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Abstract

We give aO(
√

logn)-approximation algorithm for sparsest cut, balanced separator, and graph

conductance problems. This improves theO(logn)-approximation of Leighton and Rao (1988). We

use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis

is a geometric theorem about projections of point sets in ℜd, whose proof makes essential use of a

phenomenon called measure concentration.

We also describe an interesting and natural “certificate” for a graph’s expansion, by embedding

an n-node expander in it with appropriate dilation and congestion. We call this an expander flow.

1 Introduction

Partitioning a graph into two (or more) large pieces while minimizing the size of the “interface” between

them is a fundamental combinatorial problem. Graph partitions or separators are central objects of

study in the theory of Markov chains, geometric embeddings and are a natural algorithmic primitive in

numerous settings, including clustering, divide and conquer approaches, PRAM emulation, VLSI layout,

and packet routing in distributed networks. Since finding optimal separators is NP-hard, one is forced

to settle for approximation algorithms (see [31]).

Here we give new approximation algorithms for some of the important problems in this class. In a

graph G = (V , E), for any cut (S, S) where |S| ≤ |V | /2, the edge expansion of the cut is
∣∣∣E(S, S)

∣∣∣ / |S|.
In the sparsest cut problem we wish to determine the cut with the smallest edge expansion:

α(G) = min
S⊆V,|S|≤|V |/2

∣∣∣E(S, S)
∣∣∣

|S| . (1)

A cut (S, S) is c-balanced if both S, S have at least c |V | vertices. In the c-balanced-separator problem

we wish to determine αc(G), the minimum expansion of c-balanced cuts. In the graph conductance

problem we wish to determine

Φ(G) = min
S⊆V,|E(S)|≤|E|/2

∣∣∣E(S, S)
∣∣∣

|E(S)| , (2)
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where E(S) denotes the set of edges incident to nodes in S. We can reduce each of these problems to

constant degree graphs and moreover for this class, edge expansion and conductance are related by a

constant factor.

A weak approximation for graph conductance follows from the connection —first discovered in

context of Riemannian manifolds [8]—between conductance and the eigenvalue gap of the Laplacian:

2Φ(G) ≥ λ ≥ Φ(G)2/2 [3, 2, 21]. The approximation factor is 1/Φ(G), and hence Ω(n) in the worst

case, however for constant φ(G) it is an excellent bound. This connection between eigenvalues and

expansion has had enormous influence in a variety of fields (see e.g. [9]).

Leighton and Rao [22] designed the first true approximation by giving O(logn)-approximations

for sparsest cut and graph conductance and O(logn)-pseudo-approximations for c-balanced

separator. They used a linear programming relaxation of the problem based on multicommodity

flow proposed in [30]. This led to approximation algorithms for numerous NP-hard problems, see [31].

However, the integrality gap of the LP is Ω(logn), and crossing this logn barrier therefore calls for

new techniques.

In this paper we give O(
√

logn)-approximations for sparsest cut and graph conductance and

O(
√

logn)-pseudo-approximation to c-balanced separator.

Now we give a quick overview of our results. Our algorithm uses semidefinite programming (SDP).

These are mathematical programs in which each vertex i is assigned some point vi on the unit sphere

in ℜn. In our case the goal is to find an assignment such that the average distance between all pairs of

points is “large” whereas the average distance between endpoints of edges is minimized.

The complexity of finding such embeddings depends crucially on the notion of distance. Under the

standard Euclidean norm (or even ℓ1 norm) the problem is NP hard: the optimum cut can be efficiently

recovered from the optimum vectors. The notion of distance that is more tractable (and used in SDPs)

is the square of the Euclidean norm, the so-called ℓ2
2 norm. With this distance function, the embedding

problem is related to finding eigenvectors of the adjacency matrix of the graph and thus yields only

weak approximations. To tighten the relaxation, one can ask that ℓ2
2 distances between the vi’s form a

metric: every triple i, j, k satisfies the triangle inequality, i.e,
∣∣∣vi − vj

∣∣∣
2+

∣∣∣vj − vk
∣∣∣

2 ≥ |vi − vk|2. The

general SDP framework allows such constraints. Furthermore, these constraints correspond exactly

to the linear constraints in the Leighton-Rao LP relaxation and therefore this ℓ2
2 embedding subsumes

both the eigenvalue as well as the O(logn) linear programming bound. The conjectured integrality

gap of the resulting relaxation to the cut problem is O(1) [15], and is known to be at least 10/9 [34].

Our O(
√

logn)-approximation relies on a new result about the geometric structure of such embed-

dings: they contain Ω(n) sized sets S and T that are well-separated, in the sense that every pair of

points vi ∈ S and vj ∈ T must be at least ∆ = Ω(1/√logn) apart in ℓ2
2 distance. (We also present a

randomized algorithm to find such sets.) This result is tight for an n-vertex hypercube —whose natural

embedding intoℜlogn defines an ℓ2
2 metric— where any two large sets are withinO(1/

√
logn) distance.

Finding such a well-separated subset pair suffices for a good approximation. Since the sum of the

ℓ2
2 distances between endpoints of edges is small in the embedding, the sets S and T cannot have many

edges between them, and this is the basis of finding a small cut. Formally, finding a good separator

involves shrinking S to a point and performing a breadth first search from it and outputting the level

with fewest edges (Section 2.1.1).

The algorithm for finding the above-mentioned well-separated pair S, T is complicated (Section 5)

but we also describe a simpler algorithm (Section 3) that works for a somewhat smaller separation

∆ = Ω(1/ log2/3n). In that case the idea is to partition the vectors with a randomly oriented hyperplane

slice of prescribed thickness. Points that fall inside the slice are discarded. The sets of points on the

two sides of the slice are our first candidates for S, T . However, they can contain a few pairs of points

vi ∈ S,vj ∈ T whose squared distance is less than∆, which we discard. The technically hard part in the

analysis is to prove that not too many points get discarded. This makes essential use of a phenomenon

called measure concentration, a cornerstone of modern convex geometry [5].

Graph embeddings and expander flows: Our ideas also imply a new structural result in graph theory:
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an embedding of expander graphs in any arbitrary graph that is more efficient (in terms of maximum

edge congestion, which is the number of expander edges routed though a single graph edge) than any

known before. This result is proved using techniques similar to the ones used to prove the existence of

the ∆-separated sets (though it is not an immediate corollary and requires some work). To understand

the connection to approximation algorithms, note that any algorithm that approximates edge expansion

α = α(G) must implicitly certify that every cut has large expansion. One way to do this is to embed

a complete graph into the given graph with minimum congestion, µ. Clearly, every cut must have

expansion at least 1/nµ. (See Section 7.) This is exactly the certificate used in the Leighton-Rao paper,

where it is shown that congestion O(α/n logn) suffices (and this amount of congestion is required on

some graphs.)

This paper considers a generalization of this approach, where we embed not the complete graph

but some flow that is an expander. We show how this idea can be used to derive a certificate to the

effect that the expansion is Ω(α/
√

logn) (see Section 7). The conjectures presented in the full version

imply that this approach can be improved to certify that the expansion is Ω(α).
Expander flows also provide a different and possibly more efficient (though the current writeup

ignores efficiency issues besides polynomiality) O(
√

logn)-approximation algorithm for graph separa-

tors that uses multicommodity flows combined with eigenvalue computations. A polynomial bound

follows by observing that embedding a particular graph (the expander flow) with minimum congestion

is a multicommodity flow problem. The condition that the embedded graph is an expander can be im-

posed by exponentially many linear constraints, one for each cut. A violated (within a constant factor)

constraint can be efficiently found by an eigenvalue conmputation, and thus the linear program can be

solved by the Ellipsoid method. More details appear in the full version. In fact, the algorithms of this

paper (including the SDP rounding) were discovered in this setting.

Related Work.

Semidefinite programming and approximation algorithms: Semidefinite programs (SDPs) have numer-

ous applications in optimization. They are solvable in polynomial time via the ellipsoid method [18],

and more efficient interior point methods are now known [1, 27]. In a seminal paper, Goemans and

Williamson [17] used SDPs to design good approximation algorithms for MAX-CUT and MAX-k-SAT.

Researchers soon extended their techniques to other problems [20, 19, 15], but lately progress in

this direction has stalled. Especially in the context of minimization problems, the GW approach of

analysing “random hyperplane” rounding in an edge-by-edge fashion runs into well-known problems.

By contrast, our main theorem about ℓ2
2 spaces (and the “rounding” technique that follows from it)

takes a more global view of the metric space. The ideas may prove useful for other problems where

triangle inequality constraints are conjectured to tighten SDP relaxations.

Analysis of random walks: The mixing time of a random walk on a graph is related to the first nonzero

eigenvalue of the Laplacian, and hence to the conductance. Of various techniques known for upper-

bounding the mixing time, most rely on lowerbounding the conductance. Diaconis and Saloff-Coste [11]

describe a very general idea called the comparison technique, whereby the conductance of a graph is

lowerbounded by embedding a known graph with known conductance into it. (The embedding need

not be constructive; existence suffices.) Sinclair [32] suggested a similar technique and also noted that

the Leighton-Rao multicommodity flow can be viewed as a generalization of the Jerrum-Sinclair [21]

canonical path argument. Our results on expander flows imply that the comparison technique can be

used to always get to within O(
√

logn) of the proper bound for conductance.

Metric spaces and relaxations of the cut cone: The cut cone is the cone of all cut semi-metrics, and is

equivalent to the cone of all ℓ1 semi-metrics. Graph separation problems can often be viewed as the

optimization of a linear function over the cut cone (possibly with some additional constraints imposed).

Thus optimization over the cut cone is NP-hard. However, one could relax the problem and optimize

over some other metric space, embed this metric space in ℓ1 (hopefully, with low distortion), and then

derive an approximation algorithm. This approach was pioneered in [23] and [4]; see Shmoys [31]
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for a survey. A major open problem in this area is to show that ℓ2
2 metrics (i.e., solutions to the

SDP with triangle inequality constraints) embed into ℓ1 with O(1) distortion. Showing this would

prove an integrality gap of O(1) not only for sparsest cut but also for a more general version of the

problem involving nonuniform demands between vertex pairs. The current paper does not address this

conjecture. However, James Lee pointed out to us that our results (specifically, Theorem 1 which was

earlier implicit in our paper and now explicit thanks to his observation) do represent partial progress:

they give an embedding of ℓ2
2 metrics into ℓ1 in which the average edge distorts by at most

√
logn

factor. Furthermore, we do note in the full version of the paper that for the version of sparsest cut

considered here, the embedding conjecture is overkill. Instead we present weaker conjectures that are

sufficient to prove an O(1) integrality gap. We mention a related conjecture about ℓ1 spaces that is

also of interest.

2 Definitions and Results

Throughout the paper we will assume that we are dealing with constant degree unweighted graphs,

since the general case can be reduced to this case, as is wellknown. Furthermore, graph conductance

also reduces to sparsest cut on constant degree graphs.

