CS 294-2 Grover's A]gorithm + Quantum Zeno Effect + Vaidman
Bomb 10/12/04

Fall 2004 Lecture 11

|
Grover’salgorithm

Recall that Grover's algorithm for searching over a spacsizéN works as follows: consider the two dimensional
subspace that consists of two states: the target [gtatand |(),) = Zxﬁw- Start with the statéy,), and repeat for

O(y/(N) steps: reflect aboy) and then reflect aboli,).

To implement the reflection abolip,), we use the Diffusion operat@ (assumeN = 2"), which works as follows.
First, applyH,n, which maps|yj,) — |00...0). Then reflect aroun¢DO...0). Finally, applyH,, to return to the
original basis. (Note that this is simply a reflection arotimelzero vector in the Hadamard basis.)

Let’s write out this diffusion operator explicitly to givanather way of understanding Grover’s algorithm:

Claim: The Diffusion operatob has two properties:

1. Itis unitary and can be efficiently realized.

2. It can be seen as an “inversion about the mean.”
Pr oof:

1. ForN = 2", D can be decomposed and rewritten as:

-1 0 0
0 1 0
D = HN . HN
0 O 1
-2 0 0
0 O 0
= Hy , +1 | Hy
0 O 0
-2 0 0
0 0 --- 0
= Hy ST L ‘R
0 O 0
“2/N —2/N - —2/N
“2/N —2/N - —2/N
= . . . +1
-2/N -2/N -2/N
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—2/N+1 —2/N - —2/N
—2/N —2/N+1 .- —2/N

—-2/N -2/N . —=2/N+1
Observe thaD is expressed as the product of three unitary matrices (twaahbard matrices separated by a

conditional phase shift matrix). Therefof2js also unitary. Regarding the implementation, both theataald
and the conditional phase shift transforms can be effigieatllized withinO(n) gates.

. ConsideD operating on a vectdor) to generate another vect):
a, By
D| q =| B
an By
If we let 4 be the mean amplitude, then the expressign-2o; describes a reflection af; about the mean.
Thus, the amplitude o8 = —3 Yja;+0; = —2u+a; can be considered an “inversion about the mean” with

respect tCHi.

The quantum search algorithm iteratively improves the pbilily of measuring a solution. Here’s how:

1.
2.
3.
4.

Start state islj,) = S« ﬁ |X)
Invert the phase d&) using f
Then invert about the mean usibg

Repeat steps 2 and®+/N) times, so in each iteratiom, increases by\%

This process is illustrated in FigureD.1.

Suppose we just want to firewith probability%. Until this point, the rest of the basis vectors will have ditnde at

1

1 . . . . _ g _ 1
Ieastm. In each iteration of the algorithna, increases by at Iea%:N = \/; Eventually,a, = 7 The number

N

of iterations to get to thig, is < v/N.

More applications Grover’s algorithm is often called a “database” search rtlgm, where you can query in super-
position. Other things you can do with a similar approach:

1.
2.
3.
4.

Find the minimum.
Approximately count elements, or generate random ones.
Speed up the collision problem.

Speed up the test for matrix multiplication. In this perblwe are given three matrices, B, andC, and are
told that the product of the first two equals the third. We wistverify that this is indeed true. An efficient
(randomized) way of doing this is picking a random arragnd checking to see wheth@r = ABr = A(Br).
Classically, we can do the check@{n?) time, but using a similar approach to Grover’s algorithm a&e speed
it up to O(n*"%) time.
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Figure 0.1: The first three steps of Grover’s algorithm. Veatstith a uniform superposition of all basis vectors in
(a). In (b), we have used the functidrto invert the phase af,. After running the diffusion operat@®, we amplify
a, while decreasing all other amplitudes.
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Figure 0.2: This figure shows the circuit used for finding a boffhere aréN steps, and in each step we rotate the
control bit and rurJ.

