thus the coordinate
corresponding to such a cut contributes �(zS) to the �2

2 distance for a constant
fraction of pairs i, j . Hence the typical pair of vertices is �(1) apart in �2

2 distance.
Thus, the hypothesis of Lemma 28 (the next lemma below) is satisfied. Using the

algorithm of that Lemma we can either generate a cut of expansion O(d
√

log n) or
generate rn disjoint pairs with the following property. For each pair i, j , the length
of the shortest path connecting them with respect to the weight function we has
length at most W/nd where W = ∑

e we, and

|vi − v j |2 =
∑

i∈S, j∈S

zS = ζ (22)

(i.e., the shortest path from i, j crosses a constant fraction of cuts). We show that the
existence of such pairs contradicts the assumption that the dual value was negative
and hence the algorithm of Lemma 28 must have generated a cut of expansion
O(d

√
log n).

Indeed, if such pairs exist then summing over the constraints (21) for them, we
obtain

W
d

+
∑

i

si ≥ rζn,

or equivalently that ∑
e

we + d
∑

i

si − ζrdn ≥ 0.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:29

Recall that the dual value is min
∑

e we + d
∑

i si − βd
∑

S zS |S|. Observing
that

∑
S zS|S|[n/6, n] and choosing a sufficiently small constant β, we make the

dual value positive, and this is the desired contradiction.

LEMMA 28. For every c > 0 there are constants ζ = ζ (c) > 0, r = r (c) >
0, γ = γ (c) > 0 and a polynomial-time algorithm with the following property.
Given a graph G = (V, E), a number d > 0, an assignment of nonnegative
weights (we)e∈E to the edges, and a �2

2-representation v1, v2, . . . , vn where the
distance between the average vertex pair is at least c, the algorithm either outputs
a cut of capacity γ d

√
log n or finds a list of rn node pairs (with no vertex appearing

in more than one pair) such that each pair (i, j) in the list satisfies:

length of shortest path from i to j in the weighted graph ≤ W
nd

(23)∣∣vi − v j
∣∣2 ≥ ζ (24)

PROOF. Our algorithm attempts first to find a small cut as follows:

(1) Project the vectors in the �2
2-representation onto a random direction �u and

identify two sets A and B whose projections are ≥ m+σ/
√

n and ≤ m−σ/
√

n
respectively on �u where m is the median value of the projection of the vectors
and σ is an appropriately small constant.

(2) It can be shown as we did in our analysis of sparsest cut that with good probabil-
ity |A| , |B| are both �(n). Let A be the smaller one. Solve the single commodity
max flow problem in graph G where each edge has capacity C = �1/kd� with
k = �(

√
log n), and there is a unit capacity edge between the source vertex

and each node in A and a similar edge between the sink and each node in B.
Use the algorithm to either compute a feasible flow of value |A| or output the
minimum cut.

Notice, if the algorithm outputs a cut for any direction, this cut has expansion at
most kd. This is because this cut must disconnect l vertices in A (respectively, B)
from the sink (respectively, source), and the capacity of this cut must be at most l.
Hence, the number of edges in the cut must be at most l/C ≤ lkd. Thus, in this
case, we obtain a cut of expansion at most kd.

So suppose the algorithm finds a flow of value |A| for most directions u. We show
how to apply Lemma 15 to either find a cut of expansion O(d

√
log n) or to produce a

pair (i, j) satisfying conditions (23) and (24). (We then indicate how the argument
actually yields �(n) such pairs.) To apply that lemma, we must form matching
covers and define a proximity graph. Below, distance will refer to distance in the
original weighted graph with respect to the weights we’s on the edges, whereas
geometric distance refers to squared Euclidean distance among the corresponding
vectors.

The definition of the proximity graph is easy: there is an edge between each pair
of vertices (i, j) whose distance most W/kdn. If a pair of vertices is adjacent in
the proximity graph and also has geometric distance �(1), then such a pair satisfies
(23) and (24) and we are done. So assume that every pair of adjacent vertices in the
proximity graph have geometric distance at most ζ for an arbitrarily small ζ > 0.

