CS 294-2 Local Hamiltonians + Quantum NP 11/11/04
Fall 2004 Lecture 16

1 Local Hamiltonians

Recall that the Hamiltoniahl of an n-qubit systemis a"2 2" Hermitian matrix and the evolution of the
state of the systeni¢(t)) is given by the Sclirdinger equation :

e [ WH) =H | W)

The Hamiltonian is a2x 2" matrix.

Suppose that each qubit in the n-qubit system evolves independently of the other qubits according to some
1-qubit (local) HamiltoniarH;. The Hamiltonian H will have the form:

H=Hi+... +Hn

hereH = Hy + ... +H, is shorthand fot"™ 1@ H; +... + H,® 11

Recall that, being the solution to the Satimger equation, the (unitary) evolution of the system will be
given by the unitary operator

U= eIHt e| (Hi+Hz+...4+Hn)t

that can be expanded as a Taylor series :

|Ht
ki

Moreover, in this case, tHe; 's commute, therefore) = g(Hit+Hnt — ghat . . giHnt

More generally, a fundamental constraint in quantum mechanics is that the Hamiltonian is a sum of c - local
terms for some constant

whereL is a polynomial im.
In general the matriced; andH; do not commute for # j. As a consequence,
H +Hj) 75 e|H t eIH t

How can we simulate the evolution of this quantum system under the actidroofa quantum computer?
We start by the following theorem

[EnY
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Theorem 16.1 (Trotter formula) Let A and B be Hermitian operators. Then, for any real t

lim (eiAt/n . eiBt/n)n _ ei(A+B)t

nN—oo

the formula holds even if A an B do not commute
Proof: By the Taylor series expansion:

- 1. 1
AN = | + ZiAt+0()
n n

it follows:

gAt/ngB/n — | 4 %i(A+ B)t+O(n—12)

thus
(At/ngB/mn — | 4 ki <E> %[i (A+ Bt + O(rle)
since
<E);( = (140(1)/K
it follows that
lim (&7 €5/ — lim n(i(NIZF)t)k(lJFO(i)JFO(an) _ daB

k=
g

Using similar methods as with the proof of the above theorem, it can be shown that

ei(AJrB)I — eiAt . eiBt + O(Atz)

Using the above formula, we can simulate the n-qubit system describeidusing the operatorgHt as
follows:

1. We chop up time polynomially finely so that the er@¢At?) in the above formula is acceptable.
2. We simulate the effect of eadfy for At amount of time using round - robin technique

3. After k iterations :

(U(At) + O(At%))K = U (KAL) + O(At?)
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2 Quantum NP

The class NP (non-deterministic polynomial time) contains many thousand of the most important compu-
tational problems. Of these problems, the vast majority are NP-complete. This means that these are the
hardest problems in NP. By this we mean that, if anyone of them can be solved by a polynomial time al-
gorithm, then every problem in NP can be solved by a polynomial time algorithm. The cornerstone of this
theory of NP-completeness is the Cook-Levin theorem, which states that 3-SAT is NP-complete.

A languageL is in NP if there is a polynomial time proof check€rand a polynomialpoly, with the
following property: ifx € L then there is a string with |y| < poly|x|, such thaC(x,y) = 1. If x¢ L, then
for everyy such thaty| < poly(|x|), C(x,y) = 0.

Recently Kitaev gave the quantum analogue of the Cook-Levin theorem by showing that QSAT the quantum
analogue of 3-SAT is complete for BQNP or QMA. Our exposition of this result is based upon the manuscript
by Aharonov and Nave.

BQNP or QMA is the quantum generalization of MA — the probabilistic analogue of NP. To define MA, we
simply replace the deterministic polynomial time proof checker with a probabilistic polynomial time proof
checkelC. Now if x € L, then there is a stringwith |y| < poly|x|, such thaC(x,y) = 1 with probability at
least 23. If x ¢ L, then for every such thaty| < poly(|x|), C(x,y) = 0 with probability at least 23.

