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1 Local Hamiltonians
Recall that the HamiltonianH of an n-qubit systemis a 2n×2n Hermitian matrix and the evolution of the
state of the system,|Ψ(t)〉 is given by the Schr̈odinger equation :

ih̄
d
dt
| Ψ(t)〉= H | Ψ(t)〉

The Hamiltonian is a 2n×2n matrix.

Suppose that each qubit in the n-qubit system evolves independently of the other qubits according to some
1-qubit (local) HamiltonianHi . The Hamiltonian H will have the form:

H = H1 + . . . +Hn

here,H = H1 + . . . +Hn is shorthand forIn−1⊗H1 + . . .+Hn⊗ In−1

Recall that, being the solution to the Schrödinger equation, the (unitary) evolution of the system will be
given by the unitary operator

U = eiHt = ei(H1+H2+...+Hn)t

that can be expanded as a Taylor series :

eiHt = ∑ (iHt )k

k!

Moreover, in this case, theHi ’s commute, thereforeU = ei(H1+...+Hn)t = eiH1t · . . . ·eiHnt

More generally, a fundamental constraint in quantum mechanics is that the Hamiltonian is a sum of c - local
terms for some constantc :

H =
L

∑
k=1

Hk

whereL is a polynomial inn.

In general the matricesHi andH j do not commute fori 6= j. As a consequence,

ei(Hi+H j )t 6= eiHit ·eiH j t

How can we simulate the evolution of this quantum system under the action ofH on a quantum computer?
We start by the following theorem
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Theorem 16.1: (Trotter formula) Let A and B be Hermitian operators. Then, for any real t

lim
n→∞

(eiAt/n ·eiBt/n)n = ei(A+B)t

the formula holds even if A an B do not commute

Proof: By the Taylor series expansion:

eiAt/n = I +
1
n

iAt +O(
1
n2)

it follows:

eiAt/neiBt/n = I +
1
n

i(A+B)t +O(
1
n2)

thus

(eiAt/neiBt/n)n = I +
n

∑
k=1

(
n
k

)
1
nk [i(A+B)t]k +O(

1
n2)

since (
n
k

)
1
nk = (1+O(

1
n
))/k!

it follows that

lim
n→∞

(eiAt/n ·eiBt/n)n = lim
n→∞ ∑

k=0

n
(i(A+B)t)k

k!
(1+O(

1
n
)+O(

1
n2) = ei(A+B)t

2

Using similar methods as with the proof of the above theorem, it can be shown that

ei(A+B)t = eiAt ·eiBt +O(∆t2)

Using the above formula, we can simulate the n-qubit system described byH using the operatorseiHkt as
follows:

1. We chop up time polynomially finely so that the errorO(∆t2) in the above formula is acceptable.

2. We simulate the effect of eachHk for ∆t amount of time using round - robin technique

3. After k iterations :

(U(∆t)+O(∆t2))k = U(k∆t)+O(∆t2)
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2 Quantum NP

The class NP (non-deterministic polynomial time) contains many thousand of the most important compu-
tational problems. Of these problems, the vast majority are NP-complete. This means that these are the
hardest problems in NP. By this we mean that, if anyone of them can be solved by a polynomial time al-
gorithm, then every problem in NP can be solved by a polynomial time algorithm. The cornerstone of this
theory of NP-completeness is the Cook-Levin theorem, which states that 3-SAT is NP-complete.

A languageL is in NP if there is a polynomial time proof checkerC and a polynomialpoly, with the
following property: ifx∈ L then there is a stringy with |y| ≤ poly|x|, such thatC(x,y) = 1. If x /∈ L, then
for everyy such that|y| ≤ poly(|x|), C(x,y) = 0.

Recently Kitaev gave the quantum analogue of the Cook-Levin theorem by showing that QSAT the quantum
analogue of 3-SAT is complete for BQNP or QMA. Our exposition of this result is based upon the manuscript
by Aharonov and Nave.

BQNP or QMA is the quantum generalization of MA — the probabilistic analogue of NP. To define MA, we
simply replace the deterministic polynomial time proof checker with a probabilistic polynomial time proof
checkerC. Now if x∈ L, then there is a stringy with |y| ≤ poly|x|, such thatC(x,y) = 1 with probability at
least 2/3. If x /∈ L, then for everyy such that|y| ≤ poly(|x|), C(x,y) = 0 with probability at least 2/3.

