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Abstract

The paper characterizes the behavior of the cell transmission model of a freeway, divided into N sections or cells, each with
one on-ramp and one off-ramp. The state of the dynamical system is the N-dimensional vector n of vehicle densities in the N

sections. A feasible stationary demand pattern induces a unique equilibrium flow in each section. However, there is an infinite
set—in fact a continuum—of equilibrium states, including a unique uncongested equilibrium nu in which free flow speed pre-
vails in all sections, and a unique most congested equilibrium ncon. In every other equilibrium ne one or more sections are con-
gested, and nu

6 ne
6 ncon. Every equilibrium is stable and every trajectory converges to some equilibrium state.

Two implications for ramp metering are explored. First, if the demand exceeds capacity and the ramps are not metered,
every trajectory converges to the most congested equilibrium. Moreover, there is a ramp metering strategy that increases
discharge flows and reduces total travel time compared with the no-metering strategy. Second, even when the demand is
feasible but the freeway is initially congested, there is a ramp metering strategy that moves the system to the uncongested
equilibrium and reduces total travel time. The two conclusions show that congestion invariably indicates wastefulness of
freeway resources that ramp metering can eliminate.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The paper presents a complete analysis of the qualitative properties of the cell transmission model (CTM).
CTM is a first-order discrete Godunov approximation (Godunov, 1959), proposed by Daganzo (1994) and
Lebacque (1996), to the kinematic wave partial differential equation of Lighthill and Whitham (1955) and
Richards (1956). The popularity of CTM is due to its very low computation requirements compared with
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micro-simulation models; the ease with which it can be calibrated using routinely available point detector data
(Lin and Ahanotu, 1995; Munoz et al., 2004); its extensibility to networks (Buisson et al., 1996a) and urban
roads with signalized intersections (Lo, 2001; Almasri and Friedrich, 2005); and the flexibility with which it
can be used to pose questions of traffic assignment (Buisson et al., 1996b; Ziliaskopoulos, 2000) and ramp
metering (Daganzo and Lin, 1993; Zhang et al., 1996; Gomes and Horowitz, 2006). These topics are also stud-
ied using different discrete models (May, 1981; Papageorgiou et al., 1990; Payne, 1979). CTM is a widely used
discrete macroscopic model today.

The objective of this paper, however, is not to relate CTM to the kinematic wave equation nor to investi-
gate its utility for simulation, but rather to study it as a class of nonlinear dynamical systems. From this view-
point, the interest is to determine the structure of its equilibrium points, their stability, and the qualitative
properties of the convergence of its trajectories. Surprisingly, these aspects of the cell transmission model have
received no attention in the published literature. The paper fills this gap.

Section 3 presents the model, taken from Gomes (2004) and Gomes and Horowitz (2006), which in turn is
based on Daganzo (1994). The freeway is divided into N sections, indexed 0, . . . ,N � 1. Section i is character-
ized by a single state variable, its density ni, so the state of the freeway is the N-dimensional vector
n = (n0, . . . ,nN�1). Vehicle movement in a section is governed by the familiar triangular ‘fundamental dia-
gram’, which gives flow as a function of vehicle density. If the density is below critical, vehicles move at free
flow speed; if it is above critical, the section is congested, speed is lower, and flow from the immediately
upstream section is constrained. Thus the state of a freeway obeys a N-dimensional nonlinear difference equa-
tion. When the exogenous demand pattern of on-ramp and off-ramp flows is constant, the difference equation
is time-invariant, and it is meaningful to study its equilibrium states.

Theorem 4.1 in Section 4 fully characterizes the structure of the equilibrium flows and states in any CTM
model. Each demand pattern induces a unique equilibrium flow vector f, and an infinite set of equilibrium
states E. Corresponding to f is the set of bottleneck sections at which flow equals capacity. If there are K bot-
tlenecks, the freeway partitions into 1 + K segments, S0, . . . ,SK, each of which, except S0, begins at a bottle-
neck, and decomposes the set E into the product E = E0 · � � � · EK, with Ek being the equilibrium set for
segment Sk. Each equilibrium in Ek determines an integer j so that the most downstream j sections in Sk

are congested (density is above critical), and the remaining sections are uncongested. The equilibrium set E
forms a topologically closed, connected, K-dimensional surface in the N-dimensional state space. Two equi-
libria are special: the unique uncongested equilibrium nu in which free flow speed prevails in all sections;
and the unique most congested equilibrium ncon. Every other equilibrium ne 2 E is bounded by these,
nu
6 ne

6 ncon. Theorem 4.1 provides an explicit closed form expression for E. In the special case that the
demand is strictly feasible, i.e., the equilibrium flow in each section is strictly below capacity, E reduces to
the unique uncongested equilibrium nu.

Section 5 studies the qualitative behavior of all trajectories generated by the CTM model. The model
induces a strictly monotone map and some of the trajectory behavior is a consequence of the general theory
of strictly monotone maps (Hirsch and Smith, 2005). One interesting consequence is that the unique equilib-
rium nu for a strictly feasible demand pattern is globally asymptotically stable: every trajectory converges to nu

(Theorem 5.1). A more surprising result is that every equilibrium is (Lyapunov) stable: trajectories starting
near an equilibrium ne 2 E remain near it forever (Theorem 5.2). The most remarkable result is that the
CTM model is convergent: every trajectory converges to some equilibrium state ne 2 E (Theorem 5.3).

Section 6 explores two implications for ramp metering. First, if the demand is infeasible and there is no-
metering, every trajectory converges to the most congested equilibrium. However, there is a ramp metering
strategy that increases flow in every section and reduces total travel time (Theorem 6.1). Second, even with
feasible demand if the freeway is in a congested equilibrium, there is a ramp metering strategy that moves
the freeway to the uncongested equilibrium while reducing total travel time (Theorem 6.2).

Section 7 summarizes the most significant results. Some proofs are collected in the Appendix.

2. Background of CTM

The simplest continuous macroscopic model was proposed by Lighthill and Whitham (1955) and Richards
(1956), hence called LWR. Based on the conservation of vehicles, LWR is described by a single partial
Please cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
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differential equation in conservation form. A significant literature proposes and extends discrete approxima-
tions to LWR.

Second order models with two equations were proposed by Payne (1971) and Whitham (1974), which Dag-
anzo (1995) showed to be unsuitable for describing traffic, since in these models vehicles may exhibit negative
speeds. Aw and Rascle (2000) proposed an improved second order model, further studied in Haut and Bastin
(2005), Herty and Rascle (2006), Piccoli and Garavello (2006). A third order Navier–Stokes type model was
introduced in Helbing (1995).

As indicated in Godlewski and Raviart (1996), the best numerical method to solve the partial differential
equations along roads is a Godunov scheme (Godunov, 1959), as it is first-order, correctly predicts shock
propagations, lacks oscillating behavior and has a physical interpretation. The spatial domain is divided into
cells and the state is constant in each of them. For LWR, it leads to piecewise approximation of the state (den-
sity) q(x) at each time step, whose evolution is computed for small time intervals if we know the solution of
initial value problems with Heaviside initial conditions
Plea
port
qiðxÞ ¼
q�; x < 0;

qþ; x > 0;

�

wherein i is the initial cell. Such initial value or Riemann problems can be solved in closed form for scalar
conservation laws. For a system of conservation laws—as occurs in a multi-cell freeway—when no closed form
solution is available, an approximate solver such as the Roe average method is used (Godlewski and Raviart,
1996; LeVeque, 1992).

Several numerical methods can be used as a Godunov scheme (LeVeque, 1992; Lebacque, 1996). The CTM
(Daganzo, 1994) is a Godunov scheme in which the flow as a function of density (fundamental diagram) has
triangular (or trapezoidal) form.

However, the popularity of CTM is not due to its intellectual roots in LWR but from its flexible use in mac-
roscopic simulation.
3. The CTM model

Fig. 1 shows the freeway divided into N sections, each with one on- and one off-ramp. Vehicles move from
right to left. Section i is upstream of section i � 1. There are two boundary conditions. Free flow prevails
downstream of section 0; upstream of the freeway is an ‘‘on-ramp’’ with an inflow of rN. The flow accepted
by section N � 1 is fN(k) vehicles per period or time step k. The cumulative difference leads to a queue of size
nN(k) in period k.