To define BQNP, the quantum analogue of MA, we replace the probabilistic polynomial time proof checker
by a quantum polynomial time proof checker. Equally important, the witness stitngow allowed to be
a quantum witness, i.e., it can be a superposition over strings of length apoiggk|).

BQP is trivially contained in BQNP since it can be simulated by the verifier alone. MA is also contained
in BQNP since quantum machines can perform the classical computations of their classical counterparts.
Kitaev's proof that QSAT is BQNP-complete implies a non-trivial upper bound, showing@@QatPC P#.

A BQNP-Complete Problem

Recall that a Hamiltonian acting anqubits is a 2 dimensional Hermitian matrix. Say that a Hamiltonian

is c-local if it acts as the identity on all exceptof the qubits. Consider the following probleniocal

Hamiltonians or Q5SAT: Let H; (for j = 1,...r) be 5-local Hamiltonians on qubits (each specified by

complex 2 x 2° matrices.). Assume that eakl) is scaled so that all eigenvalugsf H; satisfy 0< A < 1.

Let H = zﬁlej. There is a promise abotit that either all eigenvalues ¢i are > b or there is an

eigenvalue oH that is< a, where 0< a < b < 1 and the difference — a is at least inverse polynomial in
1

nie.,b—a> oy - The problem asks whether has an eigenvalug a.

The Connection with 3-SAT

In 3-SAT, we are given a formul& on n variables in 3-CNF (conjunctive normal form.) That fsjs a
conjunction of many clauses.

f(X1,%X2,...,X0) =CLAC2A...ACm,

where each clausg is a disjunction of three variables or their negations. For examplaay be(x, V X, V
Xc)-
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We would like to make a corresponding Hamiltontfor each clause;. H; should penalize an assignment
which does not satisfy the clause In the example where; = (Xa VX, V Xc), we want to penalize the assign-
ment state010). If our notion ofpenalizeis to have a positive eigenvalue, then we carHgt |010 (010,

and define the othdf;’s similarly, i.e., eaclH; has a 1 eigenvalue with a corresponding eigenvector that
causes clausg to be false.

Finally, we let

m
H= ZlHi,
i=

so thatH is a sum of 3-local Hamiltonians. It is not hard to see that the smallest eigenvalligésahe
minimum (over all assignments) humber of unsatisfied clauses. In partieulas a 0 eigenvalue exactly
when there is a satisfying assignment for

For general QSAT instances, the Hamiltonidhscannot be simultaneously diagonalized in general, and
the problem appears much harder.

Membership in BQNP

We can assume without loss of generality that édgls just a projection matri*¢j> <¢j‘ ®1. The prover
would like to provide convincing and easily verifiable evidence tHat S H; = 5 (A; ® 1) has a small
eigenvaluel < a. The proof consists of (a tensor product of) polynomiahicopies of the corresponding
eigenvectom.

A =73 (nlHj|n). Given a single copy offp), the verifier can flip a coin with bia% as follows:

1. PickHj = |¢;) (¢;| at random
2. Measuren) by projecting ontd; ).

This succeeds with probabilit%r. Given the promise that < aor A > b, it suffices for the verifier to repeat

this testﬁ times to conclude with high confidence tha a. Thus polynomial im copies ofjn) are

sufficient. Note that since the verifier is performing each test randomly and independently, the prover gains
no advantage by sending an entangled state to the verifier.

BQNP-Completeness

To show that QSAT is complete in BQNP, we need to show that the universal BQNP problem reduces to it.
That is, given a quantum circdit =U_ U, _;...U; and a promise that exactly one of the following holds:

1. 3|n), U accepts on inputn) with probability> p1 =1—¢
2. V|n), U accepts on inputy) with probability < po = €,

The challenge is to design an instance of QSAT which allows us to distinguish the above two cases. i.e.
we wish to specify a sum of local Hamiltonians that has an eigenvector with small eigenvalue if and only if
3|n) that caused to accept with high% p;) probability.