To define BQNP, the quantum analogue of MA, we replace the probabilistic polynomial time proof checker
by a quantum polynomial time proof checker. Equally important, the witness stringy is now allowed to be
a quantum witness, i.e., it can be a superposition over strings of length at mostpoly(|x|).
BQP is trivially contained in BQNP since it can be simulated by the verifier alone. MA is also contained
in BQNP since quantum machines can perform the classical computations of their classical counterparts.
Kitaev’s proof that QSAT is BQNP-complete implies a non-trivial upper bound, showing thatBQNP⊆ P#P.

A BQNP-Complete Problem

Recall that a Hamiltonian acting onn qubits is a 2n dimensional Hermitian matrix. Say that a Hamiltonian
is c-local if it acts as the identity on all exceptc of the qubits. Consider the following problem:Local
Hamiltonians or Q5SAT: Let H j (for j = 1, . . . r) be 5-local Hamiltonians onn qubits (each specified by
complex 25×25 matrices.). Assume that eachH j is scaled so that all eigenvaluesλ of H j satisfy 0≤ λ ≤ 1.
Let H = ∑r

j=1H j . There is a promise aboutH that either all eigenvalues ofH are≥ b or there is an
eigenvalue ofH that is≤ a, where 0≤ a < b≤ 1 and the differenceb−a is at least inverse polynomial in
n, i.e.,b−a≥ 1

poly(n) . The problem asks whetherH has an eigenvalue≤ a.

The Connection with 3-SAT

In 3-SAT, we are given a formulaf on n variables in 3-CNF (conjunctive normal form.) That is,f is a
conjunction of many clausesci :

f (x1,x2, . . . ,xn) = c1∧c2∧ . . .∧cm ,

where each clausec j is a disjunction of three variables or their negations. For example,c j may be(xa∨xb∨
xc).

CS 294-2, Fall 2004, Lecture 16 3



We would like to make a corresponding HamiltonianHi for each clauseci . Hi should penalize an assignment
which does not satisfy the clauseci . In the example wherec j = (xa∨xb∨xc), we want to penalize the assign-
ment state|010〉. If our notion ofpenalizeis to have a positive eigenvalue, then we can letH j = |010〉〈010|,
and define the otherHi ’s similarly, i.e., eachHi has a 1 eigenvalue with a corresponding eigenvector that
causes clauseci to be false.

Finally, we let

H =
m

∑
i=1

Hi ,

so thatH is a sum of 3-local Hamiltonians. It is not hard to see that the smallest eigenvalue ofH is the
minimum (over all assignments) number of unsatisfied clauses. In particular,H has a 0 eigenvalue exactly
when there is a satisfying assignment forf .

For general QSAT instances, the HamiltoniansH j cannot be simultaneously diagonalized in general, and
the problem appears much harder.

Membership in BQNP

We can assume without loss of generality that eachH j is just a projection matrix
∣∣φ j

〉〈
φ j

∣∣⊗ I . The prover
would like to provide convincing and easily verifiable evidence thatH = ∑H j = ∑(A j ⊗ I) has a small
eigenvalueλ ≤ a. The proof consists of (a tensor product of) polynomial inn copies of the corresponding
eigenvectorη .

λ = ∑ j 〈η |H j |η〉. Given a single copy of|η〉, the verifier can flip a coin with biasλr as follows:

1. PickH j =
∣∣φ j

〉〈
φ j

∣∣ at random

2. Measure|η〉 by projecting onto
∣∣φ j

〉
.

This succeeds with probabilityλr . Given the promise thatλ ≤ a or λ ≥ b, it suffices for the verifier to repeat

this test r2

(b−a)2 times to conclude with high confidence thatλ ≤ a. Thus polynomial inn copies of|η〉 are
sufficient. Note that since the verifier is performing each test randomly and independently, the prover gains
no advantage by sending an entangled state to the verifier.

BQNP-Completeness

To show that QSAT is complete in BQNP, we need to show that the universal BQNP problem reduces to it.
That is, given a quantum circuitU = ULUL−1 . . .U1 and a promise that exactly one of the following holds:

1. ∃|η〉, U accepts on input|η〉 with probability≥ p1 = 1− ε

2. ∀|η〉, U accepts on input|η〉 with probability≤ p0 = ε,

The challenge is to design an instance of QSAT which allows us to distinguish the above two cases. i.e.
we wish to specify a sum of local Hamiltonians that has an eigenvector with small eigenvalue if and only if
∃|η〉 that causesU to accept with high (≥ p1) probability.