Definition 1 (ℓ2
2 representation) A vector representation of a graph is an assignment of a vector to

each node, say vi assigned to node i. It is called an ℓ2
2-representation if for all i, j, k:

∣∣∣vi − vj
∣∣∣

2 +
∣∣∣vj − vk

∣∣∣
2 ≥ |vi − vk|2 (∆-inequality) (3)

An ℓ2
2-representation is called a unit-ℓ2

2 representation if all its vectors have unit length.

Remark 1 Equivalently, one can say that the unit-ℓ2
2-representation associates a positive semidefinite

n × n matrix M with the graph with diagonal entries 1 and ∀i, j, k,Mij +Mjk −Mik ≤ 1. The vector

representation v1, v2, . . . , vn is the Cholesky factorization of M , namely Mij = 〈vi, vj〉.
Every cut (S, S) gives rise to a natural unit-ℓ2

2 representation, namely, one that assigns some unit

vector v0 to every vertex in S and −v0 to every vertex in S. Thus the following SDP is a relaxation for

αc(G) (scaled by cn.)

min
1

4

∑

{i,j}∈E

∣∣∣vi − vj
∣∣∣

2
(4)

∀i |vi|2 = 1 (5)

∀i, j, k
∣∣∣vi − vj

∣∣∣
2 +

∣∣∣vj − vk
∣∣∣

2 ≥ |vi − vk|2 (6)

∑

i<j

∣∣∣vi − vj
∣∣∣

2 ≥ 4c(1− c)n2 (7)

This SDP motivates the following definition.

Definition 2 An ℓ2
2-representation is c-spread if equation (7) holds.

Similarly the following is a relaxation for sparsest cut (up to scaling by n; see Section 6).

min
∑

{i,j}∈E

∣∣∣vi − vj
∣∣∣

2
(8)

∀i, j, k
∣∣∣vi − vj

∣∣∣
2 +

∣∣∣vj − vk
∣∣∣

2 ≥ |vi − vk|2 (9)

∑

i<j

∣∣∣vi − vj
∣∣∣

2 = 1 (10)

4



As we mentioned before the SDPs subsume both the eigenvalue approach and the Leighton-Rao

approach [15]. We show that the optimum value of the sparsest cut SDP is Ω(α(G)n/
√

logn), which

shows that the integrality gap is O(
√

logn).

2.1 Main theorem about ℓ2
2 representations

In general, ℓ2
2-representations are not well-understood1.

This is not surprising since in ℜd the representation can have at most 2d distinct vectors [10], so

our three-dimensional intuition is of limited use for graphs with more than 23 vertices. The technical

core of our paper is a new theorem about unit ℓ2
2 representations. Note that we assume the dimension

d ≫ logn; this is without loss of generality since we could always embed the vectors in a higher

dimensional space.

Definition 3 (∆-separated) If v1, v2, . . . , vn ∈ ℜd, and ∆ ≥ 0, two disjoint sets of vectors S, T are

∆-separated if for every vi ∈ S,vj ∈ T ,
∣∣∣vi − vj

∣∣∣
2 ≥ ∆.

Theorem 1 (Main)

For every c > 0, any c-spread unit-ℓ2
2 representation with n points contains ∆-separated subsets S, T

of size Ω(n), where ∆ = Ω(1/√logn). Furthermore, there is a randomized polynomial-time algorithm

for finding these subsets S, T .

Remark 2 The natural embedding of the boolean hypercube {−1,1}d (appropriately scaled) shows

that this theorem is tight to within a constant factor. This follows from the isoperimetric inequality

for hypercubes.

2.1.1 Immediate corollary:
√

logn-approximation

Let c′ be the constant in the Ω(n) bound on the sizes of sets S and T in theorem 1. Let W =
∑
{i,j}∈E

∣∣∣vi − vj
∣∣∣

2
be the optimum value for the SDP defined by equations (4)–(7). (Specifically, it

is the objective scaled by 4.) Since the vectors vi’s obtained from solving the SDP satisfy the hypothe-

sis of Theorem 1, as an immediate corollary to the theorem we show how to produce a c′-balanced cut

whose expansion is O(
√

lognW/n).

Corollary 2

There is a randomized polynomial-time algorithm that finds with high probability a cut (Sobs , Sobs) that

is c′-balanced, and has expansion αobs = O(W
√

logn/n).

Proof: We use the algorithm of Theorem 1 to produce ∆-separated subsets S, T for ∆ = g/
√

logn.

Let V0 denote the vertices whose vectors are in S. Associate with each edge e = {i, j} a length we =∣∣∣vi − vj
∣∣∣

2
. (Thus W = ∑

e∈Ewe.) In the rest of the proof “distance” in the graph is measured with

respect to this length function.

Denote by Vs the set of vertices within distance d of V0 and by Es the set of edges leaving Vs . We

do breadth-first search and find s ≤ ∆/2 that minimizes |Es| / |Vs|. We output the cut (Vs , Vs); let αobs
denote the expansion of this cut. (We can assume without loss of generality that |V∆/2| ≤ n/2, since

we could switch S and T otherwise.)

For any s ≤ ∆/2, we have

|Es| ≥ αobs|Vs| ≥ αobsc′n,
since |V0| = |S| ≥ c′n.

1A well-known —but alas, wide-open—conjecture says that they are closely related to the better-understood ℓ1 metrics.
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The total length of the edges W =∑ewe, is thus at least ∆/2 times the minimum number of edges

crossing at any point along this length ∆/2 interval. More formally, the total length of the edges

W =
∑

e

we ≥
∫ ∆/2

s=0
|Es|ds ≥ ∆

2 ·αobsc′n.

The corollary follows by solving for αobs . 2

3 ∆ = Ω(log−2/3n)-separated sets

We now give an algorithm that given a c-spread ℓ2
2 representation finds ∆-separated sets of size Ω(n)

for∆ = Θ(1/ log2/3n). Our correctness proof assumes a key theorem (Theorem 5) whose proof appears

in Section 4. The algorithm will be improved in Section 5 to allow ∆ = Θ(1/√logn).
The algorithm is given a c-spread ℓ2

2-representation. We select constants c′, σ > 0 depending on c.

set-find:

Input: A c-spread unit vector representation v1, v2, . . . , vn ∈ ℜd.

Parameters: Desired separation ∆, desired balance c′, and projection gap, σ .

Pick a random line u passing through the origin, and let

Su = {vi : 〈vi, u〉 ≥ σ√
d
},

Tu = {vi : 〈vi, u〉 ≤ − σ√
d
}.

If |Su| < 2c′n or |Tu| < 2c′n, HALT , else proceed as follows. Pick any vi ∈ Su, vj ∈ Tu such

that
∣∣∣vi − vj

∣∣∣
2 ≤ ∆, and delete i from Su and j from Tu. Repeat until no such vi, vj can be

found and output the remaining sets S, T .

Remark 3 The procedure set-find can be seen as a rounding procedure of sorts. It starts with a “fat”

random hyperplane cut (cf. Goemans-Williamson [17]) to identify the sets Su, Tu of vertices that project

far apart. It then prunes these sets to find sets S, T .

Notice that if set-find does not HALT prematurely, it returns a ∆-separated pair of sets. Thus,

we need to show that in set-find often both Su and Tu are larger than 2c′n and that no more than

c′n points are deleted from Su and Tu. The first claim is relatively easy, and we show this in the next

subsection. Analysing the deletion process is much harder and forms the bulk of the paper. We state

the formal claims about the process in the following subsestion, and proved it in Section 4.

3.1 Projection and Su, Tu

We first remind the reader that in ℜd, the projection of any unit vector on a random direction is

distributed essentially like a Gaussian with expectation 0 and standard deviation 1/
√
d.

Lemma 3 (Gaussian behavior of projections)

If v is a vector of length ℓ inℜd and u is a randomly chosen unit vector then (i) for x ≤ 1, Pr[|〈v,u〉| ≤
xℓ√
d
] ≤ 3x. (ii) for x ≤

√
d/4, Pr[|〈v,u〉| ≥ xℓ√

d
] ≤ e−x2/4.

If the projection length in a particular direction u is tℓ/
√
d, we say that t is the stretch of v in

directionu. (This definition is motivated by the fact that ℓ/
√
d is the root mean square of the projection

length of v in a random direction.) Lemma 3-(ii) implies that a vector v has stretch t in a random
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directionuwith probability at most e−t
2/4.We will this use the notion of stretch and this fact extensively

in subsequent sections.

Now using part (i) of Lemma 3 and Goemans-Williamson, it is easy to prove that if the vi’s are

c-spread then with constant probability, Su and Tu are large.

Lemma 4

For every positive c < 1/3, there are c′, σ > 0 such that the probability (over the choice of u) is at least

c/8 that the sets Su, Tu defined in set-find-(c′, σ) have size at least 2c′n.

Proof: Goemans-Williamson show that for any two points x,y on a unit sphere,

Pr[a random hyperplane separates x,y] ≥ .878
|x−y|2

4 .

By definition of c-spread, the sum of the distances between the points is at least c(1− c)n2. Therefore

the expected number of pairs that are separated by a random hyperplane is at least an2, where a =
.878c(1− c). By Markov’s bound the probability that the number of separated pairs is less that an2/2
is at most (1− a)/(1− a/2) ≤ 1− a/2.

Since these an2/2 pairs of nodes are split by the hyperplane, there must be at least an/2 nodes on

the smaller side.

By Lemma 3-(i), the probability that the projection of a point on the unit sphere falls within σ/
√
d of

the origin is at most 3σ . By choosing σ appropriately, and applying the Markov bound, we can ensure

that the probability that more than an/4 points fall within σ/
√
d is at most a/4. Now by the union

bound both Su and Tu have at least a/4 points with probability at least a/4.
The lemma follows by noting that a/4 > c/8, and choosing 2c′ = a/4. 2

3.2 Number of deletions

To analyse the number of deletions, we note that any deleted pair vi ∈ Su, vj ∈ Tu is such that the

vector vi −vj has stretch t = 2σ/
√
∆, since its length was at most

√
∆ and its projection length was at

least 2σ/
√
d. (Note: From now on, we will often say the pair vi, vj has a certain stretch when we mean

vi − vj .) If ∆ were (16σ 2/ logn) then the analysis would be trivial since any deleted pair has stretch

at least 4
√

logn; this event occurs with probability less than e−4 logn≪ 1/n2 by Lemma 3-(ii). Thus, we

expect no pairs to be deleted. (Aside: This is an alternative version of Leighton-Rao.)

When ∆ = Ω(log−2/3n), it may be quite likely that many pairs are deleted. However, we observe

that for a direction u the deleted pairs form a matching Mu. Moreover, if the procedure fails for

a direction u the matching Mu is of size at least c′n. Thus if the procedure does not succeed with

constant probabilty, we have large matchings Mu for most directions u where each matching edge has

stretch 2σ/
√
∆. We will show (Theorem 5) that this is impossible. Now we formalize the property of

the matchings when set-find often fails to produce a ∆ = 1/t2-separated pair.