Table 1 lists the model variables and parameters with plausible values. The length of all sections is normal-
ized to 1 by absorbing differences in length in the speeds vi, wi. To be physically meaningful one must have
0 < vi, wi < 1. Off-ramp flows are modeled as a portion bi(k) of the total flow leaving the section
siðkÞ ¼ biðkÞðsiðkÞ þ fiðkÞÞ; or siðkÞ ¼ ½biðkÞ=ð1� biðkÞÞ�fiðkÞ:
We assume constant split ratios bi (bN = 0). With �bi ¼ 1� bi, the CTM model is, for k P 0,
niðk þ 1Þ ¼ niðkÞ � fiðkÞ=�bi þ fiþ1ðkÞ þ riðkÞ; 0 6 i 6 N � 1; ð1Þ
fiðkÞ ¼ minf�bivi½niðkÞ þ ciriðkÞ�;wi�1½�ni�1 � ni�1ðkÞ � ci�1ri�1ðkÞ�; F ig; 1 6 i 6 N ; ð2Þ
0 i-1 i i+1

f0 fifi-1 fi+1

si ri

N-1

rN
fN

nN
s0 r0 sN-1 rN-1

Fig. 1. The freeway has N sections. Each section has one on- and one off-ramp.
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Table 1
Model parameters and variables

Symbol Name Value Unit

Section length 1 miles
Period (time step) 0.5 min

Fi Capacity (per lane) 20 veh/period
vi Free flow speed 0.5 section/period
wi Congestion wave speed 0.5/3 section/period
�ni Jam density 160 veh/section
nc

i Critical density 40 veh/section
bi Split ratio 2[0,1) dimensionless
�bi Complementary split ratio =1 � bi 2(0,1] dimensionless
ci On-ramp blending factor 2[0,1] dimensionless
k Period number Integer dimensionless
fi(k) Flow from section i to i � 1 in period k Variable veh/period
si(k), ri(k) Off-ramp, on-ramp flow in section i in period k Variable veh/period
ni(k) Number of vehicles in section i in period k Variable veh/section
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port
f0ðkÞ ¼ minf�b0v0½n0ðkÞ þ c0r0ðkÞ�; F 0g; ð3Þ
nN ðk þ 1Þ ¼ nN ðkÞ � fNðkÞ þ rN ðkÞ: ð4Þ
Flow conservation in section i 6 N � 1 is expressed by
niðk þ 1Þ ¼ niðkÞ � fiðkÞ þ fiþ1ðkÞ þ riðkÞ � siðkÞ;

which is equivalent to (1), using siðkÞ ¼ bi=

�bifiðkÞ. Flow conservation at N is expressed by (4). The flow fi(k)
from section i to i � 1 is governed by the fundamental diagram (2) with this interpretation: �bivi½niðkÞ þ ciriðkÞ�
is the number of vehicles that can move from section i to i � 1 in period k; wi�1½�ni�1 � ni�1ðkÞ � ci�1ri�1ðkÞ� is
the number that i � 1 can accept; and Fi is the capacity or maximum flow from section i to i � 1. Eq. (3) indi-
cates there is no congestion downstream of section 0. Lastly, it is tacitly assumed that the flows si(k) are not
constrained by off-ramp capacity.

The parameter values in Table 1 correspond to the fundamental diagram of Fig. 2. Its triangular form
incorporates the assumption that is frequently used in our analysis
F i ¼ �bivinc
i ¼ wi�1ð�ni�1 � nc

i�1Þ: ð5Þ

Assumption (5) may appear paradoxical as it relates the capacity Fi to a traffic demand parameter �bi. How-

ever, the paradox disappears upon noting that �biviniðkÞ is the flow from section i to section i � 1 downstream of
the off-ramp flow si(k) = bivini(k).

The state of the system is the N-dimensional vector n(k) = (n0(k), . . . ,nN�1(k)). The queue size nN(k) is not

included in the state. Section i is said to be uncongested or congested in period k accordingly as 0 6 niðkÞ 6 nc
i

or niðkÞ > nc
i .

Remarks. Two reviewers make the following important observations. First, there is empirical evidence of a
capacity drop (of about five percent) when the density exceeds its critical value. The triangular fundamental
20

40 160

slope = vi = 0.5

slope = wi = 0.5/3

nc
ni i

Fi = βivin
c
 = wi-1 (ni-1-nc  )i i-1

Fig. 2. The fundamental diagram is characterized by the maximum flow Fi and speeds vi, wi.
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diagram of Fig. 2 then takes the shape of an ‘inverse k’. By neglecting this capacity drop, the benefits of ramp
metering evaluated in Section 6 underestimate the true benefits. Some emerging research considers the
introduction of mainline metering just upstream of each on-ramp, aimed at preserving capacity flow
downstream of the on-ramp. Under these conditions, there is no capacity drop (thanks to mainline metering)
and the CTM model may be applied for modeling or analysis without change.

Second, taking vi < 1, instead of vi = 1, introduces a numerical error with respect to LWR incurred by the
Godunov scheme, as discussed by Leclercq et al. (2005). The choice of vi < 1, wi < 1, needed to accommodate
sections of different size, has no impact on the analysis of Sections 4 and 5. The results of Section 6 are also
valid, except that the total travel time (due to queuing) would be different from that in LWR.
4. Structure of equilibria

The parameters ci 2 [0, 1] in (2) and (3) reflect the relative position of the on-ramp in section i (Gomes,
2004; Gomes and Horowitz, 2006). For simplicity we assume ci = 0, indicating that the on-ramp is at the
beginning of each section as in Fig. 1. (However, the results below hold for a different choice of ci.) With
ci = 0, Eqs. (1)–(4) simplify
Plea
port
niðk þ 1Þ ¼ niðkÞ � fiðkÞ=�bi þ fiþ1ðkÞ þ riðkÞ; 0 6 i 6 N � 1; ð6Þ
fiðkÞ ¼ fiðnðkÞÞ ¼ minf�biviniðkÞ;wi�1½�ni�1 � ni�1ðkÞ�; F ig; 1 6 i 6 N ; ð7Þ
f0ðkÞ ¼ f0ðnðkÞÞ ¼ minf�b0v0n0ðkÞ; F 0g; ð8Þ
nN ðk þ 1Þ ¼ nNðkÞ � fN ðkÞ þ rN ðkÞ: ð9Þ
In view of (5) a useful alternative to (7) is
fiðkÞ ¼ minf�biviniðkÞ; F i � wi�1½ni�1ðkÞ � nc
i�1�; F ig; ð10Þ
and if section i � 1 is uncongested ðni�1ðkÞ 6 nc
i�1Þ, (10) simplifies to
fiðkÞ ¼ minf�biviniðkÞ; F ig: ð11Þ

Fix the split ratios b0 . . . ,bN�1. Assume stationary demands ri(k) � ri. Each on-ramp demand vector
r = (r0, . . . , rN) induces a unique equilibrium flow vector f(r) = (f0, . . . , fN) calculated as
fN ¼ rN ; ð12Þ
fi ¼ �biðfiþ1 þ riÞ; 0 6 i 6 N � 1: ð13Þ
The function r # f(r) defined by (12) and (13) is one-to-one. A demand r is said to be feasible if 0 6 fi 6 Fi,
0 6 i 6 N; it is strictly feasible if 0 6 fi < Fi, 0 6 i 6 N. A strictly feasible demand induces an equilibrium flow
with excess capacity in every section.

A state n = (n0, . . . ,nN�1) is an equilibrium for a feasible demand r with induced flow f = f(r), if the constant
trajectory n(k) � n is a solution of (6)–(8)
fi ¼ minf�bivini; F i � wi�1ðni�1 � nc
i�1Þ; F ig; 1 6 i 6 N � 1; ð14Þ

f0 ¼ minf�b0v0n0; F 0g: ð15Þ
An equilibrium n is said to be uncongested if all sections are uncongested; otherwise it is congested.
Let E = E(r) be the set of equilibria, i.e., all solutions of the nonlinear system of Eqs. (14) and (15), corre-

sponding to a demand r. This section is devoted to characterizing E(r) and the pattern of congested sections
for each n 2 E(r). If r is not feasible, there is no solution to (14) and (15), so E(r) = ;. Lemma 4.1 implies that
E(r) 5 ; if r is feasible.