CS 294-2, Fall 2004, Lecture 16 4



The construction of the local Hamiltonian is analogous to Cook’s theorem. The quantum analogue of the
accepting tableau in Cook’s theorem will be the computational history of the quantum circuit:

L
T) =t;|¢t> ®1t)

where|¢@p) is a valid initial state andg;) = U; |¢i_1). Thus the computation histoffyf ) is an element of
(62" ¢+ Itis a superposition over time steps of the state of the quantum bits as the quantum circuit
operates on them.

Now the idea of the BQNP-completeness proof is to design the hamiltehgrch that:

1. if there existgn) whereU |n) accepts with probability at least-1¢, then the computational history
|T) of the quantum circuit) on inputn is an eigenvector with eigenvalue at m@%

2. if U rejects every input with probability at least-1e, then all the eigenvalues éf are at Ieasf%

H will be the sumHinitial + Hfinal + Hpropagate The first two terms are simple and express the condition that
the computational history starts with a valid input state, and ends in an accepting state.

We consider the firgn bits ofU’s state the input bits and the remainimg m bits to be the clean work bits.
The design of thédinitian component should then reflect that at time 0, all of the work bits are clear:

n
Hinitial = > N’ ©10) (0|

S=mH+1

Wherel"lél) denotes projection onto treth qubit with value 1.

Assume that the state of the first qubit at the output determines whether or not the input is accepted. Then
H+ina Needs to indicate that at tinhethe first qubit is a 1.

Heinal = N30 @ L) (L.

The most complicated componenttis Hpropagate Which captures transitions between time stéfigopagate=
L _
> j=1Hj, where

1
Hj=-3Ujel) (-1
Loy o o
—5Yfeli-1)il
Lo
ol @ (D l+ 11 -1 (i -1))

The fact that the computational history is a superposition over time steps is quite crucial here. To check that
the correct operation has been applied in gtapsuffices to restrict attention to the- 1-st andj-th bit of
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the clock (assuming that the clock is represented in unary). Now the quantum register is in a superposition
over its state at timg — 1 and at timej. Locally checking this superposition is sufficient to determine
whether its clockj component is the result of applying the quantum gatéo the clockj — 1 component.

This is precisely what the Hamiltoniat; above is designed to do.

Next we show that an accepting history of computation is an eigenvectbmath eigenvalue 0.

Let |T) = St o) @ [t). We analyze the contribution from each componeriioff |T) starts with qubits
m+ 1 throughn clear, Hinitiar does not contribute tél [T). If |T) is a computation ob, that is, |¢) =
Ut |—1) for all t, then fromHpropagatewe get:

HIT =2, \¢jfl>|1 )~ 20l o) i~ 1)
’¢J>|J ’(PJ li—1)
|¢J>|J 2|¢J >|J—1>

2’¢J>|J 2’(151 >|J—1>
=0,

for no contribution fromHpropagate

Finally, if U accepts with probability at least-1¢, only H¢jng contributes a penalty to the sum, for an
eigenvalue of at mosts;.

The hard part of the proof lies in showing the converse. That if there j§hahichU accepts with high
probability, then all eigenvalues &f are large. We refer the interested readerddr the proof of this.

Upper bound on BQNP

One consequence of this proof of BQNP-completeness is the following:

Theorem: BQNPC P#P,

Consider the trace dfik. This is either at leadt® or at mostN&‘. We can make sure thaf >> N&, by
choosingk >> ndlogN. So we just need to estimate(H) in P#.

To see this, writelr(H¥) = Tr((3;H))*) = Tr(xj, j His - HiW) = 3, Tr(Hj, - Hj,). Each trace in .
this sum is itself just a sum of exponentially many easy to compute contributions, and thus the entire sum is
easily seen to be estimatedRff.

Kitaev’s results may well be the first steps towards a rich new theory of BQNP-completeness. Perhaps the
most important open question in this area is to find other examples of natural BQNP-complete problems.
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