Now we define the matching covers. For each direction �u, use flow decomposition
on the flow computed in Step (2) above to obtain �(n) flowpaths. These flowpaths

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:30 S. ARORA ET AL.

naturally define a pairing of nodes, since each flowpath consists of a source edge
to some node a ∈ A followed by a path to node b ∈ B followed by a sink edge
from b to the sink. Such a flowpath can be thought of as pairing a with b, and since
each of these nodes has a unique edge to the source/sink, this pairing is one-to-one
(i.e., a partial matching). Now define the length of the flowpath to be the sum of the
edge weights in the path. The total length of all the flowpaths is at most CW since
each edge can appear in at most C flowpaths. Thus, the average flowpath has length
at most CW/ |A| = O(W/nkd). For a direction �u, retain only those pairs in the
partial matching where the flowpath length is at most twice the average length. This
yields a matching with �(n) pairs where the pairs are within O(W/nkd) distance.

Now we have the matching covered point set and the ζ -proximate graph as
required by the hypothesis of Lemma 15. Let k ′ = �(

√
log n) be some large

enough multiple of
√

log n, such that as in our earlier proofs, it is impossible for
the set Sk ′ in the lemma statement to be nonempty (simply because no element can
be projection covered with such large projections). Then, either Case (2) or (3) of
Lemma 15 must hold for k ′.

If case 3 of Lemma 15 holds, then we obtain a nonmagnifying set S of size
�(n) in the ζ -proximate graph. Hence, the set of nodes with no direct edges to S
in the proximate graph (i.e., nodes whose distance to S in the original graph is at
most W/kdn) have size �(n). Now we choose a random positive δ in the interval
[0, W/kdn] and output the set containing all nodes whose distance (with respect to
the weights we’s on the edges) to the closest point of S is at most δ. The expected
number of edges in this cut is at most W/(W/kdn) = kdn. As already noted, each
side of the cut has �(n) nodes. Thus, the expected expansion of the cut is O(kd).

Case (2) of Lemma 15 yields a pair of vertices i, j whose geometric distance is
�(1) and that are k ′ matching hops away, which corresponds to distance k ′W/kdn =
O(W/dn) in the original graph since both k ′ and k are �(

√
log n).

Thus, in every case, we obtain a pair (i, j) satisfying (23) and (24). Now we
note that the argument can be repeated �(n) times to generate more such pairs.
Indeed, deleting this pair leaves a set of vertices that remains matching covered
for slightly worse parameters; it removes at most 2 pairs from the �(n) pairs in
each matching. Thus, either the process can be repeated �(n) times to yield �(n)
pairs or it fails at some point and produces a cut in some iteration as stated in the
lemma.

We note that as before the analysis can be simplified using Lee’s [2005] tech-
niques. In particular, cuts can be produced using only a projection based procedure
as is the case for finding sparse cuts using semidefinite programming.

7.4. EXPANDER FLOWS AS DUAL SOLUTIONS. Now we show that expander flows
are actually a natural family of dual solutions to the SDP for SPARSEST CUT. Denote
by OPT(W) the value of the simplest SDP relaxation (with no triangle inequality)
of this problem: find vectors v1, v2, . . . , vn ∈ �n so as to:

min
∑
{i, j}

ci, j
∣∣vi − v j

∣∣2
(25)

∑
i �= j

∣∣vi − v j
∣∣2 = 1 (26)

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:31

Let OPT�(W) denote the value of the relaxation when we also impose the triangle
inequality constraints. Now we relate OPT(·) and OPT�(·).

Recall from our discussion of expander flows that a multicommodity flow in G
can be viewed as an embedding of the demand graph D = (di j). We will show that
such a flow is a dual solution to the SDP relaxation with triangle inequality (we
have learnt that this observation was known to others, including M. Sudan and D.
Williamson, personal communication).

LEMMA 29 (FLOWS AS DUAL SOLUTIONS). If a demand graph D = (di j) can be
embedded in G = (V, W), then

OPT�(W) ≥ O PT (D).