Lemma 4.1. A feasible demand r has a unique uncongested equilibrium nu(r).

Proof. Existence: Let f = f(r) be the equilibrium flow. Define
se cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
. Res. Part C (2007), doi:10.1016/j.trc.2007.10.005
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nu
i ¼ ð�biviÞ�1fi; 0 6 i 6 N � 1: ð16Þ
Then niðkÞ � nu
i satisfies (6), because (6) is equivalent to (13). Next, because 0 6 fi 6 Fi and F i ¼ �bivinc

i (see
(5)), nu

i ¼ ð�biviÞ�1fi 6 ð�biviÞ�1F i ¼ nc
i . So nu is uncongested. It remains to prove that nu is an equilibrium,

i.e., satisfies (14), which simplifies to (11) because nu is uncongested. From (16), fi ¼ �bivinu
i , and since r is fea-

sible, fi 6 Fi. So (11) holds.
Uniqueness: Suppose f0 6 ni 6 nc

i ; 0 6 i 6 N � 1g is an equilibrium, i.e., satisfies (14) and (15). Since
ni 6 nc

i , �bivini 6
�bivinc

i ¼ F i, therefore (14) reduces to
fi ¼ minf�bivini;wi�1ð�ni�1 � ni�1Þg:
If fi 6¼ �bivini, it must be that �bivini > wi�1ð�ni�1 � ni�1ÞP wi�1ð�ni�1 � nc
i�1Þ ¼ F i. This contradicts �bivini 6 F i,

hence fi must equal �bivini, so ni ¼ nu
i . h

Proposition 4.1. Suppose at equilibrium n, section i � 1 is uncongested and sections i, . . . , i + j are congested.

Then
fi ¼ F i; �b�1
i F i � ri ¼ fiþ1 < F iþ1; . . . ; fiþjþ1 < F iþjþ1: ð17Þ
Proof. Since ni�1 6 nc
i�1, from (11),
fi ¼ minf�bivini; F ig:

Since ni > nc

i , one has �bivini > F i from (5); and since r is feasible, Fi P fi. Hence fi = Fi and, by (13),
fiþ1 ¼ �b�1
i fi � ri ¼ �b�1

i F i � ri:
Again, as ni > nc
i , (14) implies
fiþ1 ¼ minf�biþ1viþ1niþ1; F iþ1 � wiðni � nc
i Þ; F iþ1g < F iþ1:
Lastly, if section i + k is congested, niþk > nc
iþk, hence
fiþkþ1 ¼ minf�biþkþ1viþkþ1niþkþ1; F iþkþ1 þ wiþk½nc
iþk � niþk�; F iþkþ1g < F iþkþ1;
and the remainder of the assertion follows. h

Corollary 4.1. A strictly feasible demand r has a unique equilibrium, so E(r) = {nu}.

Proof. If the equilibrium n = (n0, . . . ,nN�1) is uncongested, then n = nu by Lemma 4.1. So suppose there is at
least one congested section. There are two cases to consider. In the first case, section 0 is congested. Since
f0 ¼ minf�b0v0n0; F 0g < F 0 by strict feasibility, so n0 < nc

0, which means section 0 is not congested. In the
remaining case, there must exist a pair of adjacent sections i � 1, i with i � 1 uncongested and i congested.
But then by Proposition 4.1, fi = Fi, which contradicts strict feasibility of r. h

The next result is a partial converse to Proposition 4.1.

Proposition 4.2. Suppose fi = Fi, fi+1 < Fi+1, . . . , fi+j < Fi+j. Suppose at equilibrium n section i + j is congested.

Then sections i, i + 1, . . . , i + j are all congested at n.
Proof. Because section i + j is congested, i.e., niþj > nc
iþj, and fi+j < Fi+j,
fiþj ¼ minf�biþjviþjniþj; F iþj � wiþj�1ðniþj�1 � nc
iþj�1Þ; F iþjg ¼ F iþj � wiþj�1ðniþj�1 � nc

iþj�1Þ < F iþj;
so niþj�1 > nc
iþj�1, i.e., section i + j � 1 is congested. The result follows by induction. h

We say that i is a bottleneck section for demand r (or induced flow f) if fi = Fi. (The reason for the name will
become clear in Theorem 4.1.) Suppose there are K P 0 bottleneck sections at 0 6 I1 < I2 � � � < IK 6 N � 1.
Partition the freeway into 1 + K segments S0, . . . ,SK comprising contiguous sections as follows:
se cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
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port
S0 ¼ f0; . . . ; I1 � 1g; S1 ¼ fI1; . . . ; I2 � 1g; . . . ; SK ¼ fIK ; . . . ;N � 1g: ð18Þ
If there are no bottleneck sections, K = 0, I1 = N, and S0 = {0, . . . ,N � 1} is the entire freeway. On the other
hand, if the most downstream section is congested, I1 = 0, and S0 is the empty segment.

Proposition 4.3. The sections immediately downstream of the segments S0, . . . ,SK are uncongested. Consequently,

for k = 1, . . . ,K,
fIk ¼ minf�bIk vIk nIk ; F Ikg: ð19Þ
Proof. The assertion is true of segment S0 because downstream of section 0 is free flow by assumption. Con-
sider segment Sk. Since
fIk ¼ minf�bIk vIk nIk ; F Ik � wIk�1ðnIk�1 � nc
Ik�1Þ; F Ikg ¼ F Ik ;
we must have nIk�1 6 nc
Ik�1, i.e., section Ik � 1 is uncongested, and (19) holds. h

Partition the N-dimensional state n = (n0, . . . ,nN�1) into sub-vectors n = (n0, . . . ,nK) in conformity with the
segments S0, . . . ,SK, so nk has components {ni, i 2 Sk}. Since the equilibrium flow immediately upstream of
segment Sk is known (it is equal to capacity) and the section immediately downstream of Sk is uncongested,
the equilibrium conditions (14) and (15) partition into 1 + K decoupled conditions, one for each segment. Thus
n0 satisfies
f0 ¼ minf�b0v0n0; F 0g; ð20Þ
fi ¼ minf�bivini; F i � wi�1ðni�1 � nc

i�1Þ; F ig; 1 6 i 6 I1 � 1; ð21Þ
nk satisfies for k = 1, . . . ,K,
fIk ¼ minf�bIk vIk nIk ; F Ikg; ð22Þ
fi ¼ minf�bivini; F i � wi�1ðni�1 � nc

i�1Þ; F ig; Ik þ 1 6 i 6 Ikþ1 � 1: ð23Þ
These decoupled conditions decompose the equilibrium set.

Proposition 4.4. The set of equilibria E(r) factors into the product set,
EðrÞ ¼ E0ðrÞ � � � � � EKðrÞ; ð24Þ

in which E0(r) is the set of solutions n0 of (20) and (21) and Ek(r) is the set of solutions nk of (22) and (23) for

k P 1.

We now fully characterize the components E0(r), . . . ,EK(r). Recall that the flow in all non-bottleneck sec-
tions is strictly below capacity:
fi < F i; i 62 fI1; . . . ; IKg: ð25Þ
Lemma 4.2. E0(r) = {nu,0} consists of a single point, the component of the uncongested equilibrium nu

corresponding to segment S0. Hence nu,0 is given by
nu;0
i ¼ ð�biviÞ�1fi; 0 6 i 6 I1 � 1: ð26Þ
Proof. Because of (25) the equilibrium flows f0; . . . ; fI1�1 are strictly below capacity and so, by Corollary 4.1,
E0(r) = {nu,0}, and (26) follows from (16). h

The next result gives an explicit expression for the equilibrium set Ek(r).

