0.1 Simon’s Algorithm

Suppose we’re given a function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^n \), specified by a black box. (Note that the outputs of \(f \) are \(n \)-bit strings, rather than single bits.) We’re promised the following about \(f \): there exists a nonzero secret string \(a \in \{0, 1\}^n \) such that

- For all inputs \(x \in \{0, 1\}^n \), \(f(x) = f(x \oplus a) \).
- For all inputs \(x, y \in \{0, 1\}^n \), if \(x \neq y \oplus a \), then \(f(x) \neq f(y) \).

What these conditions mean is that \(f \) is a 2-to-1 function, and that any two inputs mapping to the same output differ in exactly those positions \(i \) for which \(a_i = 1 \), where \(i \) is the \(i \)-th position in an \(n \)-bit string. For example, \(f(x) = 2 \cdot \lfloor x/2 \rfloor \). For any \(k \), \(f(2k) = f(2k + 1) \). But for any \(i, j \), if \(i \) and \(j \) are not like \((2k, 2k + 1)\) pair, then \(f(i) \neq f(j) \). In this example, \(a \) is 1.

Let \(x \oplus y \) denote the bitwise mod 2 addition of \(x \) and \(y \), and \(x \cdot y \) denote the inner product of \(x \) and \(y \), \(\sum_{i=1}^{n} x_i y_i \mod 2 \). We now present Simon’s quantum algorithm for finding \(a \). The algorithm uses two registers, both with \(n \) qubits. The registers are initialized to the basis state \(|0\cdots0\rangle |0\cdots0\rangle \).

We then perform the Hadamard transform \(H_{2^n} \) on the first register, producing the superposition

\[
\frac{1}{2^{n/2}} \sum_{x \in \{0, 1\}^n} |x\rangle |0\cdots0\rangle .
\]

Then, we compute \(f(x) \) through the oracle \(C_f \) and store the result in the second register, obtaining the state

\[
\frac{1}{2^{n/2}} \sum_{x \in \{0, 1\}^n} |x\rangle |f(x)\rangle .
\]

The second register is not modified after this step. Thus we may invoke the principle of safe storage and assume that the second register is measured at this point.

Let \(f(z) \) be the result of measuring of the second register. There are exactly two \(x \) such that \(f(x) = f(z) \), according to the definition of \(f \). One is \(z \) and the other is \(z \oplus a \). The quantum state after measuring is

\[
\left(\frac{1}{\sqrt{2}} |z\rangle + \frac{1}{\sqrt{2}} |z \oplus a\rangle \right) |f(z)\rangle .
\]

Figure 1: Simon’s algorithm
We’re now done with the second register, so in the discussion to follow, we’ll omit it from our notation. The state in the \(n \)-qubit first register
\[
\frac{1}{\sqrt{2}} |z\rangle + \frac{1}{\sqrt{2}} |z \oplus a\rangle
\]
clearly contains some information about \(a \)—the question is how to extract it. If we observed at this point, we will get \(z \) or \(z \oplus a \). It is a state chosen uniformly at random from \(\{0, 1\}^n \), containing no information at all. Therefore some more computation is required. The key, once again, is to apply the Hadamard transform \(H_2 \) to the register. Doing so, we obtain a superposition
\[
\sum_{y \in \{0, 1\}^n} \alpha_y |y\rangle
\]
where
\[
\alpha_y = \frac{1}{\sqrt{2}} \frac{1}{2^{n/2}} (-1)^{y \cdot z} + \frac{1}{\sqrt{2}} \frac{1}{2^{n/2}} (-1)^{y \cdot (z \oplus a)} = \frac{1}{2^{(a+1)/2}} (-1)^{y \cdot z} [1 + (-1)^{y \cdot a}].
\]
There are now two cases. For each \(y \), if \(y \cdot a = 1 \), then \(\alpha_y = 0 \), whereas if \(y \cdot a = 0 \), then
\[
\alpha_y = \frac{\pm 1}{2^{(a-1)/2}}.
\]
So when we observe the first register, with certainty we’ll see a \(y \) such that \(y \cdot a = 0 \). Hence, the output of the measurement is a random \(y \) such that \(y \cdot a = 0 \). Furthermore, each \(y \) such that \(y \cdot a = 0 \) has an equal probability of occurring. Therefore what we’ve managed to learn is an equation
\[
y_1 a_1 \oplus \cdots \oplus y_n a_n = 0 \quad (1)
\]
where \(y = (y_1, \ldots, y_n) \) is chosen uniformly at random from \(\{0, 1\}^n \). Now, that isn’t enough information to determine \(a \), but assuming that \(y \neq 0 \), it reduces the number of possibilities for \(a \) by half.