Remark 11. Of course, when D is an expander, then the value OPT(D) is (upto
scaling) essentially the same as the eigenvalue bound for sparsest cut.

To prove the lemma, we need to write the duals. Let us do this for the simple SDP,
first rewriting it using xi j and zi j to replace |vi − v j |2 and < vi , v j >, respectively.
We use diag(ai) to denote the n ×n matrix which has a1, a2, . . . , an on the diagonal
and 0 everywhere else.

PRIMAL DUAL (27)

min
∑
{i, j}

ci j xi j max z (28)

∑
i, j

xi j = 1 z + si j = ci j ∀i, j (29)

∀i, j xi j + 2zi j − zii − z j j = 0 si j unrestricted (30)

(zi j) is psd diag

(∑
j �=i

si j

)
− (si j)i �= j is psd

(31)

Now we consider the SDP with triangle inequality. The usual formulation is to
write for each triple i, j, k an additional constraint: xi j + x jk ≥ xik . We use an
equivalent but more complicated formulation: if Pi j denotes the set of paths from
i to j in the complete graph on n vertices, then

∀i, j, ∀p ∈ Pi j ,
∑

(u,v)∈p

xuv ≥ xi j . (32)

Now let us write the primal and the dual.

PRIMAL DUAL

min
∑
{i, j}

ci j xi j max z

∑
i, j

xi j = 1 z + si j −
∑
p∈Pi j

f p + ti j = ci j ∀i, j (33)

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:32 S. ARORA ET AL.

∀i, j xi j + 2zi j − zii − z j j = 0 si j unrestricted (34)

∀i, j, ∀p ∈ Pi j ,
∑

(u,v)∈p

xuv ≥ xi j (35)

(zi j) is psd diag(
∑
j �=i

si j) − (si j)i �= j is psd (36)

Here ti j is a shorthand for
∑

p�{i, j} f p.
Now let D be the demand graph of any multicommodity flow that can be embed-

ded in G. A flow is an assignment of nonnegative values to f p’s such that ti j ≤ ci j
(indeed, the only nonzero f p’s are for p that are actually paths in G). Fixing these
values of f p’s, finding the best values to z and the si j ’s is nothing but the same as
finding OPT(W ′) where W ′ is the weighted graph in which W ′

i j is ci j − ti j + Di j ,

where Di j is the total flow from i to j , namely
∑

p∈Pi j
f p. Of course, since ti j ≤ ci j ,

this is lower bounded by OPT(D) where D is the demand graph of the flow. Thus
the lemma is proved.

8. The Open Questions

Currently, it is completely plausible that our techniques can be strengthened to
achieve an approximation ratio much better than

√
log n for UNIFORM SPARSEST CUT.

Originally it was suggested in Goemans [1998] that the SDP with triangle inequality
has an integrality gap of O(1) but Khot and Vishnoi [2005] showed that the gap is
�(log log1/6 n), which was improved to �(log log n) by Krauthgamer and Rabani
[2006] for the nonuniform sparsest cut. Recently, Devanur et al. [2006] showed
that the �(log log n) gap holds even for the uniform version. As noted earlier, the
example of the Boolean hypercube shows that our main theorem (Theorem 1) about
the existence of large �-separated subsets cannot be improved, so some newer idea
seems necessary.

Below we provide a suggested roadmap for attacking these questions. We three
questions. All concern any constant degree graph G = (V, E) and any unit-�2

2-
representation v1, v2, . . . , vn , that is c-spread for some constant c.

Is there a function s(n) = o(
√

log n) such that:

Question 1. there is always an edge {i, j} ∈ E such that |vi − v j |2 = �(α/s(n))?
Question 2. there are pairs of vertices i, j such that dG(i, j) = O(s(n)/α) and

|vi − v j |2 = �(1)?
Question 3. Version of Question 2 whereby for some τ > 0, an arbitrary set of τ

fraction of nodes are forbidden from being chosen as i, j and nevertheless these
i, j exist.

Earlier in this article, we proved that the answer to these questions is Yes if
s(n) = O(

√
log n). The authors could not agree on a guess as to whether or not the

answer is Yes to any of these questions for an s(n) that grows slower.
Now we summarize, without detailed proofs, the implications if the answers to

these questions are Yes.