Lemma 4.3. nk 2 Ek(r) if and only if either (i) there is no congested segment at nk and nk = nu,k, or (ii) there exists

j 2 {Ik, . . . , Ik+1 � 1} such that at nk sections Ik, . . . , j are congested, sections j + 1, . . . , Ik+1 � 1 are uncongested

and nk is given by (see Fig. 3)
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Plea
port
nk
i ¼ nc

i þ w�1
i ðF iþ1 � fiþ1Þ; Ik 6 i 6 j� 1; ð27Þ

nk
i ¼ nu

i ¼ ð�biviÞ�1fi; jþ 2 6 i 6 Ikþ1 � 1; ð28Þ
nk

j ¼ nc
j þ w�1

j ðF jþ1 � fjþ1Þ and nk
jþ1 2 ½ð�bjþ1vjþ1Þ�1fjþ1; nc

jþ1�; or ð29Þ
nk

j 2 ðnc
j ; n

c
j þ w�1

j ðF jþ1 � fjþ1Þ� and nk
jþ1 ¼ nu

jþ1 ¼ ð�bjþ1vjþ1Þ�1fjþ1 ð30Þ
Proof. Let nk 2 Ek(r) be an equilibrium. Then (i) follows from Lemma 4.1. Next, according to Proposition 4.2
there exists j such that sections Ik, . . . , j are congested and j + 1, . . . , Ik+1 � 1 are uncongested. Hence for
i 6 j � 1,
fi ¼ minf�bivink
i ; F i � wi�1ðnk

i�1 � nc
i�1Þ; F ig ¼ F i � wi�1ðnk

i�1 � nc
i�1Þ;
because nk
i > nc

i ; n
k
i�1 > nc

i�1, which proves (27).
For i P j + 2,
fi ¼ minf�bivink
i ; F i � wi�1ðnk

i�1 � nc
i�1Þ; F ig ¼ �bivink

i ;
because nk
i 6 nc

i ; n
k
i�1 6 nc

i�1, which proves (28).
Lastly, because fj+1 < Fj+1,
fjþ1 ¼ minf�bjþ1vjþ1nk
jþ1; F jþ1 � wjðnk

j � nc
jÞ; F jþ1g ¼ minf�bjþ1vjþ1nk

jþ1; F jþ1 � wjðnk
j � nc

jÞg
Hence either fjþ1 ¼ F jþ1 � wjðnk
j � nc

jÞ and then (29) holds, or fjþ1 ¼ �bjþ1vjþ1nk
jþ1 and then (30) holds. h

Three densities appear in the expression of Ek(r), namely nu
i ¼ ð�biviÞ�1fi, the uncongested equilibrium den-

sity; nc
i , the critical density; and the congested equilibrium density
ncon
i ¼ nc

i þ w�1
i ðF iþ1 � fiþ1Þ: ð31Þ
By Lemma 4.3
EkðrÞ ¼ fnu;kg
[
j2Sk

Ek
j ðrÞ; ð32Þ
in which Ek
j ðrÞ is the set of nk satisfying (27)–(30):
Ek
j ðrÞ ¼ fðncon

Ik
; . . . ; ncon

j�1; nj; nu
jþ1; . . . ; nu

Ikþ1�1Þjnj 2 ðnc
j ; n

con
j �g[

fðncon
Ik
; . . . ; ncon

j ; njþ1; nu
jþ2; . . . ; nu

Ikþ1�1Þjnjþ1 2 ½nu
jþ1; n

c
jþ1�g: ð33Þ
Observe that fIk ¼ F Ik , nu
Ik
¼ ð�bIk vIk Þ

�1F i ¼ nc
Ik

. So it follows from (33) that nu;k 2 Ek
Ik
ðrÞ. Hence (32) simplifies

to
EkðrÞ ¼
[
j2Sk

Ek
j ðrÞ: ð34Þ
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Observe next that the first set on the right hand side in (33) forms a straight line segment Ek
j� connecting the

points
Plea
port
nkðj�Þ ¼ ðncon
Ik
; . . . ; ncon

j�1; n
c
j ; n

u
jþ1; . . . ; nu

Ikþ1�1Þ ð35Þ
and
nkðjÞ ¼ ðncon
Ik
; . . . ; ncon

j ; nu
jþ1; . . . ; nu

Ikþ1�1Þ: ð36Þ
Denote this line segment in terms of its endpoints as
Ek
j�ðrÞ ¼ ðnkðj�Þ; nkðjÞ�: ð37Þ
Similarly, the second set on the right hand side in (33) forms a straight line segment connecting the points nk(j)
and
nkðjþÞ ¼ ðncon
Ik
; . . . ; ncon

j ; nc
jþ1; n

u
jþ2 . . . ; nu

Ikþ1�1Þ; ð38Þ
and denoted as
Ek
jþðrÞ ¼ ½nkðjÞ; nkðjþÞ�: ð39Þ
The two line segments have exactly one point, nk(j), in common. Thus
Ek
j ðrÞ ¼ Ek

j�ðrÞ [ Ek
jþðrÞ; ð40Þ
and, by comparing (35) and (38) one sees that
nkðjþÞ ¼ nkðjþ 1�Þ; ð41Þ

so that Ek

j ðrÞ and Ek
ðjþ1ÞðrÞ have exactly this point in common. Lastly, since the densities nu

i 6 nc
i 6 ncon

i are
ordered, so are the endpoints:
� � � 6 nkðj�Þ 6 nkðjÞ 6 nkðjþÞ ¼ nkððjþ 1Þ�Þ 6 nkðjþ 1Þ 6 � � � ð42Þ

(For vectors x and y, x 6 y means xi 6 yi for all components i.)

Fig. 4 depicts the projection of Ek
j ðrÞ ¼ Ek

j�ðrÞ [ Ek
jþðrÞ on the two-dimensional space spanned by nk

j ; n
k
jþ1

and the projection of Ek
jþ1 ¼ Ek

ðjþ1Þ�ðrÞ [ Ek
ðjþ1ÞþðrÞ on the space spanned by nk

jþ1; n
k
jþ2. According to (41) the

two highlighted points in the figure are the same.
Observe lastly that the straight line segments E(j+1)� and Ej+ are aligned.
Theorem 4.1 follows from Proposition 4.4, and Lemmas 4.2 and 4.3.

Theorem 4.1. Let r be a feasible demand, f the induced equilibrium flow, and E(r) the equilibrium set. If r is

strictly feasible, E(r) consists of the unique uncongested equilibrium nu. Otherwise, partition the freeway into
Fig. 4. Projection of Ek
j ðrÞ on coordinates nk

j ; n
k
jþ1 (left) and projection of Ek

jþ1ðrÞ on coordinates nk
jþ1; n

k
jþ2 (right).
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segments S0, . . . ,SK corresponding to the bottleneck sections 0 6 I1 < � � � < IK 6 N � 1. Then E(r) is the direct

product (24):
Plea
port
EðrÞ ¼ E0ðrÞ � � � � � EKðrÞ:

Each Ek(r) decomposes as the union (34):
E0ðrÞ ¼ fnu;0g; EkðrÞ ¼
[
j2Sk

Ek
j ðrÞ; k P 1:
Each Ek
j ðrÞ is the union of two connected line segments, given by the ‘closed form’ expression (37), (39) and (40).

Ek (r) is the union of jSkj connected straight line segments. (jSkj = jIk+1 � Ikj is the number of sections in Sk.)

Consecutive sets Ek
j ðrÞ and Ek

jþ1ðrÞ have exactly one point in common, and they are ordered: if nk 2 Ek
j ðrÞ and

n0k 2 Ek
jþ1, then nk

6 n 0k. In particular, the most congested equilibrium in Ek(r) is ncon,k with components

ncon
i ; i 2 Sk, given by (31). Every nk 2 Ek(r) lies between the uncongested equilibrium nu,k and ncon,k, i.e.,

nu,k
6 nk

6 ncon,k. Hence for all n 2 E(r),
nu
6 n 6 ncon;
in which the most congested equilibrium is ncon = (nu,0, ncon,1, . . . , ncon,K).

Lastly, E(r) forms a connected, topologically closed surface of dimension K in the N-dimensional state space.