Definition 4 ((t, γ, β)-stretched) An ℓ2
2 set of points v1, v2, . . . , vn ∈ ℜd are (t, γ, β)-stretched at

scale l if for at least γ fraction of directions u, there is a (partial) matching Mu with βn disjoint pairs

(i1, j1), (i2, j2), . . . , such that each im, jm satisfies
∣∣∣vim − vjm

∣∣∣
2 ≤ l2 and 〈u, (vim − vjm)〉 ≥ tl/

√
d. (In

particular, pair vim , vjm has stretch at least t in direction u.)

Theorem 5

For any γ,β > 0 there is a C = C(γ,β) such that if t > C(logn)1/3 then a unit-ℓ2
2 representation cannot

be (t, γ, β)-stretched for any scale l.

Applying Theorem 5 with l = √∆ and t = 2σ/
√
∆ shows that there is some ∆ = O(log−2/3n), such

that the probability that set-find removes a matching of size c′n is o(1). We conclude that set-find

outputs S, T of size ≥ c′n with probability Ω(1). This completes our analysis of set-find.
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4 Proof of Theorem 5

The main idea in the proof is to show that if the large matchings Mu mentioned in Definition 4 exist

for most directions u, then for Ω(1) fraction of directions we can string together r = Ω(t) pairs from

these matchings to produce a vector whose projection is Ω(rtl/
√
d). Triangle inequality implies that

any such vector has squared length at most rl2, which means that the stretch is is
√
rt.

Recall that for almost all directions, no pair of vectors has stretch more than 4
√

logn. Since the

stringing together referred to above is possible forΩ(1) directions, we conclude that the stretchO(
√
rt)

cannot exceed 4
√

logn, which proves that t can only be O(log1/3n).

4.1 Matching covers

The definition of (t, γ, β)-stretched pointsets suggests that for many direction there are many disjoint

pairs of points which are stretched. We will work with a related notion.

Definition 5 ((ǫ, δ)-matching-covered point set) A set of points V ⊆ ℜd is (ǫ, δ)-matching-covered

at scale l if for every unit vector u ∈ ℜd, there is a (partial) matchingMu of V such that every (vi, vj) ∈
Mu satisfies

∣∣∣vi − vj
∣∣∣

2 ≤ l2 and
∣∣∣〈u,vi − vj〉

∣∣∣ ≥ ǫ, and for every i, µ(u : vi matched in Mu) ≥ δ. We

refer to the set of matchings Mu to be the matching cover of V .

Remark 4 The main difference from Definition 4 is that every point participates in Mu with constant

probability for a random direction u.

Lemma 6

If a set ofn vectors is (t, γ, β)-stretched at some scale l, then they contain a subsetX ofΩ(nγβ) vectors

that are (ǫ, δ)-matching covered at scale l, where δ = Ω(βγ), ǫ ≥ tl/
√
d, and for every pair vi, vj in the

matching cover,
∣∣∣vi − vj

∣∣∣
2 ≤ l2.

Proof: Consider the multigraph consisting of the union of all partial matchings Mu’s as described

in Definition 4. The average node is in Mu for γβ measure of directions. Remove all nodes that are

matched on fewer than γβ/2 measure of directions (and remove the corresponding matched edges

from the Mu’s). Repeat. The aggregate measure of directions removed is γβn/2. Thus at least γβn/2
aggregate measure on directions remains. This implies that there are at least γβn/4 nodes left, each

matched in at least γβ/4 measure of directions. This is the desired subset X. 2

Notation From now on we restrict attention to the subset X mentioned in Lemma 6. Let H denote

the multigraph on X formed by taking the union of all matchings Mu in the matching cover. For each

vi ∈ X, let Ball(vi, r ) denote the set of vj ’s whose distance from vi in H is at most r .

We sometimes say that “vj is r matching hops from vi.” Note that since the matching cover consists

of edges of length ≤ l, the triangle inequality for ℓ2
2 representations implies that any such vj , vi satisfy∣∣∣vi − vj

∣∣∣
2 ≤ rl2.

Now we define a related object.

Definition 6 ((ǫ, δ)-cover) A set {w1,w2, . . . , } of vectors in ℜd is an (ǫ, δ)-cover if every
∣∣∣wj

∣∣∣ ≤ 1

and for at least δ fraction of unit vectors u ∈ ℜd, there exists an j such that 〈u,wj〉 ≥ ǫ.

Remark 5 Since −u is also a random unit vector, the probability is also ≥ δ that there is a wj that

〈u,wj〉 ≤ −ǫ. This will be important later in Lemma 10.

Remark 6 Whenever we study these covers, we have a fixed vi ∈ X in mind and the vectors in the

cover are of the form vj − vi. In such a case, we say that vi is “centrally (ǫ, δ)-covered” by the vj ’s in

question.
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Note that if vi ∈ X, then the vectors vj −vi for vj ∈ Ball(vi,1) form an (ǫ, δ)-cover. (The converse

is not true: taking the union of such (ǫ, δ)-covers may not always give a matching cover.)

Notation: Let Sr ⊆ X consist of all vi ∈ X such that the vectors
{
vj − vi : vj ∈ Ball(vi, r )

}
form an

(ǫr/2,1− δ/2)-cover.

Note that thus far there is no reason to believe even that S1 is nonempty, since we only know that

for each vi ∈ X, the set
{
vj − vi : vj ∈ Ball(vi,1)

}
is an (ǫ, δ)-cover, whereas in order for vi to be in

S1 these vectors must form an (ǫ/2,1− δ/2)-cover.

Thus the main technical step is the following. It assumes that stretch of the edges in the matching

cover, namely, t = ǫ
√
d/l, is larger than some fixed constant.

Lemma 7 (Main)

(i) S1 = X. (ii) There are constants η = η(δ), ρ = ρ(δ) such that for r ≤ ηt, we have |Sr+1| ≥ ρ |Sr |.
Theorem 5 follows immediately from Lemma 7.

Proof:(Theorem 5) If the hypothesis of Theorem 5 is true, then Lemma 6 implies the existence of a set

X of Ω(n) vectors vi’s that form an (ǫ, δ)-matching covered point set using edges of squared length at

most l2. Here ǫ = tl/
√
d. Then Lemma 7 and a simple induction implies that for r = ηt,

|Sr | ≥ ρr−1 |S| = Ω(ρr−1n)≫ 1,

where we’re using the fact that r = o(logn). Thus Sr is nonempty.

Let vi ∈ Sr . Then for at least 1 − δ/2 fraction of directions u, some vj ∈ Ball(vi, r ) satisfies∣∣∣〈vi − vj , u〉
∣∣∣ ≥ rǫ/2. However,

∣∣∣vj − vi
∣∣∣ ≤ √rl, so we conclude that the stretch of vj − vi is

rǫ/2×
√
d√

rl
= √rt/2 = √ηt3/2/2 = Ω(t3/2).

But recall that for any set of n vectors, at most 1/n of the directions u are such that one of the
(
n
2

)

pairs of vectors has stretch > 4
√

logn. But since Sr is nonempty, we know that the probability is at

least 1− δ/2 that some stretch exceeds Ω(t3/2). We conclude that t = O(log1/3n). 2

4.2 Proving Lemma 7

We prove Lemma 7 by induction. Recall that it was unclear even that S1 is nonempty. In fact a phe-

nomenon called measure concentration implies that S1 = X. We first introduce this idea.

4.2.1 Measure concentration.

Let Sd−1 denote the surface of the unit ball in ℜd and let µ(·) denote the standard measure on it. For

any set of points A, we denote by Aγ the γ-neighborhood of A, namely, the set of all points that have

distance at most γ to some point in A.

Lemma 8 (Concentration of measure)

If A ⊆ Sd−1 is measurable and γ >
2
√

log(1/µ(A))+t√
d

, where t > 0, then µ(Aγ) ≥ 1− exp(−t2/2).

Proof: P. Levy’s isoperimetric inequality ([5]) states that µ(Aγ)/µ(A) is minimized for spherical caps2

The lemma now follows by a simple calculation using the standard formula for (d-1)-dimensional vol-

ume of spherical caps, which says that the cap of points whose distance is at least s/
√
d from an

equatorial plane is exp(−s2/2). 2

The following Lemma is an immediate corollary.

2Levy’s isoperimetric inequality is not trivial; see [29] for a sketch. However, results qualitatively the same —but with
worse constants— as Lemma 8 can be derived from the more elementary Brunn-Minkowski inequality; this “approximate
isoperimetric inequality” of Ball, de Arias and Villa also appears in [29].
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Lemma 9

Let {v1, v2, . . . , } be a finite set of vectors that is an (ǫ, δ)-cover, and |vi| ≤ ℓ. Then, for any γ >√
2 log(2/δ)+t√

d
, the vectors are also a (ǫ− 2ℓγ,δ′)-cover, where δ′ = 1− exp(−t2/2).

Proof: Let A denote the set of directions u for which there is an i such that 〈u,vi〉 ≥ ǫ. Since

|vi −u|2 = 1+ |vi|2 − 2〈u,vi〉 we also have:

A = Sd−1 ∩
⋃

i

Ball

(
vi,
√

1+ |vi|2 − 2ǫ

)
,

which also shows that A is measurable. Thus by Lemma 8, µ(Aγ) ≥ 1− exp(−t2/2).
We argue that for each direction u in Aγ , there is a vector vi in the (ǫ, δ) cover with 〈vi, u〉 ≥ ǫ−2ℓγ

as follows. Let u ∈ A,u′ ∈ Aγ ∩ Sd−1 be such that |u−u′| ≤ γ.

The projection length of vi on u is |vi| cosθ where θ is the angle between vi and u. The projection

length of vi on u′ is |vi| cosθ′ where θ′ is the angle between vi and u′. The angle formed by u and u′

is at most 2γ since α ≤ 2 sinα, so θ − 2γ ≤ θ′ ≤ θ + 2γ. Since the absolute value of the slope of the

cosine function is at most 1, we can conclude that the differences in projection is at most 2γ|vi| ≤ 2γℓ.

That is, 〈vi, u′〉 ≥ ǫ− 2γℓ.
Combined with the lower bound on the µ(Aγ), we conclude that the set of directions u′ such that

there is an i such that 〈u′, vi〉 ≥ ǫ− 2ℓγ has measure at least 1− exp(−t2/2). 2

We can thus use Lemma 9 to boost δ to almost 1. However, we choose to do it only sometimes, not

always. This explains the slightly strange hypothesis in the next Lemma. The proof of Lemma 7 will

not use this lemma per se but will use the argument in it.

Lemma 10

If {w1,w2, . . . ,wk} ⊆ ℜd is an (ǫ1,1− δ1)-cover and
{
w′

1,w
′
2, . . . ,w

′
l

}
is an (ǫ2, δ2)-cover then the set{

we −w′
f : 1 ≤ e ≤ k,1 ≤ f ≤ l

}
is a (ǫ1 + ǫ2, δ2 − δ1)-cover.