LEMMA 30

(1) If the integrality gap of the SDP is O(s(n)), then the answer to Question 1 is
Yes.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:33

(2) A Yes answer to Question 2 suffices to prove that the integrality gap is O(s(n)).
(3) A Yes answer to Question 3 implies the existence of expander flows in graphs

that certify expansion of α/s(n). Namely, Theorem 24 is true with d = α/s(n).
(4) A Yes answer to Question 2 implies YES for Question 1.

PROOF.

(1) If the integrality gap of the SDP is O(s(n)), then the value of the objective is
�(αn/s(n)) and hence at least one edge has value �(α/s(n)).

(2) Uses a modification of our original proof that the integrality gap is O(
√

log n).
(3) Question 3 is a stronger version of statements proved earlier. One can mimic

the proof of Theorem 24 (specifically, the last few lines of Lemma 27) using
this stronger version.

8.1. BRINGING THE QUESTION ™DOWN TO �1. Before explaining the title of this
section we first recall the connection between cut problems and embeddings into
�1. A unit �2

2-representation v1, v2, . . . , vn of a graph is said to be �1 if there is a

set of vectors u1, u2, . . . , un such that
∣∣vi − v j

∣∣2 = ∣∣ui − u j
∣∣
1. We say that it is �1

upto distortion c if
∣∣ui − u j

∣∣
1 ≤ ∣∣vi − v j

∣∣2 ≤ c · ∣∣ui − u j
∣∣
1. The importance of

embeddings to cut problems arises from the following equivalent characterization.

LEMMA 31 (WELL-KNOWN). A unit �2
2-representation v1, v2, . . . , vn is �1 iff

there is a αS ≥ 0 associated with each cut (S, S) such that∣∣vi − v j
∣∣2 =

∑
S

αSdS(i, j), (37)

where dS(i, j) = 0 if i, j are on the same side of the cut and 4 otherwise. (In other
words, �1 representations correspond exactly to the cut cone.)

PROOF. One direction is trivial from convexity since every cut metric is �1.
For a proof of the other direction see Shmoys’ survey [1995] or Matousek’s

book [2002].

Thus, minimization over �1 metrics is exactly equivalent to minimizing over cuts
(and thus NP-hard). Goemans and Linial independently conjectured that every �2

2-
representation is �1 upto a distortion factor O(1). If true, this would have implied
an integrality gap of O(1) for NONUNIFORM SPARSEST CUT, but recently Khot and
Vishnoi [2005] showed that distortion (log log n)ε is necessary. However, the best
upper bound on the distortion is O(

√
log n log log n), so a large gap remains.

One may reasonably question whether it makes much sense to focus attention ex-
clusively on �2

2 metrics when these metrics merely happen to capture the properties
of one family of SDPs. Shouldn’t one expend more effort in identifying stronger
SDP relaxations by specifying more constraints than the triangle inequality? Af-
ter all, procedures such as Lovász–Schrijver [1991] give us an infinite hierarchy
of progressively tighter SDP relaxations to choose from. (The triangle inequality
constraint is implied already in the relaxation at the third level of this hierarchy.)

Now we point out that at least in context of our Questions, adding other constraints
(in addition to the triangle inequality) to the SDP may not help. We bring “down”
the Questions to �1 so that it suffices to prove them for �1 metrics. Thus although
adding other constraints could conceivably give a class of metrics that is a proper

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:34 S. ARORA ET AL.

subset of �2
2, proving our conjectures for that other class of metrics will not be any

easier, since that class of metrics (being a relaxation of cut metrics) would always
contain �1.

[Question 4:] If the unit-�2
2-representation is actually �1, then there is a vertex pair

i, j such that dG(i, j) = O(s(n)/α) and |vi − v j |2 = �(1).

LEMMA 32. Questions 2 and 4 are equivalent.