Proof. Only the last assertion needs proof, which follows from the observation that E(r) is the product of
1 + K sets, E0(r), . . . ,EK(r), the first of which being a single point has dimension 0, and each of the rest being
a union of connected line segments has dimension 1. h

Fig. 5 illustrates the use of Theorem 4.1. The demand induces a flow that gives rise to bottlenecks at I1, I2

which partition the freeway into three segments S0, S1, S2. S0 is uncongested. An equilibrium determines
the number of congested sections in the other segments. The figure illustrates an equilibrium in which one
section in S1 and three sections in S2 are congested (depicted by shaded rectangles); the others are uncongest-
ed. The congested sections must lie immediately upstream of the corresponding bottleneck. This simple con-
sequence of the CTM model, which conforms to empirical observations, has surprisingly not been previously
noticed.
5. Dynamic behavior

Theorem 4.1 fully characterizes the equilibrium behavior of any CTM model. This section is devoted to the
complete description of the qualitative behavior of all trajectories of the N-dimensional difference equation
system (6)–(8). We assume a constant feasible demand r and write (6)–(8) as
niðk þ 1Þ ¼ giðnðkÞÞ; 0 6 i 6 N � 1: ð43Þ

Let g = (g0, . . . ,gN�1). We will consider initial conditions
n 2 R ¼ fnj0 6 ni 6 �ni; 0 6 i 6 N � 1g: ð44Þ

Each initial condition n(0) 2 R generates a trajectory {n(k), k P 0} according to n(k + 1) = g(n(k)).
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For two vectors x, y in RN, write
Plea
port
x 6 y () xi 6 yi;

x < y () x 6 y; x 6¼ y;

x� y () xi < yi:
Following Hirsch and Smith (2005) say that g is strictly monotone if, for x, y 2 R,
x < y ) gðxÞ < gðyÞ;

g is strongly monotone if
x < y ) gðxÞ � gðyÞ:

The Proof of Lemma 5.1 can be found in the Appendix.

Lemma 5.1. The map g is strictly monotone, but it is not strongly monotone.

Hirsch and Smith (2005) survey the theory of monotone maps. The most powerful results, however, require
strong monotonicity, and do not apply to the CTM model.

Let the equilibrium flow induced by the demand r result in bottlenecks at 0 6 I1 < � � � < IK 6 N � 1, and let
S0, . . . ,SK be the corresponding freeway partition. By Theorem 4.1 every equlibrium lies between the uncon-
gested equilibrium nu and the most congested equilibrium ncon,
nu
6 n 6 ncon; n 2 EðrÞ: ð45Þ
Let n̂ðkÞ; k P 0 be the trajectory starting with the empty freeway, n̂ð0Þ ¼ 0, and let �nðkÞ; k P 0 be the trajec-
tory starting with the completely jammed freeway, �nið0Þ ¼ �ni; 0 6 i 6 N � 1. Let n(k) be a trajectory starting
in any state n(0) 2 R. The next result shows how much monotonicity of g constrains the trajectories of the
CTM model.

Lemma 5.2
(i) Every trajectory lies between fn̂ðkÞg and f�nðkÞg:

n̂ðkÞ 6 nðkÞ 6 �nðkÞ; k P 0: ð46Þ
(ii) The trajectory starting with the empty freeway converges to the uncongested equilibrium nu:
lim
k!1

n̂ðkÞ ¼ nu: ð47Þ
(iii) The trajectory starting with the completely jammed freeway converges to the most congested equilibrium

ncon:
lim
k!1

�nðkÞ ¼ ncon: ð48Þ
Proof

(i) Since n̂ð0Þ 6 nð0Þ 6 �nð0Þ, monotonicity implies n̂ð1Þ 6 nð1Þ 6 �nð1Þ, and then (46) follows by induction.
(ii) Since n̂ð1ÞP n̂ð0Þ ¼ 0, monotonicity implies n̂ð2Þ ¼ gðn̂ð1ÞÞP gðn̂ð0ÞÞ ¼ n̂ð1Þ. By induction, the trajec-

tory is increasing: n̂ðk þ 1ÞP n̂ðkÞ. Since the trajectory is bounded above by the jam density, it must con-
verge to some equilibrium point, say n̂e. Furthermore, since n(k) � nu is also a trajectory, by (46) one
must have n̂e

6 nu, and so (45) implies n̂e ¼ nu.
(iii) Since �n ¼ �nð0ÞP �nð1Þ, monotonicity implies that the trajectory is decreasing: �nðk þ 1Þ 6 �nðkÞ. Since the

trajectory is bounded below by 0, it must converge to an equilibrium, say �ne. As n(k) � ncon is also a tra-
jectory, by (46) one must have �ne P ncon, and so (45) implies �ne ¼ ncon. h
Lemma 5.2 leads to the first interesting result, Theorem 5.1: If the demand is strictly feasible, then nu is a
globally, asymptotically stable equilibrium.
se cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
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Theorem 5.1. Suppose r is strictly feasible. Then every trajectory converges to nu.

Proof. By Lemma 4.1 E(r) = {nu}, so ncon = nu. Hence both n̂ðkÞ and �nðkÞ converge to nu. By (46), every tra-
jectory n(k) converges to nu as well. h

If r is not strictly feasible, the equilibrium set E(r) is infinite and there is no easy way to analyze how tra-
jectories behave. The main result of this section, Theorem 5.3, is that every trajectory converges to some equi-
librium. Before getting into the complexities of the proof, we pause to study three examples.

5.1. Examples

Example 1 is a freeway with two identical sections, each one mile long. The fundamental diagram, equilib-
rium flow, and equilibrium set E are shown in Fig. 6. The critical density nc

i ¼ 100 veh=mile; the jam density
�ni ¼ 400 veh=mile; free flow speed v = 60 mph and the congestion wave speed w = 20 mph.

The demand vector r = (r0 = 1200, r1 = 0, r2 = 4800), all in vehicles per hour (vph). The upstream flow
r2 = f2 = 4800 vph, and f0 = F0 = 6000 vph. Thus section 0 is the only bottleneck. The uncongested equilib-
rium nu = (100,80) and the most congested equilibrium ncon = (160,160). By Theorem 4.1, the equilibrium
set E consists of two straight line segments shown in the figure (also see Fig. 4).

The phase portrait of Fig. 7 displays the orbits of the two-dimensional state with initial conditions on the
boundary of the square R = [0,400] · [0, 400]. An orbit is the set of states {n(k)jk P 0} traversed by a trajec-
tory k! n(k). We analyze the orbit structure displayed in the figure. The observations made below hold in
general.

1. Every trajectory converges to an equilibrium point in E. As a consequence, the state space R is partitioned
as
R ¼
[
n2E

RðnÞ;

in which R(n) is the set of all initial states whose trajectories converge to the equilibrium n. By monotonicity
R(nu) includes all initial states n 6 nu, and R(ncon) includes all initial states n P ncon. By contrast, for all
other equilibrium states R(n) is simply a one-dimensional manifold. (In the general case, R(n) is a
(N � K)-dimensional manifold, Corollary 5.1.)

2. The figure shows four equi-time contour plots, labeled k = 12 s, . . . , 600 s. For example, the contour plot
k = 60 s is the set of points reached by all trajectories at k = 60 s. As k increases, the contour plots converge
towards the equilibrium set E. As might be expected, the contours initially converge rapidly and the con-
vergence slows down as E is approached. More interestingly, consider the orbit going through the state
n = (340, 50) on the k = 60 contour. In this state section 0 is congested but section 1 is not. However,
by time 200 (whose contour plot is not shown) the state has moved to approximately (250, 150), indicating
48004800

1200

6000
0 1

6000

100 400

4800

80 160160 n0 n1

f0 f1

nu = (100, 80)

ncon = (160, 160)
n1

n0

E

Fig. 6. Freeway, equilibrium flows, fundamental diagram, and equilibrium set E of Example 1.
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both sections are congested. The time difference of 200 � 60 = 140 s is roughly predictable: because the con-
gestion wave speed is 20 mph it takes about 3 min for the congestion wave to travel the one mile-long
section.