Proof: Let u ∈ ℜd be a random unit vector. The probability is at least 1− δ1 that there is a we such

that 〈u,we〉 ≥ ǫ1. The probability is at least δ2 that there is a w′
f such that 〈u,w′

f 〉 ≤ −ǫ2. Thus with

probability at least δ2 − δ1, there exist we,w
′
f such that 〈u,we −w′

f 〉 ≥ ǫ1 + ǫ2. 2

4.2.2 Proof of Lemma 7

Let σ = ǫ
√
d, and assume the stretch t = σ/l of the matching edges is larger than any desired constant.

We set D(σ,δ) = 8
√

2 log(2/δ)/σ, and ρ(δ) = δ/4.
First, we show S1 = X. The hypothesis implies that every vi ∈ X is centrally (ǫ, δ)-covered by the

set of vj ∈ Ball(vi,1). We apply Lemma 9 to each of these (ǫ, δ)-covers with γ = σ/4l
√
d. Note that

γ = σ/4l
√
d >

√
2 log(2/δ)/

√
d+

√
2 log(2/δ)/

√
d,

so we conclude that vi is also (1− δ/2, ǫ− 2γℓ) covered by Ball(vi,1). Since 2γℓ < σ/2
√
d ≤ ǫ/2, we

have thus shown that every vi ∈ X is also in S1.

Assume the induction has worked for r steps and there is a set Sr ⊆ T satisfying |Sr | ≥ ρr−1 |X|
such that every point vi ∈ Sr is centrally (ǫr ,1 − δ0/2)-covered by the vectors in Ball(vi, r ), where

ǫr ≥ 0.5rǫ.
For each vi ∈ Sr consider the set of all vectors vj − vk where vj ∈ Ball(vi, r ) and vk ∈ Ball(vi,1).

Lemma 10 implies that these vectors form an (ǫr + ǫ, δ/2) cover, but unfortunately this is no longer

centered at vi. Thus we are unable to prove in general that vi ∈ Sr+1.

Instead, we argue differently and use an averaging argument to say that if Sr is large, so is Sr+1. Let

vi ∈ Sr . For 1−δ/2 fraction of directions u, there is a point vj ∈ Ball(vi, r ) such that 〈vj−vi, u〉 ≥ ǫr .
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Also for δ fraction of directions u, there is a point in vk ∈ Ball(vi,1) such that 〈vk − vi, u〉 ≤ −ǫ and

vk is matched to vi in the matching Mu. Thus for a δ/2 fraction of directions u, both events happen

and thus the pair (vj , vk) satisfies 〈vj − vk, u〉 ≥ ǫr + ǫ. Since vj ∈ Ball(vk, r + 1), we “assign” this

vector vj − vk to point vk for direction u, as a step towards building a cover centered at vk. Now we

argue that for many vk’s, the vectors assigned to it in this way form a (ǫr + ǫ, ρrδ/2)-cover.

For each point vi ∈ Sr , for δ/2 fraction of the directions u the process above assigns a vector to

a point in X for direction u according to the matching Mu. Thus on average for each direction u, at

least δ|Sr |/2 vectors get assigned it by the process. Equivalently, for a random point in X, the expected

measure of directions for which the point is assigned a vector is at least δ|Sr |/2 |X|. Furthermore, at

most one vector is assigned to any point for a given direction u (since the assignment is governed by

the matching Mu). Therefore at least δ |Sr | /4 |X| fraction of the points in X must be assigned a vector

for δ |Sr | /4 |X| fraction of the directions.

We will define all such points ofX to be the set Sr+1 and note that for ρ = δ/4 the size is at least ρ |Sr |
as required. However, we have to show another property for Sr+1. Thus far, since δ |Sr | /4 |X| = ρr ,

we have only shown that each point vk in Sr+1 is centrally (ǫr +ǫ, δρr )-covered by vj ∈ Ball(vk, r +1).
We now invoke measure concentration to show that these centered covers are also centered (ǫr +

ǫ/2,1− δ/2) covers, so long as r = O(σ/l). Note that the vectors in the cover have squared length at

most rl2 due to the triangle inequality on the squared lengths. We apply Lemma 9 with ℓ = √rl and

γ = ǫ/4ℓ = σ/4
√
d
√
rl.

Now, we need

γ = σ

4
√
d
√
rl
>

2
√

log
2
ρr +

√
log( 2

δ)√
d

, (11)

to get thatvk is centrally (ǫr+ǫ−2γℓ,1−δ/2) covered. The condition is satified when r ≤ σ/8l√2 log(8/δ),
since ρ = δ/4.

By noting that 2γℓ < ǫ/2, we now observe that each vk ∈ Sr+1 is ((r + 1)ǫ/2,1 − δ/2)-covered by

vj ∈ Ball(vk, r + 1) and our induction is complete. 2

Now we state a corollary of the proof of Lemma 7 which will be useful in Section 5. As in Lemma 7,

let X ⊆ ℜd be a pointset that is (ǫ, δ)-matching-covered using edges of squared length at most l2.

The Corollary concerns, for some s > 0, a subset T ⊆ X of size at least |X| /2 containing every vi

such that the set

{
vj − vi :

∣∣∣vi − vj
∣∣∣

2 ≤ s
}

is an (ǫ1,1−δ/2)-cover. Define T ′ to be the set of vi’s such

that the set

{
vj − vi :

∣∣∣vi − vj
∣∣∣

2 ≤ s + l2
}

is an (ǫ1 + ǫ/2,1− δ/2)-cover. The corollary assumes ǫ
√
d

is some constant, say σ .

Corollary 11 (Cover Composition)

There are constants ρ, f depending only on σ,δ such that if s + l2 ≤ f , then |T ′| ≥ ρ |X|.
Proof: Straightforward from proof of Lemma 7; left to the reader. 2

5 Achieving ∆ = Ω(1/√logn).

To prove Theorem 1 with ∆ = Ω(1/√logn), we start by invoking set-find with that ∆ as separation

parameter. If set-find succeeds, we are done. Otherwise, as before we end up with matchings Mu in

most directions u. Now, however, we cannot necessarily show that this leads to a contradiction. The

bottleneck in our previous proof lies in the induction of Lemma 7, where the size of the set Sr decreases

geometrically with r (see the calculation (11)). To bypass that, we describe another algorithm that finds

a ∆-separated set. This uses the simple observation that if a point is well covered then all points that

are close to it are also well covered. Now we formalize this.
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Lemma 12 (Covering Close Points)

Suppose v1, v2, . . . ∈ ℜd are vectors such that for some point v0 ∈ ℜd the vectors v1 −v0, v2 −v0, . . . ,
form an (ǫ, δ)-cover. Then for every point v′0 such that

∣∣v0 − v′0
∣∣ = s, the vectors v1 − v′0, v2 − v′0, . . .

form an (ǫ− ts√
d
, δ− e−t2/4)-cover.

Proof: If u is a random unit vector, Pru[〈u,v0 − v′0〉 ≥ ts√
d
] ≤ e−t2/4. 2

Armed with this lemma, we construct l2-separated sets as follows. Our algorithm is very much like

the inductive step in the proof lemma 7.

For each r , define S′r to be the set of points v which is (rǫ/4,1− 3δ/4)-covered by points that are

within length ℓr =
√

2r/l of v . Consider the smallest r such that S′r+1 has cardinality less than n/2
(we argue below that such an r exists). We apply Corollary 11 to S′r , to get a set of δn/4 points T where

each point v ∈ T is ((r/4+1/2)ǫ,1−δ/2) covered by points that are within squared Euclidean length

ℓ2
r + l2 of v . It will follow using Lemma 12 that all points within length l of T are in Sr+1, and therefore

the Ω(n) sized sets T , S1 − Sr+1 are at least l2-separated.

To argue correctness, we will show that for every r ≤ r0 where r0 is θ(1/l2), Corollary 11 implies

|T | ≥ ρn and Lemma 12 implies that the l-neighborhood of T is contained in S′r+1. Now for some

l which is θ(1/ log1/4n) we argue that |S′r0
| = 0. Recall that v ∈ S′r0

only if for most directions it

participates in a stretched pair of points with stretch Ω(√r0/l) = Ω(1/l2) = Ω(
√

logn). In fact, for

most directions there are no such stretched pairs.

To finish we argue that r0 is θ(1/l2). To use Lemma 12 as above, we need to ensure that the loss

in projection ts/
√
d (in our context s = l) is at most ǫ/4, and that the loss in probability e−t

2/4 is at

most δ/4. Choosing t = 2
√

log 4/δ, we see that l must be less than ǫ
√
d/t which is easily satisfied for

sufficiently largen. Moreover, for some contant f , Corollary 11 can be applied as long as ℓ2
r = 2rl2 ≤ f .

This implies that the upper limit for r is θ(1/l2).

Remark 7 Simplifying slightly, here is a concrete algorithm.

For each r , find a set S̃′r where each point in S̃′r is approximately (rǫ/4,1−3δ/4)-covered by points

that are within length
√

2r/l. This can be done by sampling O(logn) directions. For the first S̃′r with

cardinality less than |S̃′1|/2, we take the set S̃′1 − S̃′r to be S and take T to be all the points that are at

least l2 from S.

The sets S and T are l2-separated by construction and the argument above shows that each set is

large in the event set-find usually fails.

6 O(
√

logn) Ratio for sparsest cut

Now we describe a rounding technique for the SDP in (8) –(10) that gives a O(
√

logn)-approximation

to sparsest cut. Note that our results on expander flows in Section 7 given an alternative O(
√

logn)-
approximation algorithm.

First we see in what sense the SDP in (8) –(10) is a relaxation for sparsest cut. For any cut (S, S)
consider a vector representation that places all nodes in S at one point of the sphere of squared radius

(4 |S|
∣∣∣S
∣∣∣)−1 and all nodes in |S| at the diametrically opposite point. It is easy to verify that this solution

is feasible and has value
∣∣∣E(S, S)

∣∣∣ / |S|
∣∣∣S
∣∣∣. Since

∣∣∣S
∣∣∣ ∈ [n/2, n], we can treat it as a scaling factor.

We conclude that the optimal value of the SDP is a lower bound (up to scaling by n) for sparsest cut.

The next theorem implies that the integrality gap is O(
√

logn).

Theorem 13

There is a polynomial-time algorithm that, given a feasible SDP solution with value β, produces a cut

(S, S) satisfying
∣∣∣E(S, S)

∣∣∣ = O(β |S|n√logn).

The proof divides into two cases, one of which is similar to that of Theorem 1. The other case is

dealt with the following Lemma.
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Lemma 14

There is a polynomial-time algorithm for the following task. Given any feasible SDP solution with

β =∑{i,j}∈E
∣∣∣vi − vj

∣∣∣
2
, and a node k such that the geometric ball of squared-radius 1/4n2 around vk

contains at least n/2 vectors, the algorithm finds a cut (S, S) with expansion at most O(βn).

Proof: Let X be the subset of nodes that correspond to the vectors in the geometric ball around vk.

Let d(i, j) =
∣∣∣vi − vj

∣∣∣
2

and when
{
i, j
}

is an edge e we write d(e).