It should now be clear how to proceed. We run the algorithm over and over, accumulating more and more equations of the form in (1). Then, once we have enough of these equations, we solve them using Gaussian elimination to obtain a unique value of \(a \). But how many equations is enough? From linear algebra, we know that \(a \) is uniquely determined once we have \(n - 1 \) linearly independent equations—in other words, \(n - 1 \) equations
\[
y^{(1)} \cdot a \equiv 0 \pmod{2}
\]
\[
\vdots
\]
\[
y^{(n-1)} \cdot a \equiv 0 \pmod{2}
\]
such that the set \(\{y^{(1)}, \ldots, y^{(n-1)}\} \) is linearly independent in the vector space \(\mathbb{Z}_2^n \). Thus, our strategy will be to lower-bound the probability that any \(n - 1 \) equations returned by the algorithm are independent.

Suppose we already have \(k \) linearly independent equations, with associated vectors \(y^{(1)}, \ldots, y^{(k)} \). The vectors then span a subspace \(S \subseteq \mathbb{Z}_2^n \) of size \(2^k \), consisting of all vectors of the form
\[
b_1 y^{(1)} + \cdots + b_k y^{(k)}
\]
with \(b_1, \ldots, b_k \in \{0, 1\} \). Now suppose we learn a new equation with associated vector \(y^{(k+1)} \). This equation will be independent of all the previous equations provided that \(y^{(k+1)} \) lies outside of \(S \), which in turn has
probability at least \((2^n - 2^k)/2^n = 1 - 2^{k-n}\) of occurring. So the probability that any \(n\) equations are independent is exactly the product of those probabilities.

\[
\left(1 - \frac{1}{2^n}\right) \times \left(1 - \frac{1}{2^{n-1}}\right) \times \cdots \times \left(1 - \frac{1}{4}\right) \times \left(1 - \frac{1}{2}\right).
\]

Can we lower-bound this expression? Trivially, it’s at least

\[
\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k}\right) \approx 0.28879;
\]

the infinite product here is related to something in analysis called a q-series. Another way to look at the constant 0.28879... is this: it is the limit, as \(n\) goes to infinity, of the probability that an \(n \times n\) random matrix over \(\mathbb{Z}_2\) is invertible.

But we don’t need heavy-duty analysis to show that the product has a constant lower bound. We use the inequality \((1-a)(1-b) = 1 - a - b + ab > 1 - (a + b)\), if \(a, b \in (0, 1)\). We just need to multiply the product out, ignore monomials involving two or more \(\frac{1}{2}\) terms multiplied together (which only increase the product), and observe that the product is lower-bounded by

\[
\left[1 - \left(\frac{1}{2^n} + \frac{1}{2^{n-1}} + \cdots + \frac{1}{4}\right) \right] \cdot \frac{1}{2} \geq \frac{1}{4}.
\]

We conclude that we can determine \(a\) with constant probability of error after repeating the algorithm \(O(n)\) times. So the number of queries to \(f\) used by Simon’s algorithm is \(O(n)\). The number of computation steps, though, is at least the number of steps needed to solve a system of linear equations, and the best known upper bound for this is \(O(n^{2.376})\), due to Coppersmith and Winograd.

0.2 Classical solution

We are going to prove that any probabilistic algorithm needs an exponential time to solve this problem. Suppose that \(a\) is chosen uniformly at random from \(\{0, 1\}^n - \{0^n\}\). Now consider a classical probabilistic algorithm that’s already made \(k\) queries, to inputs \(x_1, \ldots, x_k\). We want to know how much information the algorithm could have obtained about \(a\), given those queried pairs \((x_i, f(x_i))\).

On the one hand, there might be a pair of inputs \(x_i, x_j\) (with \(1 \leq i, j \leq k\)) such that \(f(x_i) = f(x_j)\). In this case, the algorithm already has enough information to determine \(a\): \(a = x_i \oplus x_j\).