PROOF. Yes to Question 2 ⇒ Yes to Question 4: Since �1 metrics are a subcase
of �2

2 metrics, Question 4 is trivially a subcase of Question 2.
Yes to Question 4 ⇒ Yes to Question 2: Given any unit-�2

2-representation
v1, v2, . . . , vn of the graph, consider the uniform distribution on all hyperplane cuts
(a la Goemans and Williamson [1995]). Represent this distribution using Lemma 31
by an �2

2-representation that is �1, namely, a set of unit vectors u1, u2, . . . , un where

|ui − u j |2 = Pr[i, j are separated in hyperplane cut produced using v1, . . . , vn].

Let i, j be the pair of nodes in G whose existence follows if Question 4 has a Yes
answer. Namely, |ui − u j |2 = �(1). Then, these also suffice for Question 2 since if

Pr[i, j are separated in hyperplane cut on v1, . . . , vn] = �(1),

then |vi − v j |2 = �(1) also.

Remark 12. We can make a robust form of Question 4 whereby the pair exists
even if we forbid τn nodes from playing the role of i, j . Giving a Yes answer to
that question is equivalent to showing that expander flows can be used to certify an
expansion of α/s(n).

9. Conclusions

In the four years since the initial distribution of this article, the geometric techniques
introduced here have found many uses in designing other SDP-based approximation
algorithms as well as resolving open questions in metric space embeddings. We see
several promising avenues of research in the near future.

First, there appears to be plenty of scope to use more sophisticated geomet-
ric arguments in analyzing SDPs. Procedures such as Lovász–Schrijver [1991] or
Sherali–Adams [1990] in principle give an infinite family of SDP relaxations that
have thus far resisted all attempts at analysis but may have low integrality gaps.
Since the triangle inequality constraints are obtained trivially in these frameworks,
perhaps our analysis of the triangle inequality constraints gives a hint how to analyze
more complicated SDPs.

Second, as already mentioned even the SDPs with triangle inequality are not
fully understood as yet: there is a big gap between the lower bounds and upper
bounds known on the integrality gap. A similar observation holds for questions
about geometric embeddings such as the distortion required to embed �2

2 metrics
into �1.

Finally, there is a need to design efficient approximation algorithms, since solv-
ing SDPs is fairly inefficient (though polynomial time). Solving the SDP of (4)–(7)
takes about n4.5 time for an n-node graph using interior point methods. As men-
tioned, a more efficient Õ(n2)-time algorithm is now known [Arora et al. 2004]

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:35

that uses expander flows. Recently a more general primal-dual framework was
invented [Arora and Kale 2007] for replacing SDPs with faster approximation al-
gorithms for problems other than SPARSEST CUT. Our Structure Theorem plays an
important role in the analysis of the running time. It would be interesting to continue
to improve the running times, and to extend the framework to even more problems.

Finally, we feel expander flows ought to have other applications besides estimat-
ing the edge expansion ratio/expansion. Some applications to geometric analysis
have already been found [Naor et al. 2005].

ACKNOWLEDGMENTS. This project evolved over several years. A partial list of people
who gave us useful feedback about our ideas and/or thought about our conjectures
(apologies to people we forgot): Farid Alizadeh, Dorit Aharonov, Noga Alon, Moses
Charikar, Michel Goemans, Eran Halperin, Mohammed Hajiaghayi, Subhash Khot,
Robi Krauthgamer, Tom Leighton, Laci Lovász, Ran Raz, Madhu Sudan, Vijay
Vazirani, Santosh Vempala, David Williamson.

We are very grateful to James Lee for comments on our first manuscript. He
drew our attention to the geometric core of our argument, which helped us greatly
improve the presentation.

REFERENCES

AGARWAL, A., CHARIKAR, M., MAKARYCHEV, K., AND MAKARYCHEV, Y. 2005. o(
√

logn) approximation
algorithms for min uncut, min 2cnf deletion, and directed cut problems. In STOC ’05: Proceedings of
the 34th annual ACM Symposium on Theory of Computing. ACM, New York, 573–581.

ALIZADEH, F. 1995. Interior point methods in semidefinite programming with applications to combina-
torial optimization. SIAM J. Optim. 5, 1, 13–51.