Since
∑
i<j d(i, j) = 1, the triangle inequality implies that node k also satisfies:

∑

j

d(k, j) ≥ 1/2n.

Separating terms corresponding to j ∈ X and j 6∈ X we obtain

∑

j 6∈X
d(j, k) ≥ 1

2n −
1

4n2 · n2 =
3

8n . (12)

The Lemma’s hypothesis also says ∑

e={i,j}
d(e) ≤ β. (13)

Now, we extend a tree from X to the rest of the graph by growing along outgoing edges at a uniform

rate with respect to d(e). (In other words, do breadth-first search on the weighted graph.) Let αobs to

the minimum expansion of any cut induced by this growing boundary. (Notice, the smaller side of the

cut lies outside the boundary since |X| ≥ n/2.) In other words, after growing δ from the set X the cut

size is at least αobsn(δ) where n(δ) is the number of nodes we have yet to reach.

This implies that the total edge weight seen in this process is at least the integral of αobsn(δ). From

equation (13) we obtain:

β ≥
∫ 1

δ>0
αobsn(δ) dδ.

Furthermore, we note that the integral of n(δ) with respect to δ is at least
∑
i6∈X d(u, i). Thus, from

equation (12) we have that

∫

δ>0
n(δ) dδ ≥ 3

8n .

Combining the above inequalities, we get β ≥ 3αobs/8n, or, in other words αobs = O(βn).
2

Thus we only need to consider the case where the hypothesis of Lemma 14 does not hold for any k.

Namely, for each node k, less than n/2 vectors lie within a ball of squared radius less than 1/4n2. That

is, the nodes are well spread out. Under this condition, the ideas from Corollary 2 and Section 5 can be

used to produce c′-balanced cuts (where c′ is some constant) of expansion O(βn), thus showing that

the integrality gap is O(
√

logn). Now we sketch how this is done.

First, scale all vectors by 2n so that the squared-length of 1/4n2 becomes 1 and
∑
i<j

∣∣∣vi − vj
∣∣∣

2 =
4n2. Now any sphere of radius 2 contains at most 1/2 the points. Furthermore, averaging shows that

at least 9/10 fraction of points lie inside a sphere of radius 40. Thus Ω(1) fraction of nodes lie in

a spherical annulus of inner radius 1 and outer radius 40. A version of Theorem 1 applies to such

representations with constants appropriately modified for the diameters of the ball. As stated, the

Theorem assumed the vector representation of the graph involves unit vectors, but looking over the

proofs it is clear that the proofs go through (with the constants not as good) if 9/10 of the vectors have
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length lowerbounded and upperbounded by some constant. The reason is that by using the Goemans-

Williamson analysis as before, we conclude that for some c′, σ , the algorithm set-find-(c′, σ) outputs

a c′-balanced cut with probability Ω(1). Then, the remainder of the proof just uses an upper bound on

the vector length in various places.

7 Expander Flows: Approximate certificates of expansion

Deciding whether a given graph G has expansion at least α is coNP-complete [6] and thus has no short

certificate unless the polynomial hierarchy collapses. Jerrum and Sinclair [21] and then Leighton and

Rao [22] showed how to use multicommodity flows to give “approximate” certificates; this technique

was then clarified by Sinclair [32] and Diaconis and Saloff-Coste [11]. The results of this section rep-

resent a continuation of that work but with a better certificate: for any graph with α(G) = α we can

exhibit a certificate to the effect that the expansion is at least Ω(α/
√

logn). Furthermore, this cer-

tificate can be computed in polynomial time. The certificate involves multicommodity flows that are

(weighted) expander graphs. (The algorithms of this paper were originally discovered in this setting.)

A word on convention. Weighted graphs in this section will be symmetric, i.e., wij = wji for all

node pairs i, j. We call
∑
jwij the degree of node i. We say that a weighted graph is d-regular if all

degrees are exactly d. We emphasize that d can be a fraction.

7.1 Multicommodity flows as graph embeddings

A multicommodity flow in an unweighted graph G = (V , E) is an assignment of a demand fij ≥ 0 to

each node pair i, j such that we can route fij units of flow from i to j, and can do this simultaneously

for all pairs while satisfying capacity constraints. More formally, for each i, j and each path p ∈ Pij
there exists fp ≥ 0 such that

∀i, j ∈ V
∑

p∈Pij
fp = fij (14)

∀e ∈ E
∑

p∋e
fp ≤ 1. (15)

Note that every multicommodity flow in G can be viewed as an embedding of a weighted graph G′ =
(V , E′, fij) on the same vertex set such that the weight of edge

{
i, j
}

is fij . We assume the multicom-

modity flow is symmetric, i.e., fij = fji. The following inequality is trivial.

α(G) ≥ α(G′) (16)

The following is one way to look at the Leighton-Rao result where Kn is the complete graph on n
nodes. The embedding mentioned in the theorem is, by (16), a certificate showing that expansion is

Ω(α/ logn).

Theorem 15 (Leighton-Rao [22])

If G is any n-node constant-degree graph with α(G) = α, then it is possible to embed a scaled version

of Kn in it with each fij = α/n logn.

Remark 8 The same theorem is usually stated using all fij = 1 (i.e., an unweighted copy of Kn) and

then bumping up the capacity of each edge of G to O(n logn/α). A similar restatement is possible for

our theorem about expander flows (Theorem 17).

We note that the embedding of Theorem 15 can be found in polynomial time using a multicommodity

flow computation, and that this embedding is a “certificate” via (16) that α(G) = Ω(α/ logn).
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7.2 Expanders and Expander Flows

Expanders can be defined in more than one way. We use the following definition.

Definition 7 (Expanders) For any c > 0, a d-uniform weighted graph (wij) is a β-expander if for

every set of nodes S, w(S, S) =∑i∈S,j∈Swij is at least βd |S|.

If a weighted graph is a β-expander, then the second eigenvalue of its Laplacian lies in the interval

[β2/2,2β]. Usually the word “expander” is reserved for the case when β > 0 is a fixed constant

independent of the graph size, in which case the second eigenvalue is bigger than some fixed positive

constant. Thus an expander family can be recognized in polynomial time by an eigenvalue computation,

and this motivates our definition of expander flows.

An expander flow is a multicommodity flow that is a β-expander for some constant β. Such flows

can be used to certify the expansion of a graph.

Lemma 16

If a graphG contains a multicommodity flow (fij) that isd-regular and is a β-expander, thenα(G) ≥ βd.

Proof: For every set S of nodes, the amount of flow leaving S is at least βd, and hence this is a

lowerbound on the number of edges leaving S. 2

The previous Lemma is most useful if β is constant, in which case an eigenvalue computation can

be used to verify that the given flow is indeed an expander. Thus a d-uniform expander flow may be

viewed as a certificate that the expansion is Ω(d). The following Theorem says that such flows exist

for d = α/√logn in every graph G satisfying α(G) = α. This is an interesting structural property of

every graph, in the same spirit as Theorem 15. It also yields a certificate that α(G) = Ω(α/√logn).

Theorem 17

There is a constant β > 0 such that the following is true for every unweighted graph G. If α(G) = α,

then G contains a d-regular multicommodity flow in it that is a β-expander, where d = α/√logn.

We note that the flow of Theorem 17 is such that all nonzero eigenvalues of its Laplacian are at least

λ0 = β2/2. Thus the flow can be found in polynomial time using an Ellipsoid-like method that, for

any, can find the largest d such that the graph contains a d-uniform multicommodity flow whose each

nonzero eigenvalue is at least λ0. (See Theorem ??.)

Example 1 We describe a few examples of expander flows. (i) G = the n-cycle. The eigenvalue bound

is known to be quadratic in the conductance [9]. However, an expander flow is obtained by taking any

3-regular n-node expander (e.g. from [25]) and setting fij = 1/n for each expander edge
{
i, j
}
. Clearly,

this flow is routable in the n-cycle since the demand crossing each cut is at most 2. Furthermore in

the expander every set S has Ω(|S|) edges leaving it, which corresponds to a flow of Ω(|S| /n). Thus

the flow certifies that the expansion of the cycle is Ω(1/n). (ii) G = the cube connected cycle on

{0,1}k (namely, the hypercube in which each node is replaced by a k-cycle.) Embed a random n-node

bounded degree graph for n = 2k. If
{
i, j
}

is an edge then route 1/k units of flow from i to j in the

cube-connected cycle using random paths from i to j. Simple random graph arguments show that flow

capacity constraints are satisfied whp. Thus the flow certifies that the expansion is Ω(1/k). (iii) The

graph from (ii), but with the nodes in each k-cycle permuted arbitrarily. (So this is really a family of

graphs, since there are (k − 1)! choices for the permutation at each of the 2k nodes.) Here we do not

know of an explicit expander flow except by the general argument of Theorem 17. We also do not know

if the expansion of every graph in the family is always Ω(1/k).

The proof of Theorem 17 uses the following lemma that is a consequence of the von Neumann

min-max theorem3.

3The existence of expander flows can be proved in other ways including SDP duality or plain LP duality, but we think the
proof using the min-max theorem is more intuitive.
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Lemma 18

Let c < 1/4. Let G = (V , E) be any graph and d > 0 be any number. Let

V =
{
(v1, . . . , vn) : vi’s are a unit-ℓ2

2-representation that is c-spread
}

(17)

F =
{
(fij) : (fij) is a d-regular flow that can be routed in G

}
(18)

Then

min
(v1,...,vn)∈V

max
(fij)∈F

∑

ij

fij
∣∣∣vi − vj

∣∣∣
2 = max

(fij)∈F
min

(v1,...,vn)∈V

∑

ij

fij
∣∣∣vi − vj

∣∣∣
2

(19)

Proof: Consider a zero-sum two-player game in which the players’ moves are chosen from F and

V respectively and the payoff from the vector player to the flow player is
∑
ij fij

∣∣∣vi − vj
∣∣∣

2
. Clearly,

the strategy set F is convex. Less obviously, so is V once we represent it appropriately. A unit-ℓ2
2-

representation v1, v2, . . . , vn may be represented using the Gram matrix of the vi’s, namely, Mij =
〈vi, vj〉. Thus

∣∣∣vi − vj
∣∣∣

2 = 2(1−Mij), which shows that V consists of positive semidefinite matrices

satisfying some linear constraints; this is a convex set.

Thus the payoff function π may be rewritten as

π((fij),M) = 2
∑

ij

fij(1−Mij)),

which shows that it is linear in each of its two arguments (see Section B in the Appendix). Both strategy

sets are bounded convex sets, and thus are finitely approximable at all scales. Then the Lemma follows

from Lemma 29. 2

As in many situations involving the minmax theorem, one side of (19) is easier to reason about than

the other. The next Lemma shows that the left hand side is Ω(nα(G)/
√

logn). Its proof appears in

Section 7.2.1.

Lemma 19

Let c < 1/4. If graph G = (V , E) satisfies α(G) = α then for every unit ℓ2
2 representation v1, v2, . . . , vn,

that is c-spread, there exists a d-regular multicommodity flow (fij) for d = α/√logn such that

∑

ij

fij
∣∣∣vi − vj

∣∣∣
2 = Ω(nd).

