CS 294-2 Abelian HSP + Discrete Log 10/14/04
Fall 2004 Lecture 11

Abelian Hidden Subgroup Problem + Discrete Log

1 Fourier transforms over finite abelian groups

Let G be a finite abelian group. The characterssadre homomorphismg; : G — C. There are exacthG|

characters, and they form a group, called the dual groupdandted byG. The Fourier transform over the
groupG is given by:

Consider, for exampl& = Z,;. The characters are defined jpy(1) = w! andy; (k) = wX. And the Fourier

transform is given by the familiar matr, with F; , = \%wik.

In general, leG =7, x ZNz X ---x Zy, SO that anyg € G can be written equivalently gy, a,,...,a),
wherea; € ZNi. Now, for each choice d(l, ...,k we have a character given by the mapping:

X K (a,a,...,8) = w,lf,lal L% i

(a,85,...,8) — —F— Zkl)wll\(lialwl\klzzaz ..... wn@‘kl...kO

2 Subgroups and Cosets

Corresponding to each subgrokpC G, there is a subgroupl: C G, defined aH* = {k e G | k(h) =
1VvheH}, whereG is the dual group ofz. |Ht| = % The Fourier transform oved maps an equal
superposition o to an equal superposition ovelr’:

Claim
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Proof The amplitude of each elemekt H- is WENECT S hen K(h) = NGk But sincelH| = H] the sum

of squares of these amplitudes is 1, and therefore the amdefitof elements not id+ is 0.

The Fourier transform oves treats equal superpositions over cosetkl @lmost as well:

[EnY

CS 294-2, Fall 2004, Lecture 11



Claim
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hGH |G| keHL
Proof This follows from the convolution-multiplication propgrof Fourier transforms. An equal superpo-
sition on the coseHg can be obtained by convolving the equal superposition dwerstbgroupH with
a delta function ay. So after a Fourier transform, we get the pointwise muttation of the two Fourier
transforms: namely, an equal superposition d¥er andyxy.

Since the phasgq(k) has no effect on the probability of measurihg, Fourier sampling on an equal
superposition on a coset Bfwill yield a uniformly random elemerke H-. This is a fundamental primitive
in the quantum algorithm for the hidden subgroup problem.

NG

Claim Fourier sampling performed qn) Y hen |hg> gives a uniformly random elemekitc H-.

3 The hidden su]ogroup pro]olem

Let G again be a finite abelian group, aRdC G be a subgroup o&. Given a functionf : G — Swhich
is constant on cosets &f and distinct on distinct cosets (i.€(g) = f(g') iff there is anh € H such that
g = hd), the challenge is to fint.

The quantum algorithm to solve this problem is a distillatad the algorithms of Simon and Shor. It works
in two stages:

Stage | Setting up a random coset state:

Start with two quantum registers, each large enough to storelement of the grou@. Initialize each of
the two registers t¢0> . Now compute the Fourier transform of the first register, #uah store in the second
register the result of applyingto the first register. Finally, measure the contents of tkerse register. The
state of the first register is now a uniform superpositionr @endom coset of the hidden subgrdtip

0)10)

measure 2ndreg 1

f 1
rew%‘ 0 = e &P V2"

Stage || Fourier sampling:

FTg®l
—

Compute the Fourier transform of the first register and meadBy the last claim of the previous section,
this results in a random elementléf-. i.e. randonk : k(h) = 0 Yh € H. By repeating this process, we can
get a number of such random constraintd-yrwhich can then be solved to obtaih

Example Simon’s Algorithm: In this cas& = ZJ, andH = {0,s}. Stage | sets up a random coset state
l/\/§|x> + 1/\/§|x+ s>. Fourier sampling in stage Il gives a randéng Z) such thatk - s= 0. Repeat-
ing thisn— 1 times givesn— 1 random linear constraints an With probability at least Ze these linear
constraints have full rank, and therefarés the unique non-zero solution to these simultaneousrlioea
straints.

4 Factoring and discrete 10g

Recall that factoring is closely related to the problenomfer finding.To define this problem, recall that:
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The set of integers that are relatively primeNddorm a group under the operation of multiplication modulo
N: Z{ = {x € Z : gcd(x,N) = 1}.

Letx € Z{. The order ok (denoted byordy (x)) is min.. ;X" = 1 modN.

The task of factorind\ can be reduced to the task of computing the order of a giverZy. Recall that
2| = ®(N), where®(N) is the Euler Phi function. IN = pt--- p theng(N) = (p, — 1) pil‘l-u(pk—
1)pi. Clearly,ordy (x)|®(N).

Consider the functiorf : Zomny — Zno where f(a) = x¥*modN. Thenf(a) =1 if a€ (r), wherer =
ordy(x), and(r) denotes the subgroup @f; generated by. Similarly if a € (r) +k, a coset of(r), then
f(a) = x* modN. Thusf is constant on cosets bf = (r).

The quantum algorithm for finding the ordeor x first usesf to set up a random coset state, and then does
Fourier sampling to obtain a random element frem. Notice that the random element will have the form

ks PN

wheresis picked randomly from{0,...,r — 1}. If gcd(s,r) = 1 (which holds for randors with reasonably
high probability), gcdk, ¢(N)) = @(N)/r. From this it is easy to recover There is no problem discarding
bad runs of the algorithm, since the correct value cén be used to splil into non-trivial factors.

Here we assumed that we knam(N) or at least a multiple of it. However, givesd computing@(N) is as

hard as factoring\. Shor’s factoring algorithm relies on the fact that the lestidoing a fourier transform
over Zy, may be closely approximated by carrying out the fourier ¢farm overz,, for M >> N and

reinterpreting results.

Discrete Log Problem:

Computing discrete logarithms is another fundamentallprobn modern cryptography. Its assumed hard-
ness underlies the Diffie-Helman cryptosystem.

In the Discrete Log problem is the following: given a prirpea generatog of Z; (Z; is cyclic if pis a
prime), and an elemente Z; find r such thag' = x mod p.

Definef:Z, xZ, ; — Z; as follows: f (a,b) = g mod p.

Notice thatf (a,b) = 1 exactly whera = br. Equivalently, wher{a,b) € ((r,1)), where((r,1)) denotes the
subgroup oz, , x Z, ; generated byr,1).

Similarly, f(a,b) = g« for (a,b) € {(r,1)) + (k,0). Therefore,f is constant on cosets bf = ((r,1)).

Again the quantum algorithm first uségo set up a random coset state, and then does Fourier sartpling
obtain a random element frokh*. i.e. (c,d) such thatc +d = 0 modp — 1. For a random such choice of
(c,d), with reasonably high probabilitycd(c, p— 1) = 1, and therefore = —dc* mod p— 1. Once again,

it is easy to check whether we have a good run, by simply coimgpgt mod p and checking to see whether
it is equal tox.
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