3. According to Theorem 4.1 the equilibrium set is ordered: if n, n 0 are two equilibria, either n 6 n 0 or n 0 6 n.
Consequently, downstream sections must get congested before an upstream section. As seen in the figure,
every trajectory in which section 1 is getting congested also congests section 0. The unshaded area in the
figure is the set of all initial states from which trajectories converge to an equilibrium in which the upstream
section is not congested.

4. All equilibria support the same equilibrium flows. However at equilibrium nu the speed is v = 60 mph
throughout, whereas in ncon the speed is 4800/160 (flow/density) or 30 mph. Thus, although both nu and
ncon achieve the same throughput, the freeway travel time in nu is one-half of that in ncon.

In Example 2 the flow r2 is slightly reduced from 4800 to 4750 vph, so the demand becomes strictly feasible
and the equilibrium set collapses to the single uncongested equilibrium nu. The resulting phase portrait in
Fig. 8 can be compared with Fig. 7. The trajectories are nearly identical, except that when they approach
the equilibrium set of Example 1 they turn and converge to nu � (100, 80).

Example 3 shown in Fig. 9 is a modification of Example 1 in that there are three identical sections. The
fundamental diagram is the same as in Example 1. The demand r0 = 1200, r1 = r2 = 0, r3 = 4800. Again sec-
tion 0 is the only bottleneck. The equilibrium set now comprises three straight line segments, connecting the
uncongested equilibrium nu = (100,80,80) and the most congested equilibrium ncon = (160, 160,160). The
orbit structure supports the observations made earlier: although it is less apparent in the figure, R(n) is a
two-dimensional manifold if n 5 nu, ncon.

We resume the general discussion. As before let r be a demand vector and / the resulting equilibrium flow
vector, i.e. (see (12) and (13))
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Plea
port
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Fig. 9. Freeway, equilibrium set and orbits of Example 3.
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Plea
port
/N ¼ rN ; /i ¼ �bið/iþ1 þ riÞ; 0 6 i 6 N � 1: ð49Þ
Let 0 6 I1 < � � � < IK 6 N � 1 be the bottlenecks, and S0, . . . ,SK the corresponding freeway partition. By The-
orem 4.1 the equilibrium set decomposes as
EðrÞ ¼ fnu;0g � E1ðrÞ � � � � � EKðrÞ: ð50Þ
Let n̂ðkÞ; k P 0; be the trajectory starting at 0 and converging to nu. Let �nðkÞ be the trajectory starting at �n and
converging to ncon.

Fix an initial condition n 2 R and let n(k),k P 0, be the trajectory starting at n.
We recall some facts from the general theory of dynamical systems. The x-limit set of n is the set of all limit

points of the trajectory {n(k)}:
xðnÞ ¼ p 2 Rjthere is a subsequence km with lim
m!1

nðkmÞ ¼ p
n o

:

x(n) is non-empty, compact, and invariant, i.e., if p 2 x(n) the trajectory starting at p stays within x (n). Fur-
thermore the trajectory converges to x(n), i.e., limkd(n(k),x(n)) = 0, with d(x,x(n)) = min{jx � pjjp 2 x(n)}.

Our objective is to prove that the trajectory {n(k)} converges to an equilibrium, which is achieved in two
steps. The first step shows that x(n) always contain an equilibrium (Lemma 5.4). The second step shows that
every equilibrium is stable (Theorem 5.2).

We adopt the following notation. For any p 2 R,
fiðpÞ ¼
minf�b0v0p0; F 0g; i ¼ 0;

minf�bivipi;wi�1½�ni�1 � pi�1�; F ig; i P 1;

(

and
fiðkÞ ¼ fiðnðkÞÞ:
Lemma 5.3

(i) Suppose nu
6 p 6 ncon. Then
fiðpÞP /i; all i; and f iðpÞ ¼ F i; i 2 fI1; . . . ; IKg: ð51Þ

(ii) If p 2 x(n), nu

6 p 6 ncon.
(iii) Along the trajectory {n(k)}
lim
k!1

inf fiðkÞP /i; all i; and lim
k!1

fiðkÞ ¼ F i; i 2 fI1; . . . ; IKg: ð52Þ
Proof. Evaluate the three alternatives in fiðpÞ ¼ minf�bivipi;wi�1½�ni�1 � pi�1�; F ig:
fiðpÞ ¼ �bivipi P �bivinu
i ¼ /i; by ð16Þ; or

¼ wi�1½�ni�1 � pi�1�P wi�1½�ni�1 � ncon
i�1� ¼ /i; by ð31Þ; or

¼ F i P /i; always:
Hence fi(p) P /i and assertion (i) follows since for bottleneck sections /i = Fi. (ii) follows from the observa-
tions that n̂ðkÞ 6 nðkÞ 6 �nðkÞ and n̂ðkÞ ! nu; �nðkÞ ! ncon by Lemma 5.2; hence every limit point p of {n(k)}
satisfies nu

6 p 6 ncon. To prove (iii) consider a subsequence {km} along which fi(km)! lim inf fi(k) and
n(km)! p 2 x(n). Then lim inf fi(k) = fi(p) P /i, by (i) and (ii). h

To simplify the discussion we assume that nN, the upstream ramp queue, is always so large as to maintain
fN ðkÞ � rN ¼ /N ; k P 0: ð53Þ
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Lemma 5.4. x(n) \ E(r) 5 ;.
Proof. Let p0 2 x(n) and p(k), k P 0, the trajectory starting at p0. Rewrite (6) in terms of this trajectory, and
(49) as
Plea
port
piðk þ 1Þ ¼ piðkÞ � �b�1
i fiðpðkÞÞ þ fiþ1ðpðkÞÞ þ ri

ri ¼ �b�1
i /i � /iþ1:
Adding these together gives
piðk þ 1Þ ¼ piðkÞ þ �b�1
i ½/i � fiðpðkÞÞ� � ½/iþ1 � fiþ1ðpðkÞÞ�:
Summing this equation for i = j, . . . ,N � 1 and using (53) leads to
XN�1

i¼j

piðk þ 1Þ ¼
XN�1

i¼j

piðkÞ þ
XN�1

i¼j

�b�1
i ½/i � fiðpðkÞÞ� �

XN�1

i¼j

½/iþ1 � fiþ1ðpðkÞÞ�

¼
XN�1

i¼j

piðkÞ þ ½/j � fjðpðkÞÞ� þ
XN�1

i¼j

bi
�b�1

i ½/i � fiðpðkÞÞ�:
By Lemma 5.3, and taking j = 1, shows that
PN�1

1 piðkÞ is decreasing, and since it is positive, it converges.
Hence fi(p(k))! /i for each i. So if p1 2 x(p0),
f ðp1Þ ¼ /; i:e:; p1 2 EðrÞ;

from which the assertion follows since p1 2 x(p0) 	 x(n), because x(n) is invariant. h

Recall the definition of (Lyapunov) stability: An equilibrium ne is stable if for every � > 0 there is d > 0 such
that jn � nej < d implies jn(k) � nej < � for all k, in which {n(k)} is the trajectory starting at n.

Fix an equilibrium ne. By Theorem 4.1 ne has the form
ne ¼ ðne;0; ne;1; . . . ; ne;KÞ;
with ne,0 = nu,0, ne;m 2 Em
j ðrÞ for some j 2 Sm, 1 6 m 6 K.

Lemmas 5.5 and 5.6 will prove that if jn � nej < d, and n(k) = (n0(k),n1(k), . . . ,nK(k)), k P 0 is the trajectory
starting at n, then there exists an equilibrium ñe, possibly different from ne, such that
j~ne;m � ne;mj < �; lim
k!1

nmðkÞ ¼ ~ne;m; 0 6 m 6 K; ð54Þ

a 5.5. (54) holds for m = 0. In fact
Lemm
lim
k!1

n0ðkÞ ¼ nu;0 ¼ ne;0: ð55Þ
Proof. By Lemma 5.2, n̂ðkÞ 6 nðkÞ 6 �nðkÞ, n̂ðkÞ ! nu, �nðkÞ ! ncon. Then (55) follows because, by (50),
ncon,0 = nu,0. h

Lemma 5.6. Suppose (54) holds for m � 1 P 0. Then it holds for m.