CS 294-2, Fall 2004, Lecture 16 4



The construction of the local Hamiltonian is analogous to Cook’s theorem. The quantum analogue of the
accepting tableau in Cook’s theorem will be the computational history of the quantum circuit:

|T〉=
L

∑
t=0

|φt〉⊗ |t〉

where|φ0〉 is a valid initial state and|φi〉 = Ui |φi−1〉. Thus the computation history|T〉 is an element of
(C 2)⊗n⊗C L+1. It is a superposition over time steps of the state of the quantum bits as the quantum circuit
operates on them.

Now the idea of the BQNP-completeness proof is to design the hamiltonianH such that:

1. if there exists|η〉 whereU |η〉 accepts with probability at least 1− ε, then the computational history
|T〉 of the quantum circuitU on inputη is an eigenvector with eigenvalue at mostε

L+1

2. if U rejects every input with probability at least 1− ε, then all the eigenvalues ofH are at leastc(1−ε)
L3

H will be the sumHinitial +H f inal +Hpropagate. The first two terms are simple and express the condition that
the computational history starts with a valid input state, and ends in an accepting state.

We consider the firstmbits ofU ’s state the input bits and the remainingn−mbits to be the clean work bits.
The design of theHinitial component should then reflect that at time 0, all of the work bits are clear:

Hinitial =
n

∑
s=m+1

Π(1)
s ⊗|0〉〈0|

whereΠ(1)
s denotes projection onto thes-th qubit with value 1.

Assume that the state of the first qubit at the output determines whether or not the input is accepted. Then
H f inal needs to indicate that at timeL the first qubit is a 1:

H f inal = Π(0)
1 ⊗|L〉〈L| .

The most complicated component ofH isHpropagate, which captures transitions between time steps.Hpropagate=
∑L

j=1H j , where

H j =−1
2

U j ⊗| j〉〈 j−1|

− 1
2

U†
j ⊗| j−1〉〈 j|

+
1
2

I ⊗ (| j〉〈 j|+ | j−1〉〈 j−1|)

The fact that the computational history is a superposition over time steps is quite crucial here. To check that
the correct operation has been applied in stepj, it suffices to restrict attention to thej−1-st andj-th bit of
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the clock (assuming that the clock is represented in unary). Now the quantum register is in a superposition
over its state at timej − 1 and at timej. Locally checking this superposition is sufficient to determine
whether its clockj component is the result of applying the quantum gateU j to the clock j −1 component.
This is precisely what the HamiltonianH j above is designed to do.

Next we show that an accepting history of computation is an eigenvector ofH with eigenvalue 0.

Let |T〉= ∑L
t=0 |φt〉⊗ |t〉. We analyze the contribution from each component ofH. If |T〉 starts with qubits

m+ 1 throughn clear,Hinitial does not contribute toH |T〉. If |T〉 is a computation ofU , that is, |φt〉 =
Ut |φt−1〉 for all t, then fromHpropagatewe get:

H jT =−1
2

U j
∣∣φ j−1

〉
| j〉− 1

2
U†

j

∣∣φ j
〉
| j−1〉

+
1
2

∣∣φ j
〉
| j〉+ 1

2

∣∣φ j−1
〉
| j−1〉

=−1
2

∣∣φ j
〉
| j〉− 1

2

∣∣φ j−1
〉
| j−1〉

+
1
2

∣∣φ j
〉
| j〉+ 1

2

∣∣φ j−1
〉
| j−1〉

= 0,

for no contribution fromHpropagate.

Finally, if U accepts with probability at least 1− ε, only H f inal contributes a penalty to the sum, for an
eigenvalue of at mostεL+1.

The hard part of the proof lies in showing the converse. That if there is no|η〉 whichU accepts with high
probability, then all eigenvalues ofH are large. We refer the interested reader to [?] for the proof of this.

Upper bound on BQNP

One consequence of this proof of BQNP-completeness is the following:

Theorem: BQNP⊆ P#P.

Consider the trace ofHk. This is either at leastbk or at mostNak. We can make sure thatbk >> Nak, by
choosingk >> ndlogN. So we just need to estimateTr(Hk) in P#P.

To see this, writeTr(Hk) = Tr((∑ j H j)k) = Tr(∑ j1,... jk H j1 · · ·H jk) = ∑ j1,... jk Tr(H j1 · · ·H jk). Each trace in
this sum is itself just a sum of exponentially many easy to compute contributions, and thus the entire sum is
easily seen to be estimated inP#P.

Kitaev’s results may well be the first steps towards a rich new theory of BQNP-completeness. Perhaps the
most important open question in this area is to find other examples of natural BQNP-complete problems.
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