Quantum Computing 2019 Set 2

Due October 3rd

Instructions: Solutions should be legibly handwritten or typset. Sets are to be returned in the mailbox outside 615 Soda Hall.

Problem 1. (2 points) In the proof of $\text{BQP} \subseteq \text{GapP}$, we assumed that we can find a complete gate set where every gate can be expressed as a unitary matrix with only real entries. i.e. quantum computing with real amplitudes is just as powerful as allowing complex amplitudes. Show this is possible.

Problem 2. Consider a device that ideally produces the state $|\psi_0\rangle$ but due to manufacturing defects produces the state $|\psi_1\rangle$. We will show that if $|\psi_0\rangle$ and $|\psi_1\rangle$ have large overlap $|\langle \psi_0 | \psi_1 \rangle|$, then no quantum process can distinguish these two devices with high probability. For any process P, quantify how well it distinguishes $|\psi_0\rangle$ and $|\psi_1\rangle$ by:

$$\Delta \overset{\text{def}}{=} |\Pr(P(|\psi_0\rangle) \text{ outputs 0}) - \Pr(P(|\psi_1\rangle) \text{ outputs 0})|$$

1. (2 points) Consider the simplest strategy: measure in a basis for which $|\psi_0\rangle$ is a basis vector and guess 0 if the measurement is $|\psi_0\rangle$ and 1 otherwise. Show that then

$$\Delta = 1 - |\langle \psi_0 | \psi_1 \rangle|^2.$$

2. (2 points) This strategy is not optimal. Find a better measurement for which

$$\Delta = \sqrt{1 - |\langle \psi_0 | \psi_1 \rangle|^2}.$$

(Hint: There is a 2-dimensional space containing $|\psi_0\rangle$ and $|\psi_1\rangle$. It may be useful to remember the trigonometric identities of $2 \sin x \sin y = \cos(x - y) - \cos(x + y)$ and $\cos 2x = 2 \cos^2 x - 1$.)
We will show that this second strategy is indeed optimal. To show the upper bound of \((*)\), we will first introduce a generalized form of measurement called a \textit{positive-operator valued measurement} (POVM). A POVM is a set of Hermitian positive semidefinite operators \(\{M_i\}\) on a Hilbert space \(\mathcal{H}\) that sum up to identity

\[
\sum_{i=1}^{n} M_i = \mathbb{I}_{\mathcal{H}}.
\]

The probability of measuring outcome \(i\) is given by \(Pr(i) = \langle \psi | M_i | \psi \rangle\). This generalizes a basis measurement as we can consider \(M_i = |b_i\rangle\langle b_i|\) for any basis \(\{|b_i\rangle\}\). An important difference between basis measurements and POVMs are that the element of a POVM are not necessarily orthogonal and, therefore, the number of elements can be larger than the dimension of the Hilbert space \(\mathcal{H}\).

Instead, POVMs are exactly as descriptive as as applying a unitary \(U\) to the state and ancilla \(|\psi\rangle \otimes |0 \ldots 0\rangle\) followed by a measurement of some of the qubits.

3. \textbf{(2 points)} For any POVM \(\{M_i\}\), let \(A_i = \sqrt{M_i}\), show that the following transformation is unitary:

\[
U : |\psi\rangle |y\rangle \mapsto \sum_{i=1}^{n} A_i |\psi\rangle |i \oplus y\rangle.
\]

Conclude that \(U\) followed by a measurement gives the same statistics as the POVM.

4. \textbf{(2 points)} Given a unitary \(U\) acting on the state and ancilla, construct a POVM equivalent to applying \(U\) and measuring some of the ancilla.

Returning to the problem at hand, we can generalize the distinguishing measurement as a POVM with two elements \(M\) and \(I - M\), with the two outcomes corresponding to answering 0 and 1, respectively. Attempt the next four parts if you are able to – if not, you will get another chance to return to them when we will have covered some more background material in class.

5. \textbf{(2 points)} Show that then the optimal value of \(\Delta\) is

\[
\Delta_{\text{opt}} = \max_{0 \leq M \leq I} \text{Tr} (M\rho)
\]

where \(\rho = |\psi_0\rangle\langle \psi_0| - |\psi_1\rangle\langle \psi_1|\).
6. (2 points) Conclude that

$$\max_{0 \leq M \leq I} \text{Tr}(M\rho) = \frac{1}{2} \text{Tr}\sqrt{\rho^2}. $$

(Hint: Consider an optimal M in the basis where ρ is diagonal).

7. (2 points) Finish by showing

$$\text{Tr}\sqrt{\rho^2} = 2\sqrt{1 - |\langle\psi_0|\psi_1\rangle|^2}. $$

(Hint: ρ is a rank 2 matrix; therefore it has only 2 non-zero eigenvalues. Now express $\text{tr}(\rho^2)$ in two ways.)

8. (1 point) Give a justification as to why the maximizing M and the measurement you gave in Part 2 are the same.

Problem 3. (6 points) Show that $\text{BQP}^\text{BQP} = \text{BQP}$. More formally, let f be a language $\in \text{BQP}$ and let g be a language $\in \text{BQP}^f$, a language decidable by a BQP device with access to f. Then show that $g \in \text{BQP}$.

(Hint: it might help to prove a rigorous version of the statement: If a binary measurement on a quantum state outputs 0 with high probability, then the post-measurement state on output 0 has high overlap with the pre-measurement state.)

Problem 4. (2 points) Raz and Tal showed that \(\exists\) an oracle A such that $\text{BQP}^A \not\subset \text{PH}^A$. The oracle they used to show this result is the “forrelation” oracle. The oracle consists of two functions $f, g : \{0, 1\}^n \rightarrow \{\pm 1\}$ with the promise\(^1\) that either $\Phi_{f,g} \geq 3/5$ or $|\Phi_{f,g}| \leq 1/100$ for

$$\Phi_{f,g} \overset{\text{def}}{=} 2^{-3n/2} \sum_{x,y \in \{0,1\}^n} f(x)(-1)^{x \cdot y} g(y).$$

Show that these two cases can be distinguished with high probability given quantum access to f and g.

\(^{1}\text{The reason for the asymmetry in one promise being for } \Phi_{f,g}\text{ while other for its absolute value is technical and if interested, one should look at the paper of Aaronson and Ambainis introducing the problem.}\)