Proof. Consider (54) for m P 1. By Theorem 4.1 ne;m 2 Em
ImþjðrÞ for some j P 0, so that sections Im, . . . , Im + j

are congested and Im + j + 1, . . . , Im+1 � 1 are uncongested as indicated in Fig. 10.
ImFIm Im+1-1Im+j FIm+1

Fig. 10. In equilibrium ne,m sections Im, . . . ,Im + j of Sm are congested.
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The proof, which separately analyzes the three cases, j = Im+1 � 1, j = Im, and Im < j < Im+1 � 1, is long and
placed in the Appendix. h
Theorem 5.2. Every equilibrium ne 2 E(r) is stable. In fact for � > 0 there is d > 0 such that if jn � nej < d, the

trajectory {n(k)} starting at n converges to an equilibrium ñe with jñe � nej < �.

Proof. Lemmas 5.5 and 5.6 prove the second part of the assertion which implies stability. h

Fig. 7 illustrates Theorem 5.1. Trajectories starting close to an equilibrium all converge to some nearby
equilibrium.

Theorem 5.3. The CTM model is a convergent system, i.e. every trajectory converges to some equilibrium in E(r).
Proof. Consider any trajectory {n(k)}. By Lemma 5.4 there is an equilibrium ne and a subsequence {km} along
which n(km)! ne as m!1. By Theorem 5.2 the trajectory must converge to this equilibrium. h

Recall that the stable manifold R(ne) of an equilibrium ne 2 E(r) comprises all n 2 R whose trajectories con-
verge to ne. The next result characterizes the orbit structure.

Corollary 5.1. If r is strictly feasible, E(r) = {nu} and R (nu) = R. If r is not strictly feasible, E(r) is a K-

dimensional manifold and R(ne) is a (N � K)-dimensional manifold for ne 5 nu, ncon, whereas R(nu), R(ncon) are

N-dimensional manifolds with boundary.
Proof. By Theorem 4.1 E(r) is a K-dimensional manifold. By Theorem 5.3
Plea
port
R ¼
[

ne2EðrÞ
RðnÞ:
By Lemma 5.2 every trajectory starting at n 6 nu converges to nu and every trajectory starting at n P ncon con-
verges to ncon. Because E(r) is ordered, it is not very difficult to show, using monotonicity, that the stable man-
ifolds of all equilibria ne

5 nu, ncon are diffeomorphic. The assertion then follows. h
6. Implications for ramp metering

We explore two implications for ramp metering. The first considers the case when the demand vector r is
infeasible, i.e., the associated equilibrium flow / given by (49) is such that it exceeds the capacity in some sec-
tion. Peak hour demand may be infeasible in this sense. We begin with an example to illustrate the issues.
Fig. 11. Freeway, on-ramp and off-ramp flows of example: feasible demand (top); excess demand (bottom).
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Example. The upper part of Fig. 11 displays a freeway with four identical sections, each with capacity
6000 vph. The demand vector r = (r0 = 1200, r1 = 0,r2 = 2700, r3 = 2000, r4 = 4000). All split ratios are the
same: bi = b = 0.2, so �b ¼ 0:8 and a ¼ b½�b��1 ¼ 0:25. The demand r is feasible and the equilibrium flow /
= (/0 = 6000, /1 = 4800, /2 = 6000, /3 = 4800, /4 = 4000). The off-ramp flow in section i is a/i. Sections 0
and 2 are bottleneck sections, with equilibrium flows equal to capacity.

Now consider the demand ~r in which ~r0 ¼ 1300 > r1 and ~ri ¼ ri; i P 0. This demand is not feasible because
it would increase /0 to /1 þ ~r0 ¼ 6100, which exceeds capacity. Evidently, the increased on-ramp flow in sec-
tion 0 will create congestion in section 0 and force a reduction in the flow out of section 1 from /1 = 4800 to
~/1 ¼ 4700. This reduction from /1 to ~/1 is achieved by a reduction in the flow from section 2 from /2 = 6000
to ~/2 ¼ 5875, which in turn reduces the flow from section 3 from /3 = 4800 to ~/3 ¼ 4643:75, and ultimately
the flow from section 4 from /4 = 4000 to ~/4 ¼ 3804:6875. As a result the on-ramp queue n4 will grow at the
rate of 4000 � 3804.6875 = 195.3125 vph. All sections will become congested.

The reductions in the equilibrium flow from / to ~/ will proportionately reduce the discharge at the off-
ramps from a/i to a~/i. The new equilibrium flows are displayed in the lower part of the figure.

The example suggests some observations.

1. The infeasible demand ~r leads to a unique equilibrium flow ~/. This is the flow corresponding to the feasible
demand ~rf , which is the same as ~r, except that the upstream flow is reduced from /4 = 4000 to ~/4 � 3804.
The system converges to the (unique) most congested equilibrium corresponding to ~rf .

2. The reduction in the flow at the upstream ramp of about 196 = 4000 � 3804 vph is nearly twice the ‘excess’
demand of 1300 � 1200 = 100 vph at the ramp in section 0. Suppose that we meter the on-ramp in section 0
and admit only 1200 vph. The queue at this ramp will now grow at 100 vph, but the resulting equilibrium
flow and the off-ramp discharges will be the same as in the top of the figure; hence the total discharge will be
higher by 196 � 100 = 96 vph.
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Fig. 12. Orbits of the infeasible demand example.
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3. Fig. 12 shows the phase portrait of the freeway considered in Fig. 6 except that the on-ramp flow in section
0 is increased to 1250 so that the demand becomes infeasible. The figure also displays the equilibrium set
Eð~rf Þ. All of the trajectories converge to the most congested equilibrium in Eð~rf Þ. There is a pleasing sym-
metry with the case of strictly feasible demand, in which every trajectory converges to the uncongested equi-
librium as in Fig. 8.

The next result places the example above in a general setting. The freeway structure is the same as in Sec-
tions 3–5. Let r = (r0, . . . , rN) be a demand vector. Let / be the solution of (49):
Plea
port
/N ¼ rN ; /i ¼ �bið/iþ1 þ riÞ; 0 6 i 6 N � 1:
Suppose that r is infeasible, so that /i > Fi for some i.
To simplify the notation we make two assumptions. First /0 > F0, and if r0 = 0 the demand becomes fea-

sible. Second, if rN = 0 (zero inflow from the upstream ramp) the demand again becomes feasible.
Since /0 > F0, under demand r the entire freeway will become congested as in the example. Since with

rN = 0 the demand is feasible,
~rN ¼ maxfq P 0j the demand ðr0; . . . ; rN�1; qÞ is feasibleg ð56Þ
is well-defined, i.e., ~rN P 0. Since with r0 = 0 the demand is feasible,
r̂0 ¼ maxfq P 0j the demand ðq; r1; . . . ; rN Þ is feasibleg ð57Þ
is similarly well-defined.

Theorem 6.1

(i) ~rN < rN is the largest upstream flow for which the demand ~r ¼ ðr0; . . . ; rN�1;~rN Þ is feasible. The correspond-

ing equilibrium flow ~/ is
~/N ¼ ~rN ; /i ¼ �bið~/iþ1 þ riÞ; 0 6 i 6 N � 1:
(ii) With demand r, under the no-metering strategy every trajectory converges to the (unique) most congested

equilibrium ncon 2 Eð~rÞ corresponding to demand ~r. Moreover, the queue nN(k) at the upstream ramp grows

indefinitely at the rate of ðrN � ~rN Þ vehicles per period.
(iii) r̂0 < r0 is the largest flow for which the demand r̂ ¼ ðr̂0; r1; . . . ; rN Þ is feasible. The corresponding equilib-

rium flow /̂ is
/̂N ¼ rN ; /̂i ¼ �bið/̂iþ1 þ riÞ; 1 6 i 6 N � 1; /̂0 ¼ �b0ð/̂1 þ r̂0Þ:
Under the ramp metering strategy that reduces the on-ramp flow in section 0 from r0 to r̂0, every trajectory

converges to some equilibrium in Eðr̂Þ. The queue at the on-ramp in section 0 grows indefinitely at the rate of

ðr0 � r̂0Þ vehicles per period.
(iv) Flows under the ramp metering strategy are larger throughout the freeway:
~/i < /̂i; 1 6 i 6 N and ~/0 ¼ /̂0 ¼ F 0:

Suppose bi > 0 for some i P 1, so that there is non-zero off-ramp flow in at least one section. Then the total

discharge under the ramp metering strategy is strictly larger than under the no-metering strategy. Moreover,

l ¼ rN � ~rN

r0 � r̂0

¼ ð�b1; . . . ; �bN Þ�1
> 1: ð58Þ
Proof. (i) follows from (56) and (49). Since the entire freeway becomes congested under r, every trajectory
converges to nconð~rÞ by (48) and, by (i), vehicles accumulate at the upstream ramp at the rate of ðrN � ~rN Þ
per period. This proves (ii).