On the other hand, suppose no such pair \(f(x_i), f(x_j)\) exists. Then the queried \(f(x_i)\)'s are distinct and \(a\) is none of \(\binom{k}{2}\) values \(x_i \oplus x_j\).

The probability that the next query will succeed is at most

\[
\frac{k}{2^n - 1 - \binom{k}{2}}
\]

because there are at least \(2^n - 1 - \binom{k}{2}\) possible values of \(u\) for choosing at the \((k + 1)\)-th query. And \(f(x_{k+1})\) should be equal to one of the prior observed \(f(x_i), i \in [1, k]\).
Taking the sum over all $k \in \{1, \ldots, m\}$. We get

$$\sum_{k=1}^{m} k \leq \sum_{k=1}^{m} \frac{k}{2^n} - 2^n - \frac{k^2}{2^n} \leq m^2 2^n - m^2$$

In order to have a constant probability, we must choose $m = \Omega(2^{n/2})$. Hence, any deterministic algorithm has to run in exponential time to get a correct answer with probability larger than a constant.

0.3 Shor’s Factoring Algorithm

The statement of the problem of factoring integer is as follows: Given an integer N, find prime numbers p_i and integers e_i such that

$$N = p_1^{e_1} \times p_2^{e_2} \times \ldots \times p_k^{e_k}$$

Let us make two simplifications of the problem without losing generality: Firstly, given N, it is enough to split it into integers N_1 and N_2 such that $N = N_1 \times N_2$. It is easy to see that after a linear number (in size of the input, i.e. $\log N$) of such steps, we are guaranteed to reach prime factors. Secondly, assume that N is a product of two primes, $N = p \times q$, where $p, q \in \mathbb{P}$.

Classically, naive algorithm for the factoring problem works in time $O(\sqrt{N})$. The fastest known algorithm for this problem is Field Sieve algorithm that works in time $2^{O(\sqrt{\log N})}$.

In fact, Shor showed that we can do better with quantum computer.

Theorem 0.1: There exists quantum algorithm that solves the factoring problem with bounded error probability in polynomial time.

The rest of the paper is a proof of this theorem. Specifically, the factoring problem turns out to be equivalent to the order-finding problem (defined below), because from a fast algorithm for order-finding problem we can get a fast algorithm for factoring problem. The section 1 shows the reduction of factoring to order-finding and the section 2 shows a fast quantum algorithm for order-finding.

1 The reduction of factoring to order-finding

Recall that the numbers \{ $x \mod N : \gcd(x, N) = 1$ \} forms a group under multiplication modulo N. Given x and N such that $\gcd(x, N) = 1$ let $\text{ord}(x)$ denote the minimum positive r such that $x^r \equiv 1 (\mod N)$. The **order finding problem** is to find $\text{ord}(x)$.

The reduction of factoring to order-finding follows from Lemma 9.1 and Lemma 9.3.

Lemma 0.1: Given a composite number N and x, s.t. x is a nontrivial square root of 1 over N (that is, $x^2 \equiv 1 (\mod N)$, and neither $x \equiv 1 (\mod N)$ nor $x \equiv -1 (\mod N)$), we can efficiently compute a nontrivial factor of N.

Proof: From $x^2 \equiv 1 (\mod N)$ follows that $x^2 - 1 \equiv (x - 1)(x + 1) = 0 (\mod N)$. Since neither $x \equiv 1 (\mod N)$ nor $x \equiv -1 (\mod N)$ we know that $1 < x < N - 1$, so one of $\gcd(x - 1, N)$ and $\gcd(x + 1, N)$ is a nontrivial factor of N. Since there exist a fast algorithm for computing \gcd (Euclid’s algorithm), the efficiency easy follows. \square
Example: Let $N = 15$. Then $4^2 \equiv 1 \pmod{N}$ and $4 \neq \pm1 \pmod{N}$. Both $\gcd(4 - 1, 15) = 3$ and $\gcd(4 + 1, 15) = 5$ are nontrivial factors of 15.

Lemma 0.2: Let p be an odd prime and let x be uniformly random element s.t. $0 \leq x < p$. Then $\ord(x)$ is even with probability at least one-half.