Since the LHS of (19) is Ω(nd) for every choice of the vi’s, there is some choice of the flow for which

the RHS is Ω(nd) also. Hence we have proved the following.

Corollary 20

Let c < 1/4. For every graph G = (V , E) and α(G) = α there exists a d-regular flow (f∗ij) for d =
α/
√

logn such that for every unit ℓ2
2-representation v1, v2, . . . , vn that that is c-spread:

∑

ij

f∗ij
∣∣∣vi − vj

∣∣∣
2 = Ω( αn√

logn
).

Note that the Corollary implies that αc((f∗)) = Ω(αn/
√

logn), so we have proven that all large

sets expand well in f∗. To finish the proof of Theorem 17 we need to augment this flow so all sets

expand well, not just those of size at least cn. This needs another definition and a lemma. We say that

a bipartite weighted graph (V1, V2,w) is a β-matching if every weighted degree is at least β and at most

10β.
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Lemma 21

Let G = (V , E,w) be a weighted graph and S ⊆ V be such that (i) the induced graph G|S satisfies

α(G|S) ≥ α and (ii) the induced bipartite weighted graph (S, S,w) is a β-matching. Then α(G) ≥ γα,

where γ = β
11β+α .

Proof: Let U ⊆ V be any subset. If |U ∩ S| ≥ γ |U| then the expansion of G|S implies the amount of

weight leaving U is least γα |U|. So assume |U \ S| ≥ (1− γ) |U|. Then U \ S has at least (1− γ)β |U|
weight going out of it, of which at most γ10β |U| weight could end up in U ∩ S. Thus at least (1 −
γ)β |U| − 10γβ |U| = γα |U| weight leaves U . 2

Now we prove Theorem 17.

Proof:(Theorem 17) Let c = 1/4− ǫ for some arbitrarily small ǫ > 0 and (f∗ij) be the multicommodity

flow given by Corollary 20. Then the minimum c-balanced cut in the weighted graph (f∗ij) has capacity

Ω( αn√
logn

). Thus Lemma 22 implies that there is a subset S1 of (3
4 − 2ǫ)n nodes such that the induced

(weighted) subgraph of (f∗ij) on S1 has expansion Ω(α/
√

logn).

To extend this subgraph to an expander flow, we take the union of the flow f∗ and the matching

given by the next claim for d′ = α/√logn. By Lemma 21 the union is an expander. In this graph every

degree is at most 2α/
√

logn, so scaling down by a factor 2 gives a graph with every degree at most

d = α/√logn. Finally, add a self-loop at each node and give it a weight fii equal to d− (degree of i).
This uses up no additional capacity and makes the flow d-regular.

claim: For any d′ < α/5 there is a multicommodity flow (gij) in G such that the weighted bipartite

graph (V \ S1, S1, g) is a Θ(d′)-matching. Proof: Let S2 denote V \ S1. Let k = |S1| / |S2|. Note that

k < 5. Consider a flow problem in which each node of S2 is the source for k units of flow and each node

of T is allowed to be the sink for 1 unit of flow and each edge has capacity ⌈1/α⌉. Then by the max-flow

min cut theorem, there is a flow of |S1| units, namely all available flow gets routed. Now scaling this

flow down by α gives the result. 2 2

Lemma 22

For each c < 1/4 and c1 < 1 the following is true for any graph G. There is an induced subgraph G|U
of G with at least (1− c)n nodes such that α(G|U) > c1αc(G). Furthermore, if c ∈ [1/4,1/3) a similar

statement is true for each c1 <
1−2c

2c .

Proof: Let α denote αc(G). Let us iteratively remove sets that do not expand by c1α; clearly the part

of the graph that remains at the end (if any!) has expansion at least c1α. Let S1, S2, . . . , Sk ⊆ V be

the sequence of sets removed at any step and let U = V \ ∪i≤kSi. Then the number of edges between

∪iSi and U is at most c1α(
∑
i |Si|). Since we know that c-balanced cuts expand by at least α and ∪iSi

expands by at most c1α < α, we conclude that
∑
i |Si| < cn.

The proof for c ∈ [1/4,1/3) is similar. 2

Can one embed expanders integrally instead of fractionally? We think this should be possible by

randomized rounding, though a delicate analysis seems necessary.

7.2.1 Proof of Lemma 19

First we state a corollary of our inductive proof of Lemma 7 and the stronger analysis of Section 5.

Corollary 23

For every c < 1/4 there are constants γ,C, τ > 0 such that the following is true. If G = (V , E) is a n-

node graph and α(G) = α then for every unit-ℓ2
2-representation v1, . . . , vn that is c-spread, then there

is a pair of nodes i, j such that dG(i, j) ≤ C
√

logn/α and
∣∣∣vi − vj

∣∣∣
2 ≥ γ. Furthermore this property

holds even if we forbid some τ ·n nodes from playing the role of i, j.
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Proof: The proof uses the set-find algorithm and appeared in full in the first version of our paper. It

used ideas similar to those in our better analysis of Section 5. However, the analysis of our rounding

algorithm has now been rewritten with a new geometric viewpoint. So the proof of this corollary needs

to be rewritten from scratch. Here is a sketch. Assume for contradiction’s sake that endpoints of all

paths of length O(
√

logn/α) in the graph are nodepairs i, j such that
∣∣∣vi − vj

∣∣∣
2 = o(1). We make a

few observations. First, the the matching cover used in Lemma 7 (and other lemmas) can without loss

of generality use nodepairs (i, j) such that the distance of i, j in the graph is O(1/α). This follows

from the fact that Su, Tu are sets of size Ω(n), and thus have many paths of length O(1/α) between

them.

Next, we note that for any set T of size ρn, breadth-first-search can be used to reach ≥ n/2 nodes

in O(1/α) steps. Let S be the set of nodes reached. Thus if the nodes of T are well-covered by a set of

points, then Lemma 12 can be used to conclude that the nodes of S are too.

Now we use an induction similar to the one in the proof of Lemma 7 and that in Section 5 to

derive a contradiction to the assumption that all paths of length O(
√

logn/α) in the graph correspond

to i, j where
∣∣∣vi − vj

∣∣∣
2 = o(1). The “robustness” property follows from the observation that all the

arguments are essentially unchanged if we set aside τn nodes from participating in the matching cover.

2

Now we prove Lemma 19. First, we note that it suffices to find flows of max-degree d. Such a flow

can be made d-regular by augmenting it with a self-loop at each node and with a weight fii equal to

d− (degree of i). This uses up no additional capacity.

To prove the existence of the desired flow is tantamount to proving that the optimum value of the

following LP is Ω(nd). In this LP, for i ≠ j, Pij denotes the set of paths p connecting i and j in graph

G. Note that vi’s appear as “constants” in this LP; the variables are the fp’s.

max
1

4

∑

i,j

∑

p∈Pij
fp
∣∣∣vi − vj

∣∣∣
2

(20)

∀e ∈ E
∑

p∋e
fp ≤ 1 (21)

∀i
∑

j

∑

p∈Pij
fp ≤ d (22)

fp ≥ 0 (23)

We write the dual LP. It involves finding a weighted graph {we} whose underlying edge set is the

same as G, and an assignment of non-negative weights {si} to the vertices.

min
∑

e∈E
we + d

∑

i

si (24)

∀i, j ∀p ∈ Pij ,
∑

e∈p
we + si + sj ≥ 1

4

∣∣∣vi − vj
∣∣∣

2
. (25)

∀e ∈ E we ≥ 0 (26)

Now we show that for d = α/√logn the primal optimum isΩ(αn/
√

logn) = Ω(nd). By LP duality, it

suffices to exhibit that every feasible dual has objective value Ω(nd). Fix any feasible we’s and si’s for

the dual. If d(
∑
i si) = Ω(nd) then there is nothing to prove so from now on assume d(

∑
i si) = o(nd).

The goal is to show that then W =∑ewe is Ω(nd), and this will be done in Claim 1 below.

First, we define a new unweighted graph G′ that is related to G and the given weightswe’s. Let ǫ > 0

be some small enough constant to be specified later. Graph G′ = (V ′, E′) is obtained by replacing each

edge e = {k, l} of G by a path k, k1, k2, . . . , km, l of length m+ 1 = ⌈ ǫwen2W ⌉. (Here k1, k2, . . . , are indices
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of new vertices that are added to the graph.) Let V ′ be the set of nodes of G′. Then the set of new

nodes V ′ \ V satisfies (since |E| ≤ 2n)

∣∣V ′ \ V
∣∣ ≤

∑

e

ǫwen
2W +

∑

e:we>2W/nǫ

1 (27)

≤ 2ǫn (28)

Thus G′ has at most n(1+ 2ǫ) nodes.

Furthermore, G′ inherits a natural unit-ℓ2
2 representation from G. Using the above edge {k, l} as an

example again, we can use the vector vk for k, k1, k2, . . . , k⌊m/2⌋ and vl for the other nodes of the path.

In G′ every set U of at least 4ǫn nodes contains at least |U| − 2ǫn original nodes and hence has at

least α(|U| − 2ǫn) ≥ α |U| /2 edges leaving it. Thus α4ǫ(G′) ≥ α/2 and so Lemma 22 implies that G′

contains a subgraph G′′ with at least (1 − 4ǫ)n original nodes such that α(G′′) ≥ α/3. Furthermore,

the inherited ℓ2
2 representation is c′-spread where c′ is some other constant, namely, g such that

g(1 − g) = c(1 − c) − (4ǫ)2. Let τ > 0 denote maximum allowed fraction of the “forbidden set” in

Corollary 23 for this constant g, and let γ > 0 be the constant such that the Theorem yields i, j such

that
|vi−vj|2

4 ≥ γ. Assume ǫ is small enough that
∑
i si < (τ − 2ǫ)γn/3. (Recall that we assumed∑

i si = o(n).)
The next claim completes the proof of Lemma 19.

claim 1: W = Ω(nd)
Proof: Let B be the set of nodes i satisfying si ≥ γ/3. Since

∑
i si < (τ − 2ǫ)γn/3, we have |B| ≤

(τ − 2ǫ)n.

Now treat B∪ (V ′ \V) as the “forbidden set” (which we can do since it has size at most (τ −2ǫ)n+
2ǫn ≤ τn) and apply Corollary 23 to conclude that there is a node pair i, j ∈ G′′ that are not forbidden

and dG′′(i, j) = O(
√

logn/α) = O(1/d) and
|vi−vj|2

4 ≥ γ. Since i, j are not forbidden, they are in V and

si, sj < γ/3. Thus we have shown the existence of i, j in G and a path p connecting them such that∑
e∈p⌈ ǫwen2W ⌉ = O(1/d) but at the same time satisfies (thanks to constraint (25) on the dual solutions):

∑

e∈p
we + 2 · γ3 ≥ γ.

We conclude that W = Ω(dn), and the Claim is proved. 2

7.3 Alternative Approximation Algorithm for sparsest cut

Now we show that Theorem 17 leads to an alternative O(
√

logn)-approximation for sparsest cut that

does not use SDP.