Vaidman’'s Bomb

To illustrate some of the concepts behind Grover’s algorjtive’ll briefly consider a problem known as Vaidman'’s
bomb. In this problem, we have a package that may or may naéacoambomb. However, the bomb is so sensitive that
simply looking to see if the bomb exists will cause it to exqdo So, can we determine whether the package contains
a bomb without setting it off? Paradoxically, quantum medtsisays that we can. In particular, we will demonstrate
that there is a sequence Mfmeasurements such that if the package contains a bomb, Weatkilwith probability

1/N, and if the package does not contain a bomb, we will look wethiainty.

The Quantum Zeno Effect

To achieve this goal, we'll take advantage of a phenomenomwkras the Quantum Zeno Effect (also referred to as
the “watched pot” or the “watchdog” effect). Consider a quamstate consisting of a single qubit. This qubit starts at
|0), and at every step we will rotate it towafd by 6 = 17/2N. After one rotation, we havien) = a|0) + 3|1), where

B =sinB ~ 1/N. After N steps, the state will b), so any measurement will retut) with high probability.

Now what if we decide to measure the state after each rota#dter the first rotation, we will measut@) with high
probability, but this measurement collapses the state back to |0). Thus, each measurement has a high probability of
yielding |0); the probability of gettindg1) by the end is approximatel)d,\l—l2 = ﬁ as opposed to the extremely high

probability in the previous case.

Essentially, the Quantum Zeno Effect says that if we havesatyum state that is in transition toward a different state,
making frequent measurements can delay that transitioefgatedly collapsing the qubit back to its original state.

L ooking for the Bomb

To determine whether Vaidman'’s bomb exists without acplathking at it, we want to take advantage of the Quantum
Zeno Effect. We'll have a control qubit that indicates wheatbr not we plan to look at the contents of the package,
and we'll have a measurement that collapses this qubit lwai€k tn the case that a bomb is present.

We'll assume that we have a device that can measure whethemhb Is present. We will model this device as a
qguantum circuity that has one input (the control quibit)) and one output (a qubit that &) if a bomb is definitely
present). If there is no bomb, thehmaps|@)|0) — |@)|0); in other wordslJ behaves as the identity. If there is a
bomb, therd maps|0)|0) — |0)|0) (there’s a bomb, but we didn’t look) andl)|0) — |1)|1) (we looked at the bomb);
thatis,U behaves as a CNOT gate.

We want to figure out whether there is a bomb (i.e., we wantgtltés behavior) without setting off the bomb very
often. Figurd P shows the circuit we will use. We initialthe control qubit) to |0). In each step of the algorithm,
we rotate the control qubit towaid) by 6 and then rutJ; we’'ll execute the algorithm foX steps.

Consider the case where there is no bomb; our initial inpl@)i®). If we rotate the control qubit by, the input
to the firstU gate is(a|0) + 3]1))|0), and the output o) is the same state (sintkis the identity). Measuring the
output qubit always return®) and doesn’t alter the state; thus, each step rotates thefgubier until 3 = 1 at the
last measurement.

Now consider the case where there is a bomb. Once again,ibatimput is |00). After the first rotation, the input to
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U is (a|0)+B]1))|0), and the output dfl is a|0)|0) + B|1)|1). When we measure the last qubit, we hayg¥a- 1/N?
probability of looking at the bomb and setting it off. Othésa;, we measurg®) for the output qubit, which means we
didn't look at the bomb. Howevethis measurement collapses the state back to |0)|0). Thus, subsequent steps in the
algorithm will simply repeat this process. Overall, we ohiwe aNB? ~ 1/N chance of actually looking at the bomb.

Vaidman and Grover

To see the relationship to Grover’s algorithm, consider @iqadarly unfortunate case where we havepackages,

N — 1 of which contain bombs. We want to find the one package thed dot contain a bomb, though we don’t mind
setting off a few of the bombs in the process. Grover’s atharihas a property similar to Vaidman’s method where
the amplitude of one target basis vector is amplified whilethlers are constantly diminished or reset.

The important thing to note is that it's highly counteririvg to be able to search iN steps. By querying in
superposition, we manage to search using fewer steps themdhe locations to search!
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