Proof: By Fermat’s little theorem we know that for every $x : x^{p-1} \equiv 1 \pmod{p}$. It is well known that multiplicative group modulo prime number is a cyclic group, that means, there is an element g which generates all elements of group in the sense that any element can be written $x \equiv g^k \pmod{p}$ for some k. Since x is chosen uniformly at random, k is odd with probability one-half. Further assume that k is odd. Since $x \equiv g^k \pmod{p}$ it turns out that

$$x^{\ord(x)} \equiv g^{k \ord(x)} \equiv 1 \pmod{p}.$$

Now we can deduce that $p - 1 | k \ord(x)$. Since p is odd, $p - 1$ is even, and k is odd, $\ord(x)$ has to be even. □

Lemma 0.3: Let $N = p \times q$, $p, q \in \mathbb{P}$ is composite odd number and x is taken uniformly at random from $0..N - 1$. If $\gcd(x, N) = 1$ then with probability at least $\frac{3}{8}$ $\ord(x) = r$ is even and $x^r \neq \pm1 \pmod{N}$.

Proof:

By the Chinese remainder theorem, choosing x uniformly at random from $0..N - 1$ is the same as choosing x_1 uniformly at random from $0..p - 1$ and independently x_2 uniformly at random from $0..q - 1$. Order for those numbers also are related. Let $r_1 = \ord(x_1)$ and $r_2 = \ord(x_2)$. It is easy to see that both $r_1 | r$ and $r_2 | r$.

Firstly, let us prove that the probability that r is even is at least $3/4$. Since N is odd, p and q are odd primes. Thus r_1 is even when x_1 is odd and r_2 is even when x_2 is odd. Since r is even when either r_1 is even or r_2 is even, and x_1 and x_2 are chosen uniformly at random, the probability that r is even is at least $3/4$ from Lemma [1].

Secondly, let us prove that the probability that $x^r \equiv \pm1 \pmod{N}$ is at most one-half when r is even. Note that $x^r \equiv 1 \pmod{p}$ and $x^r \equiv 1 \pmod{p}$ and there are only two square roots of 1 modulo prime number, namely ±1. By Chinese reminder theorem it follows that there are only four roots of 1 modulo N. Only two of them makes $x^r \neq \pm1 \pmod{N}$.

□

It is easy to see from Lemma 9.1 and Lemma 9.3 that if someone computes $\ord()$ function for us, we can find prime factors of N classically. By checking answer (easy can be done efficiently) and repeating several times we can increase the probability of success.

2 Shor’s order-finding algorithm

How do we efficiently find $\ord(x) = r$? Here is how Shor’s quantum algorithm does it. The next subsection will describe algorithm and will analyze it in a simplified case.

2.1 The simplified case

Let Q be sufficiently large, s.t. $Q \gg N^2$. Let us assume now that $r | Q$. Case where $r \nmid Q$ algorithm is similar, just analysis is somewhat more complicate.

The algorithm uses two registers:

- register 1 stores a number mod $Q = 2^q$,
- register 2 stores a number mod N,
and has several steps.

1. The registers are initially in the state $|0\rangle \otimes |0\rangle$.

2. On applying the Fourier Transform modulo Q to register 1 we get the state

$$\frac{1}{\sqrt{Q}} \sum_{a=0}^{Q-1} |a\rangle \otimes |0\rangle$$

3. Consider $f(a) = x^a \mod N$, a function that is easy to compute classically (can be computed in $\log a$ multiplications using repeated squaring, $x^2 = x \times x$, $x^4 = x^2 \times x^2$, $x^8 = x^4 \times x^4$, ...), and has r as its smallest period. Figure 2 shows such a function graphically. Note that f is distinct on $[0, r-1]$ since otherwise it would have a smaller period. Applying function f to the contents of register 1 and storing the result in register 2, we get

$$\frac{1}{\sqrt{Q}} \sum_{a=0}^{Q-1} |a\rangle |f(a)\rangle$$

4. Now we measure the second register. When we measure, we must get some value; let it be $f(l)$, where l is uniformly random over $0..r-1$. Then all superposed states inconsistent with the measured value must disappear.

So, the state of the two registers must be given by

$$\frac{1}{\sqrt{Q/r}} \sum_{j=0}^{Q/r-1} |jr + l\rangle |f(l)\rangle$$

5. Thus we have set up a periodic superposition of period r in register 1. Now we can drop the second register. The first register has a periodic superposition whose period is the value we wanted to compute in the first place. How do we get that period?