Theorem 24

There is a β0 > 0 and a polynomial-time algorithm that, given a graph G = (V , E) and a degree bound

d either finds a d-regular β0-expander flow in G or else finds a cut of expansion O(d
√

logn).

Proof: We write an LP expressing the existence of a β-expander flow. For all paths p in the graph,

we have a non-negative variable fp. Let D denote the polytope of demand vectors d = (dij) that

correspond to multicommodity flows routable in G without exceeding edge capacities. (We omit the

detailed description of D, which is standard.) For any such demand vector d and cut (S, S) we denote

by d(S, S) = ∑
i∈S,j∈S dij the amount of demand crossing the cut. We denote the degree of node i,∑

j dij by di.
The LP is the following:
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d ∈ D (29)

di = d ∀i (30)

d(S, S) ≥ β |S| ∀S ⊆ V (31)

First, we relax the LP so that (34) is only required to hold for |S| ≥ n/10 and di = d is relaxed to

di ≤ d.

To determine feasibility of this relaxed LP by the Ellipsoid method, we need a polynomial-time

separation oracle for the constraints. The separation oracle for the first two constraints is trivial, so

assume those constraints are satisfied by the current demand vector. An exact separation oracle for

the third constraint probably does not exist since the expansion problem is co-NP complete, as noted.

So we use an approximate oracle relying on the connection (due to Cheeger) between eigenvalues and

expansion. We determine λ2(L(d)), the second eigenvalue of the Laplacian of the weighted graph

(dij) (turned into a d-regular graph by adding selfloops). If this is less than β2/2, we can use the

corresponding eigenvector to find a cut (S1, S1) of expansion less than β in G. If |S1| ≥ n/10 we have

found a violated constraint. Otherwise iterate on the demand vector restricted to V \ S1 to find other

sets S2, S3, . . . , of expansion less than β until the second eigenvalue of the remaining demand graph

rises above β2/2 and no more such sets can be found. Now if |S1 ∪ S2 ∪ S3 · · ·| > n/10 then we have

found a violated constraint, and failing that, we have convinced ourselves that G contains a subgraph

of at least 9n/10 vertices where d is a β2/2-expander.

Thus by the end of the Ellipsoid method either we conclude the relaxed LP is infeasible or we find

a demand graph that is almost an expander flow.

case 1: We find a demand graph d such that for some subgraph G|S with at least 9n/10 vertices it is a

β2/2-expander. As shown in the proof of Theorem 17, specifically, the Claim in that proof, given any

feasible solution to even this relaxed LP we can try to extend it into an expander flow using a single

s-t maximum flow computation. However, instead of the weight 1/α used there (recall that α is not

known) use a weight of 1/d on each edge. If the max-flow computation does yield a bipartite matching,

then we have obtained a d-regular flow that is an Ω(β2)-expander. If the max-flow computation does

not yield a bipartite matching, then the s-t-minimum cut must have expansion less than d and we have

found a cut.

case 2: during the execution of the Ellipsoid algorithm we discovered poly(n) cuts S1, S2, S3, . . . , each

containing at least n/10 nodes and such that the LP with expansion constraints for just these sets is

infeasible. Namely, the following LP:

d ∈ D (32)

di ≤ d ∀i (33)

d(S, S) ≥ β |S| ∀S ∈ {S1, S2, . . .} (34)

Using the polytopal characterization of D and Farkas’ Lemma this is infeasible iff there is an as-

signment of weight we ≥ 0 to each edge e, si ≥ 0 on each node i, and zS ≥ 0 to each S ∈ {S1, S2, . . . , }
such that

∑
S zS ≤ 10

∑

e∈E
we + d

∑

i

si −
∑

S

|S|zS < 0 (35)

∀i, j ∈ V,p ∈ Pijsi + sj +
∑

e∈p
we ≥ cross(i, j) (36)

where cross(i, j) is shorthand for
∑
S:i∈S,j∈S zS .
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Determine such weighs by linear programming. Now we turn the zS ’s into a unit ℓ2
2-representation

by considering the distribution of cuts given by
zS
Z where Z = ∑

S zS . Recall that every cut has an

obvious ℓ2
2 representation, hence so does every distribution on cuts. Now

∣∣∣vi − vj
∣∣∣

2
is another way to

write cross(i, j).
Then go from the weighted graph given bywe’s to an unweighted graph as in the proof of Lemma 19

and apply Corollary 25 below to conclude that if suchwe’s, si’s, zS ’s exist then the algorithm must have

found a cut of expansion at most O(d
√

logn).
2

Above, we used the following “algorithmic” version of Corollary 23.

Corollary 25

For every c < 1/4 there are constants γ,C, τ and a O(mn)-time randomized algorithm such that the

following is true. Given a graph G with a unit-ℓ2
2-representation v1, v2, . . . , vn that is c-spread, the

algorithm finds a pair of vertices i, j and a cut of expansion αobs such that their graph distance is

≤ C√logn/αobs and |vi − vj|2 ≥ γ. Furthermore, the algorithm can find such a pair even if we forbid

some τn vertices from playing the role of i, j.

8 The four conjectures

We feel that our techniques can be strengthened to upperbound the integrality gap by a smaller func-

tion than
√

logn, and possibly even byO(1) (as conjectured in [15]). As noted earlier, our main theorem

(Theorem 1) about the existence of large ∆-separated subsets cannot be improved. However, the al-

ternative approach using expander flows seems to not suffer from such a limitation. In particular,

we do not know if Corollary 23 is tight and our four conjectures below stem from our failure both

to strengthen it and to rule out such a strengthening. (Aside: Our discussion of these conjectures

is somewhat sketchy in this version because the paper has been recently overhauled to focus on the

purely geometric viewpoint represented by Theorem 1. The conjectures fitted in better with the orig-

inal presentation of our ideas, which involve a mix of geometry and graph theory as represented by

Corollary 23.)

Now we list the first three conjectures. All three concern any constant degree graph G = (V , E) and

any unit-ℓ2
2- representation v1, v2, . . . , vn, that is c-spread.

Conjecture 1: There is an edge
{
i, j
} ∈ E such that

∣∣∣vi − vj
∣∣∣

2 = Ω(α).

Conjecture 2: There are pairs of vertices i, j such that dG(i, j) = O(1/α) and
∣∣∣vi − vj

∣∣∣
2 = Ω(1).

Conjecture 3: Version of Conjectures 2 whereby τn fraction of nodes are forbidden from being chosen

as i, j and nevertheless these i, j exist.

Now we summarise the implications of these conjectures. All conjectures are interesting in their

own right.

Lemma 26

1. If the integrality gap of the SDP is O(1) then Conjecture 1 holds.

2. Proving Conjecture 2 suffices to prove that the integrality gap is O(1).

3. Conjecture 3 implies the existence of optimal (upto a constant factor) expander flows in graphs.

Namely, Theorem 17 is true with d = α.

Proof:
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1. If the integrality gap of the SDP is O(1) then the value of the objective is Ω(αn) and hence at

least one edge has value Ω(α).

2. Uses a modification of our original proof that the integrality gap is O(
√

logn). That proof was

modified during the switch to the geometric viewpoint. It will be put in again here in the journal

version.

3. Conjecture 3 is a stronger version of Corollary 23. One can then mimic the proof of Theorem 17

using this stronger corollary.

2

Note that we have proved weaker versions of Conjectures 2 and 3 by replacingΩ(1) byΩ(1/
√

logn).
Replacing

√
logn by any weaker function of n also gives analogous bounds on integrality gaps and

expander flows.

8.1 Bringing the conjectures “down” to ℓ1

A unit ℓ2
2-representation v1, v2, . . . , vn of a graph is said to be ℓ1 if there is a set of vectorsu1, u2, . . . , un

such that
∣∣∣vi − vj

∣∣∣
2 =

∣∣∣ui −uj
∣∣∣

1
. We say that it is ℓ1 upto distortion c if

∣∣∣ui −uj
∣∣∣

1
≤
∣∣∣vi − vj

∣∣∣
2 ≤

c ·
∣∣∣ui −uj

∣∣∣
1
. It had been conjectured that every ℓ2

2-representation is ℓ1 upto a distortion factor

O(1). If true, this would imply an integrality gap of O(1) for the SDP in (4) to (7), using the following

characterization of ℓ1 representations.

Lemma 27 (well-known)

A unit ℓ2-representation v1, v2, . . . , vn is ℓ1 iff there is a αS ≥ 0 associated with each cut (S, S) such

that ∣∣∣vi − vj
∣∣∣

2 =
∑

S

αSdS(i, j), (37)

where dS(i, j) = 0 if i, j are on the same side of the cut and 4 otherwise. (In other words, ℓ1 represen-

tations correspond exactly to the cut cone.)

Proof: One direction is trivial from convexity since every cut metric is ℓ1.

For a proof of the other direction see Shmoys’ survey [31] or Matousek’s book [26]. 2

Thus minimization over ℓ1 metrics is exactly equivalent to minimizing over cuts (and thus NP-hard).

Proving the equivalence (upto O(1) distortion) of ℓ2
2 and ℓ1 seems difficult, however. The only

known result is due to Goemans [16] who shows that ℓ2
2 metrics derived from vectors in ℜd embed

into ℓ1 with distortion O(
√
d), which for d = o(log2n) improves Bourgain [7]’s more general bound

of O(logn), but helps little for the general case d = n. Furthermore, many researchers (including

some of the authors) do not believe that all ℓ2
2 metrics embed in ℓ1 with constant distortion. Thus it is

conceivable that the conjectured equivalence between ℓ2
2 and ℓ1 is false, and yet Conjecture 2 is true

(and thus the SDP has a constant integrality gap).

However, many researchers find ℓ1 metrics much easier to grasp than ℓ2
2 metrics, so here we present

a conjecture about ℓ1 metrics that would also suffice to prove an integrality gap of O(1) for the SDP.

[Conjecture 4:] If the unit-ℓ2
2-representation is actually ℓ1, then there is a vertex pair i, j such that

dG(i, j) = O(1/α) and
∣∣∣vi − vj

∣∣∣
2 = Ω(1).

In light of the preceding discussion, the following equivalence between our conjectures for ℓ2
2 and

ℓ1 may be surprising.

Lemma 28

Conjecture 2 and Conjecture 4 are equivalent.
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Proof: Conjecture 2 ⇒ Conjecture 4: Trivial since Conjecture 4 is a subcase of Conjecture 2.

Conjecture 4⇒ Conjecture 2: Given any unit-ℓ2
2 representation v1, v2, . . . , vn of the graph, consider

the uniform distribution on all hyperplane cuts (a la [GW]). Represent this distribution using Lemma 27

by an ℓ2
2 representation that is ℓ1, namely, a set of unit vectors u1, u2, . . . , un where

∣∣∣ui −uj
∣∣∣

2 = Pr[i, j are separated in hyperplane cut produced using v1, . . . , vn].