ALON, N. 1986. Eigenvalues and expanders. Combinatorica 6, 2, 83–96.
ALON, N., AND MILMAN, V. D. 1985. λ1, isoperimetric inequalities for graphs, and superconcentrators. J.

Combin. Theory Ser. B 38, 1, 73–88.
ARORA, S., HAZAN, E., AND KALE, S. 2004. 0(

√
log n) approximation to sparsest cut in Õ(n2) time.

In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04). IEEE Computer Society Press, Los Alamitos, CA, 238–247.

ARORA, S., AND KALE, S. 2007. A combinatorial, primal-dual approach to semidefinite programs. In
STOC ’07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing. ACM, New York,
227–236.

ARORA, S., LEE, J. R., AND NAOR, A. 2008. Euclidean distortion and the sparsest cut. J. Amer. Math.
Soc. 21, 1, 1–21 (electronic).

AUMANN, Y., AND RABANI, Y. 1998. An O(log k) approximate min-cut max-flow theorem and approxi-
mation algorithm. SIAM J. Comput. 27, 1, 291–301 (electronic).

BALL, K. 1997. An elementary introduction to modern convex geometry. In Flavors of Geometry. Math-
ematics Science Research Institute Publisher, vol. 31. Cambridge Univ. Press, Cambridge, 1–58.

BLUM, M., KARP, R., VORNBERGER, O., PAPADIMITRIOU, C., AND YANNAKAKIS, M. 1981. The complexity
of testing whether a graph is a superconcentrator. Inf. Proc. Letters 13, 164–167.

CHARIKAR, M., HAJIAGHAYI, M. T., KARLOFF, H., AND RAO, S. 2006. l22 spreading metrics for vertex
ordering problems. In SODA ’06: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithm. ACM, New York, 1018–1027.

CHAWLA, S., GUPTA, A., AND RÄCKE, H. 2005. Embeddings of negative-type metrics and an improved
approximation to generalized sparsest cut. In SODA ’05: Proceedings of the 16th annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, 102–111.

CHEEGER, J. 1970. A lower bound for the smallest eigenvalue of the Laplacian. Probl. Analysis, 195–
199.

CHUNG, F. R. K. 1997. Spectral graph theory. CBMS Regional Conference Series in Mathematics,
vol. 92. Published for the Conference Board of the Mathematical Sciences, Washington, DC.

DANZER, L., AND BRANKO, G. 1962. On two problems of P. Erdos and V. L. Klee concerning convex
bodies (in German). Math. Zeitschrift 79, 95–99.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

5:36 S. ARORA ET AL.

DEVANUR, N., KHOT, S., SAKET, R., AND VISHNOI, N. 2006. Integrality gaps for sparsest cut and minimum
linear arrangement problems. In STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory
of Computing. ACM, New York, 537–546.

DIACONIS, P., AND SALOFF-COSTE, L. 1993. Comparison theorems for reversible markov chains. Ann.
Appl. Prob. 3, 696–730.

ENFLO, P. 1969. On the nonexistence of uniform homeomorphisms between L p-spaces. Ark. Mat. 8,
103–105.

FEIGE, U., HAJIAGHAYI, M., AND LEE, J. R. 2005. Improved approximation algorithms for minimum-
weight vertex separators. In STOC ’05: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing. ACM, New York, 563–572.

FEIGE, U., AND LEE, J. R. 2007. An improved approximation ratio for the minimum linear arrangement
problem. Inform. Process. Lett. 101, 1, 26–29.

GOEMANS, M. X. 1998. Semidefinite programming and combinatorial optimization. In Proceedings of
the International Congress of Mathematicians, Vol. III (Berlin, 1998). Doc. Math., 657–666 (electronic).

GOEMANS, M. X., AND WILLIAMSON, D. P. 1995. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. ACM 42, 6, 1115–1145.

GRÖTSCHEL, M., LOVÁSZ, L., AND SCHRIJVER, A. 1993. Geometric algorithms and combinatorial opti-
mization, Second ed. Algorithms and Combinatorics, vol. 2. Springer-Verlag, Berlin, Germany.