Can we get anywhere by measuring the first register? It’s no good, because all we will get is a random point, with no correlation across independent trials (because l is random). Here’s what Shor’s algorithm does next.

Figure 2: Function with smallest period r
Fourier sample modulo Q:

Since the next step is Fourier sampling, we can drop the shift value l by the properties of Fourier Transforms discussed in the previous lecture. This allows move l to phase. Applying the Fourier sample to state

$$
\frac{1}{\sqrt{Q}} \sum_{j=0}^{Q-1} \ket{jr+l}
$$

gives us

$$
\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \omega^{kj} \ket{kQ/r}
$$

where ω is a primitive qth root of unity,

$$
\omega = e^{\frac{2\pi i}{Q}}.
$$

6. Let us measure register 1. The measurement gives us kQ/r, where k is random variable uniformly from $0..r-1$. It is easy to see that with big probability $\gcd(kQ/r, Q) = 1$. If so, then by computing $\gcd(kQ/r, Q)$ we get Q/r. Since we know Q, from Q/r it is straightforward to compute r.

2.2 The general case

In the previous lecture we made assumption that $r|Q$. It is very strong assumption because we do not know any algorithm for computing such Q given x. Now we will show that the algorithm works correctly with constant probability even if $r \not| Q$.

Now, in the 4th step, after applying the first measurement, we get state

$$
\frac{1}{\sqrt{|Q|}} \sum_{j=0}^{Q-1} \ket{jr+l}
$$

This is no longer a coset of a subgroup, so earlier reasoning does not apply. Nevertheless, we will take a Fourier transform anyway, and we will show that we get constructive interference primarily at the points close to multiples of Q/r. In fact, we will be close enough to essentially “round” to the nearest multiple, and this will allow us to calculate r with some reasonable probability.

Applying a Fourier transform to the expression above, we get

$$
\sum_{l=0}^{Q-1} \alpha_l \ket{l},
$$

where

$$
\alpha_l = \frac{1}{\sqrt{Q}} \times \frac{1}{\sqrt{|Q|}} \sum_{j=0}^{Q-1} (\omega^r)^j.
$$
Notice that if $rl \mod Q$ is small, then terms in the sum cover only a small angle in the complex plane, and hence, the magnitude of the sum is almost the sum of the magnitudes. Next lemmas makes it precise.

Lemma 0.4: If $-\frac{r}{2} \leq lr \mod Q \leq \frac{r}{2}$ for some lr then $|\alpha_i| \geq \frac{1}{2\sqrt{r}} \times \frac{1}{\sqrt{r}}$.

Proof:

Let

$$\beta = e^{\frac{2\pi i}{Q}r} = \omega^l.$$

This stands for a vector on the complex plane. The sum

$$\sum_{j=0}^{\lfloor \frac{Q}{r} \rfloor - 1} \beta^j$$

is a geometric series with common ratio β.

Since $-\frac{r}{2} \leq lr \mod Q \leq \frac{r}{2}$, the terms of the series fan out less than or equal to an angle π on the complex plane. This happens when β makes a small angle with the real line. Then as shown in Figure 3 half of the terms in the above series make an angle less than or equal to $\frac{\pi}{4}$ with the resultant of the vector addition of the terms in the series. Then each such term contributes a fraction at least

$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

of its length to the resultant vector. So the magnitude of the resultant is at least

$$\frac{1}{2} \times \frac{1}{\sqrt{2}} \times \frac{Q}{r} \times \frac{1}{\sqrt{Q}} \times \frac{1}{\sqrt{\lfloor \frac{Q}{r} \rfloor}} = \frac{1}{2^{3/2}} \times \frac{1}{\sqrt{r}}$$

![resultant vector](image)

Figure 3: β makes small angle with real line

□

Lemma 0.5: $-\frac{r}{2} \leq lr \mod Q \leq \frac{r}{2}$ with probability $\Theta(1)$.

Proof:
If $\gcd(r, Q) = 1$ then $r^{-1} \mod Q$ exists. Thus as l varies in the range $[0, Q - 1]$, lr must take values forming a permutation of $\{0, 1, 2, \ldots, Q - 1\}$. Thus, as Figure 4 shows, at least r values of lr lie in the range $[Q - r/2, r/2]$.