Let i, j be the pair of nodes in G whose existence follows from Conjecture 4, namely, with
∣∣∣ui −uj

∣∣∣
2 =

Ω(1). Then these also suffice for Conjecture 2 since if

Pr[i, j are separated in hyperplane cut on v1, . . . , vn] = Ω(1),

then
∣∣∣vi − vj

∣∣∣
2 = Ω(1) also. 2

Remark 9 If we weaken Conjectures 2 and 4 to require
∣∣∣vi − vj

∣∣∣
2 = Ω(1/s(n)) then the equivalence

doesn’t quite hold. The weakened Conjecture 2 still implies the weakened Conjecture 4, but the weak-

ened Conjecture 4 only implies an even weaker Conjecture 2 with s(n) replaced by s(n)2.

Remark 10 We can make a robust form of Conjecture 4 whereby the pair exists even if we forbid τn
nodes from playing the role of i, j. This is a stronger version of Corollary 23. Then this conjecture

is equivalent to the conjecture that the graph as d-regular expander flows for d = α. (We argued the

more interesting “only if” direction but “if” is easy to prove as well.)

The optimistic view of Lemma 28 is that if we feel ℓ1 metrics are easier to work with than ℓ2
2, then our

hopes of resolving Conjecture 2 are bolstered. (Indeed, some would see Lemma 28 as supporting the

conjecture that ℓ2
2 and ℓ1 are equivalent upto distortion O(1).)

The pessimistic view of Lemma 28 is that that trying to strengthen our SDP with other constraints

(in addition to the triangle inequality) may not help. Though this could conceivably give a class of

metrics that is a proper subset of ℓ2
2, proving our conjectures for that other class of metrics will not be

any easier, since that class of metrics (being a relaxation of cut metrics) would always contain ℓ1. This

is why the title of the current subsection announces that the conjectures have been brought “down” to

ℓ1.

9 Conclusions

We feel it should be possible to show that the SDP has integrality gap O(1) or O(s(n)) for some slowly

growing function like s(n) = log logn. Our conjectures provide a roadmap to this task. However,

some newer rounding algorithm may be required since on hypercubes and related graphs, our rounding

algorithm produces cuts whose value is O(
√

logn) times the SDP value.

In this connection —especially to derive approximations for generalizations of sparsest cut— it will

also be useful to resolve the conjecture about low-distortion embeddings of ℓ2
2 into ℓ1. As mentioned

in the introduction, our geometric results may be a starting point.

Our approximation algorithms are fairly inefficient (though polynomial time) because they use SDPs

or related convex optimization, and solving the SDP of (4)–(7) takes about n4.5 time for an n-node

graph using interior point methods. Do more efficient (combinatorial?) approximation algorithms exist

possibly using expander flows? One loose analogy would be combinatorial versions of the Leighton-Rao

multicommodity flow algorithm (see [28, 13], two papers in a long line of research). Such algorithms

may be useful in practice. Many practitioners continue to prefer eigenvalue methods over Leighton-

Rao because the geometric meaning of eigenvalues (e.g., the connection to stretched rubberbands and

such) has relevance in their application —computer vision, for example. Since the SDP relaxation may
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be viewed as a higher-dimensional analogue of eigenvalue computation, it may well turn out to share

these properties of eigenvalues, and hence also their practical appeal.

Extending our ideas to other problems should be possible though it doesn’t seem to be immediate.

The problems in [31] would be a good list to try, especially minimum multicut, for which an O(logk)-
approximation was designed in [14].

Finally, we would love to see an application of expander flows to something other than estimating

the conductance/expansion.
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(in German). Math. Zeitschrift 79:95–99, 1962.

[11] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains. Annals of

Applied Probability, 3:696–730, 1993.

24



[12] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection. In IEEE

FOCS 2001 pp 105–115.

[13] N. Garg and J. Köneman. Faster and Simpler Algorithms for Multicommodity Flow and other

Fractional Packing Problems. In IEEE FOCS 1997.

[14] N. Garg and V. V. Vazirani and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and

their applications. SIAM J. Computing, 25(2):235–251, 1996. Prelim. version in Proc. ACM STOC’93.

[15] M.X. Goemans. Semidefinite programming in combinatorial optimization. Math. Programming,

79:143–161, 1997.

[16] M. X. Goemans. unpublished note.

[17] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. JACM, 42(6):1115–1145, 1995.

[18] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization.

Springer-Verlag, 1993.

[19] H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? Proc. of 38th IEEE FOCS

(1997), 406-415.

[20] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming.

JACM, 45(2):246–265, 1998.

[21] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149-1178, 1989.

[22] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing

approximation algorithms. JACM 46 1999. Prelim. version in ACM STOC 1988.

[23] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic

applications. Combinatorica 15:215–246, 1995.

[24] L. Lovász. On the Shannon capacity of a graph. IEEE Trans. on Info. Theory IT-25:1–7, 1979.

[25] A. Lubotzky, R. Philips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261-277, 1988.

[26] J. Matousek. Lectures on Discrete Geometry. Springer Verlag, 2002.

[27] Y. Nesterov and A. Nemirovskii. Interior point polynomial methods in convex programming. SIAM,

Philadelphia, PA 1994.

[28] S. Plotkin and D. B. Shmoys and E. Tardos. Fast approximation algorithms for fractional packing

and covering problems. Math. Operations Res. 20:257-301, 1995. Prelim. version IEEE Foundations

of Computer Science, 1991, 495-504.

[29] G. Schechtman. Concentration, results and applications. Handbook of the Geometry of Banach

Spaces, volume 2, W.B. Johnson and J. Lindenstrauss (eds.), North Holland, 2003. Draft version

available from Schechtman’s website.

[30] F. Shahrokhi and D.W. Matula. The maximum concurrent flow problem. Journal of the ACM,

37:318–334, 1990.

[31] D. S. Shmoys. Cut problems and their application to divide and conquer. Approximation Algorithms

for NP-hard problems, D.S. Hochbaum (ed.), PWS Publishing, 1995.

[32] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Com-

binatorics, Prob., Comput. 1:351–370, 1992.

25



[33] V. Vazirani. Approximation algorithms. Springer Verlag, 2002.

[34] K. Zatloukal. Personal communication, November 2003.

A Reduction to bounded degree graphs

For completeness we give approximation-preserving reductions from the sparsest cut and c-balanced

cut problems to the bounded degree versions of these problems.

Given any instance G = (V , E) of the c-balanced cut problem we replace each node i by a gadget

Hi that is a strong expander on m = O(n3) nodes. A strong expander is a graph in which for each

subset of nodes S of fewer than half the nodes, the number of edges leaving it is at least |S| + 1; these

were constructed in [25] (though weaker expander constructions would also suffice for us). If di was

the degree of i in G, then we designate di nodes of Hi as special, and if
{
i, j
}

was an edge in G then we

connect two special nodes of Hi,Hj . These special nodes will not be used for any other edges. Let G′

denote this new graph on mn = O(n4) nodes.

Now if (S′, S′) is the optimum cut in G′, then it must be that every gadget Hi lies entirely in S′ or

S′. (For, if not, then moving it to one side or the other must strictly decrease the number of edges in

the cut.) Thus the cut corresponds to a c-balanced cut in G.

The same reduction works for sparsest cut.

B Version of Min-Max Theorem

Section 7 uses the following consequence of the von Neumann min-max theorem that we prove for sake

of completeness. Let π : A × B → ℜ be a payoff function where A,B are finite sets. According to the

min-max theorem:

min
D1

max
b∈B

Ea∈D1[π(a, b)] = max
D2

min
a∈A

Eb∈D2[π(a, b)], (38)

where D1,D2 are distributions on A,B respectively.

We wish to identify sufficient conditions under which the optimum strategies in the game are de-

terministic. Furthermore, we wish to allow A,B to be infinite sets. We will express the optimum as a

limit of optima of finite games.

Set A is convex if for each a1, a2 ∈ A and t ∈ [0,1] there is a way to define ta1 + (1− t)a2 ∈ A.

We say that the payoff function is linear in each coordinate if for all positive t1, t2 satisfying t1+t2 =
1: π(t1a1 + t2a2, b) = t1π(a1, b)+ t2π(a2, b) and π(a, t1b1 + t2b2) = t1π(a,b1)+ t2π(a,b2).

Note that if A,B are convex and the payoff function is linear then for any distribution D1 that

gives probability pa to a ∈ A the element a∗ = ∑
a pa · a is also a member of A and for all b ∈ B:

Ea∈D1[π(a, b)] = π(a∗, b).
Finally, (A, B,π) are finitely approximable at all scales if for every ǫ > 0, there exist finite Aǫ ⊆

A,Bǫ ⊆ B such that:

∀ a ∈ A ∃aǫ ∈ A such that π(a,b) ∈ [π(aǫ, b)− ǫ,π(aǫ, b)+ ǫ],

and a similar property is true for Bǫ.

Lemma 29

If π is linear in each coordinate, and A,B are convex sets that are finitely approximable at all scales,

then

min
a∈A

max
b∈B

π(a,b) = max
b∈B

min
a∈A

π(a,b)

Proof: Consider the finite game on Aǫ, Bǫ and take the limit as ǫ → 0. 2
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C Eigenvalues and expansion

Definition 8 Let G be a weighted complete graph on n nodes with wij denoting the (nonnegative)

weight on edge
{
i, j
}
. The expansion is defined as

ν(w) = min
S⊆[n]

w(S,S)
min{|S|,|S|} . (39)

and the conductance is defined as

c(w) = min
S⊆[n]

w(S,S)
min{w(S),w(S)} (40)

Let D be the diagonal matrix in which Dii =
∑
jwij . The analog of the adjacency matrix for weighted

graphs is W = (wij), and the Combinatorial Laplacian C is D −W . The Laplacian L is D−1/2CD−1/2.

This is positive semidefinite and its smallest eigenvalue is 0. Denoting the second smallest eigenvalues

by λL we have the standard facts

λL = min
~x:ΣiDiixi=0

∑
ijwij(xi − xj)2∑

iDiix
2
i

(41)

In the special case when Dii = d.

The connection to expansion is as follows:

2c(w) ≥ λL ≥ c(w)2

2
(Alon-Cheeger and Alon-Milman inequalities) (42)

An O(1/α) bound on the integrality gap. We sketch a proof that if α(G) = α then the sparsest cut

relaxation of (8)–(10) has optimum value Ω(α2/n). (For an alternative proof see Goemans [15].) We

can prove this using an analogue of Conjecture 4 but using a pair of nodes whose distance is O(1/α2)
rather than O(1/α). This uses the fact that the random walk on such graphs mixes in O(1/λ) time,

which is O(1/α2). Recall that an ℓ1 representation corresponds to a probability distribution on cuts;

see Lemma 27. It actually suffices (by arguments similar to our existence proof of expander flows) to

consider distributions on balanced cuts. Then the upperbound on mixing times shows that there is a

path p ∈ Pij of length O(1/α2) that crosses a constant fraction of cuts, i.e.,
∣∣∣vi − vj

∣∣∣
1
= Ω(1).
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