JERRUM, M., AND SINCLAIR, A. 1989. Approximating the permanent. SIAM J. Comput. 18, 6, 1149–
1178.

KARAKOSTAS, G. 2005. A better approximation ratio for the vertex cover problem. In Automata, lan-
guages and programming. Lecture Notes in Computer Science vol. 3580. Springer-Verlag, Berlin,
Germany, 1043–1050.

KARGER, D., MOTWANI, R., AND SUDAN, M. 1998. Approximate graph coloring by semidefinite program-
ming. J. ACM 45, 2, 246–265.

KARLOFF, H. J., AND ZWICK, U. 1997. A 7/8-approximation algorithm for max 3sat? In Proceedings of
the 38th IEEE Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos,
CA, 406–415.

KHANDEKAR, R., RAO, S., AND VAZIRANI, U. 2006. Graph partitioning using single commodity flows. In
STOC ’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing. ACM, New York,
385–390.

KHOT, S., AND VISHNOI, N. 2005. The unique games conjecture, integrality gap for cut problems and
embeddability of negative type metrics into �1. In FOCS ’05: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA,
53–62.

KRAUTHGAMER, R., LEE, J. R., MENDEL, M., AND NAOR, A. 2005. Measured descent: a new embedding
method for finite metrics. Geom. Funct. Anal. 15, 4, 839–858.

KRAUTHGAMER, R., AND RABANI, Y. 2006. Improved lower bounds for embeddings into l1. In SODA
’06: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm. ACM, New York,
1010–1017.

LANG, K., AND RAO, S. 2004. A flow-based method for improving the expansion or conductance of graph
cuts. In Proceedings of the 10th International IPCO Conference. Lecture Notes in Computer Science,
vol. 3064. Springer-Verlag, Berlin, Germany, 325–337.

LEE, J. R. 2005. On distance scales, embeddings, and efficient relaxations of the cut cone. In SODA ’05:
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia,
PA, USA, 92–101.

LEIGHTON, T., AND RAO, S. 1999. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. JACM 46, 6, 787–832.

LINIAL, N., LONDON, E., AND RABINOVICH, Y. 1995. The geometry of graphs and some of its algorithmic
applications. Combinatorica 15, 2, 215–245.

LOVÁSZ, L., AND SCHRIJVER, A. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM
J. Optim. 1, 2, 166–190.

MATOUŠEK, J. 2002. Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer-
Verlag, New York.

NAOR, A., RABANI, Y., AND SINCLAIR, A. 2005. Quasisymmetric embeddings, the observable diameter,
and expansion properties of graphs. J. Funct. Anal. 227, 2, 273–303.

NESTEROV, Y., AND NEMIROVSKII, A. 1994. Interior-point polynomial algorithms in convex programming.
SIAM Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia, PA.

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

Expander Flows, Geometric Embeddings and Graph Partitioning 5:37

SCHECHTMAN, G. 2003. Concentration, results and applications. In Handbook of the Geometry of Banach
Spaces, volume 2, W. Johnson and J. Lindenstrauss, Eds. North Holland, Amsterdam, The Netherlands,
(Draft version available from Schechtman’s website).

SHAHROKHI, F., AND MATULA, D. W. 1990. The maximum concurrent flow problem. J. Assoc. Comput.
Mach. 37, 2, 318–334.

SHERALI, H., AND ADAMS, W. 1990. A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems. SIAM J. Discrete Math. 3, 3, 411–430.

SHMOYS, D. S. 1995. Cut problems and their application to divide and conquer. In Approximation Algo-
rithms for NP-Hard Problems, D. Hochbaum, Ed. PWS Publishing.

SINCLAIR, A. 1992. Improved bounds for mixing rates of Markov chains and multicommodity flow.
Combinat. Probab. Comput. 1, 4, 351–370.

RECEIVED APRIL 2007; REVISED JULY 2008 AND NOVEMBER 2008; ACCEPTED DECEMBER 2008

Journal of the ACM, Vol. 56, No. 2, Article 5, Publication date: April 2009.