If $\gcd(r, Q) \neq 1$, then $lr \mod Q$ is distributed as shown in Figure 5. In this case, at least $r/2$ values of lr lie in a range $[Q - r/2, r/2]$ of size r.

Thus, in any case, at least $r/2$ values of l satisfy the condition

$$-\frac{r}{2} \leq lr \mod Q \leq \frac{r}{2}$$

From Lemma 9.4 each of them has amplitude at least

$$\frac{1}{2^{3/2}} \times \frac{1}{r^{1/2}}$$

Thus the probability of sampling such an l is at least

$$\frac{r}{2} \times \left(\frac{1}{2^{3/2}} \times \frac{1}{r^{1/2}}\right)^2 \geq \frac{1}{16}$$

So with probability more than $\frac{1}{16}$ we will sample an l such that

$$-\frac{r}{2} \leq lr \mod Q \leq \frac{r}{2}.$$
So with probability more than $\frac{1}{16}$, we will sample an l such that

$$-\frac{r}{2} \leq lr \mod Q \leq \frac{r}{2}$$

i.e.

$$|lr - kQ| \leq \frac{r}{2}$$

for some integer k; equivalently,

$$\left| \frac{l}{Q} - \frac{k}{r} \right| \leq \frac{1}{2Q}$$

Thus, $\frac{l}{Q}$ is an $\frac{1}{2Q}$-approximation of the rational $\frac{k}{r}$. We can measure l, and we know Q. The ratio $\frac{l}{Q}$, when reduced to lowest terms, leads to a rational $\frac{a}{b}$, say, which is a $\frac{1}{2Q}$-good approximation to $\frac{k}{r}$.

Since k is randomly chosen from the range $[0, r - 1]$, with probability at least $\frac{1}{\log k}$, k and r are co-prime. Thus by computing $\frac{k}{r}$ we can compute r as well.

This suggests a way to make a good approximation, by simply choosing Q to be much larger than N. How much larger does Q need to be, for us to evaluate r accurately?

The answer is given by Lemma 9.7 using continued fractions in the next subsection. We just compute continued fractions until precision is at least $\frac{1}{2Q}$. Assume, that the approximation is some rational number $\frac{k'}{r'}$. If $r = r'$ then we succeed otherwise

$$\left| \frac{k}{r} - \frac{k'}{r'} \right| \geq \frac{1}{rr'} \geq \frac{1}{N^2}$$

It is contradiction because both $\frac{k}{r}$ and $\frac{k'}{r'}$ is $\frac{1}{2Q}$ close to $\frac{a}{b}$. Therefore $r = r'$.

2.3 Continued Fractions

The idea of continued fractions is to approximate real numbers using finite number of integers.

Definition 0.1 (Continued Fractions): A real number α can be approximated by a set of positive integers a_0, a_1, \ldots, a_n as $CF_n(\alpha) = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n}}}} = \frac{P_n}{Q_n}$, where P_n and Q_n are integers.

Example: Let us try to approximate π to the first two decimal places with a rational number. We
know that

\[
\pi = 3.14\ldots
= 3 + \frac{14}{100}
= 3 + \frac{1}{\frac{100}{14}}
= 3 + \frac{1}{\frac{7 + \frac{2}{14}}{14}}
\approx 3 + \frac{1}{7}
= \frac{22}{7}
\]

If we decided to approximate \(\pi \) to four decimal places, we would have

\[
\pi = 3.1415\ldots
= 3 + \frac{1415}{10000}
= 3 + \frac{1}{\frac{10000}{1415}}
= 3 + \frac{1}{\frac{7 + \frac{95}{1415}}{1415}}
\approx 3 + \frac{1}{\frac{7 + \frac{1}{14}}{14 + \frac{85}{95}}}
= \frac{311}{99}
\]

The following two lemmas are well known facts about continued fractions that we will leave without a proof.

Lemma 0.6: \(CF_n(\alpha) \) is the best rational approximation of \(\alpha \) with denominator \(\leq Q_n \).

Lemma 0.7: If \(\alpha \) is rational then it occurs as one of the approximations \(CF_n(\alpha) \).

Moreover, it is easy to see that continued fractions are easy to compute for any rational number.