To prove (iii) we solve (49) recursively for ~r and r̂, setting �bN ¼ 1, to get
se cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
. Res. Part C (2007), doi:10.1016/j.trc.2007.10.005



20 G. Gomes et al. / Transportation Research Part C xxx (2007) xxx–xxx

ARTICLE IN PRESS

Plea
port
~/i ¼
XN�1

j¼i

ð�bi; . . . ; �bjÞrj þ ð�bi; . . . ; �bN Þ~rN ; 0 6 i 6 N � 1; ð59Þ

/̂i ¼

PN�1
j¼i ð�bi; . . . ; �bjÞrj þ ð�bi; . . . ; �bN ÞrN ; 1 6 i 6 N � 1;

�b0r̂0 þ
PN�1

j¼1

ð�b0; . . . ; �bjÞrj þ ð�b0; . . . ; �bNÞrN ; i ¼ 0:

8><
>: ð60Þ
Since ~rN < rN it follows from (59) and (60) that ~/i < /̂i; 1 6 i 6 N . Also, since r̂0 is the largest flow that keeps
/̂0 6 F 0, it must be that /̂0 ¼ F 0. Similarly ~/0 ¼ F 0. Hence if bi > 0 for some i P 1, then bi/̂i > bi

~/i, i.e., the
off-ramp discharge under ramp metering is strictly larger in at least one section. Lastly, from (59) and (60),
F 0 ¼ ~/0 ¼
XN�1

j¼0

ð�b0; . . . ; �bjÞrj þ ð�b0; . . . ; �bN Þ~rN ;

F 0 ¼ /̂0 ¼ �b0r̂0 þ
XN�1

j¼1

ð�b0; . . . ; �bjÞrj þ ð�b0; . . . ; �bN ÞrN ;
which, upon subtraction, gives
�b0ðr0 � r̂0Þ ¼ ð�b0; . . . ; �bN ÞðrN � ~rN Þ;
and so
r0 � r̂0 ¼ ð�b1; . . . ; �bN ÞðrN � ~rN Þ;
which implies (58) because �bi < 1 for at least one i. h

Theorem 6.1 prompts some observations.

1. The discussion of infeasible demand above assumes that the on-ramp flow in a section takes priority over
the flow from the upstream section: the latter cannot block an on-ramp flow, even if the section is con-
gested. This priority is implicit in the treatment of ri(k) in (1).

2. The unserved demand under the ramp metering strategy is ðr0 � r̂0Þ vehicles per period; the unserved
demand under the no-metering strategy is ðrN � ~rN Þ. By (58), the no-metering strategy magnifies the
unserved demand under the ramp strategy by l ¼ ð�b1; . . . ; �bN Þ�1. The larger are the split ratios, the larger
is the ‘multiplier’ l, and worse is the no-metering strategy. (In the example of Fig. 11 l = (0.8 ·
0.8 · 0.8)�1 � 2).

3. The ramp metering strategy increases speed in every section i (hence reduces travel time). Because /̂i > ~/i

and the freeway is congested under the no-metering strategy, the fundamental diagram implies that the den-
sity n̂i < ~ni which, in turn, implies that the speed (=flow/density) under ramp metering is higher:
/̂i=n̂i > ~/i=~ni.

4. Because of (58) the total travel time under the no-metering strategy grows arbitrarily larger than under the
no-metering strategy. This contradicts the conclusion of Zhang et al. (1996) that the no-metering strategy
minimizes total travel time ‘‘if traffic is uniformly congested’’ as is the case when the demand is infeasible.
There is no contradiction with a similar conclusion of Daganzo and Lin (1993) which considers the very
special case with no off-ramps, so �bi ¼ 1 for all i, and hence l = 1 in (58). The special case with one off-ramp
is graphically analyzed in Yperman et al. (2004) and Lago and Daganzo (2007).

5. An intuitive explanation of the increased off-ramp discharge under the ramp metering strategy might be
that the no-metering strategy creates a congestion ‘‘queue’’ that blocks the off-ramps. This explanation
is too crude. Note that under the ramp metering strategy, the system can converge to any equilibrium in
Eðr̂Þ, including the most congested equilibrium nconðr̂Þ, and under the no-metering strategy it converges
to the most congested equilibrium nconð~rÞ. Thus the entire freeway may be congested under both strategies.
Nevertheless, the flows in every section, and hence the off-ramp flows, are larger under the ramp metering
strategy. Thus a more accurate (but less intuitive) explanation is that the congestion queue under ramp
metering ‘‘moves faster’’ than the queue under the no-metering strategy.
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While Theorem 6.1 is intuitively evident, the second implication of the theory is surprising: Theorem 6.2
says that ramp metering can reduce total travel time even when the demand is feasible.

Fix a feasible (but not strictly feasible demand) r; let / be its equilibrium flow given by (49) and E(r) its
equilibrium set. Recall that f(ne) = / for all ne 2 E(r).

To simplify the notation we assume that under r the only bottleneck is section 0; hence /0 = F0, /i < Fi,
1 6 i 6 N � 1, /N = rN 6 FN. Suppose the freeway is initially in a congested equilibrium n(0) = ne in which
sections 0, . . . , j are congested for some j P 1, with ne

i ð0Þ ¼ ncon
i ; 0 6 i 6 j, and sections j + 1, . . . ,N � 1 are

uncongested with ne
i ¼ nu

i ; i P jþ 1. For any p 2 R write nu 
 p 
 ne if
Plea
port
nu
i < pi < ne

i ; 0 6 i 6 j; and nu
i ¼ pi ¼ ne

i ; i > j: ð61Þ

Lemma 6.1 refines Lemma 5.3(i).

Lemma 6.1. If nu 
 p 
 ne,
f0ðpÞ ¼ /0 ¼ F 0; f iðpÞ > /i; 0 < i 6 j; and f iðpÞ ¼ /i; i > j: ð62Þ
Proof. First,
f0ðpÞ ¼ minf�b0v0p0; F 0gP minf�b0v0nu
0; F 0g ¼ /0 ¼ F 0:
Next, for 0 < i 6 j evaluate the three terms in fiðpÞ ¼ minf�bivipi; F i � wi�1½�ni�1 � pi�1�; F ig gives
fiðpÞ ¼ �bivipi >
�bivinu

i ¼ /i; or

¼ F i � wi�1½�ni�1 � pi�1� > F i � wi�1½�ni�1 � ncon
i�1� ¼ /i; or

¼ F i > /i;
so fi(p) > /i. The last clause in (62) follows from nu
i ¼ pi; i > j. h

We assume strictly positive demand in the congested sections, so
q ¼ minfri; 0 6 i 6 jg > 0:
We construct a ramp metering strategy that selects the on-ramp flow values as follows:
riðkÞ ¼
ri � liðkÞ; 0 6 i 6 j;

ri; j < i 6 N � 1:

�
ð63Þ
(The {li} are specified below in (67).) Denote by p(k), k P 0, the trajectory starting at p(0) = ne under the
metering strategy (63).

Lemma 6.2. There is a finite time horizon K and a metering strategy {li(k), k = 0, . . . ,K} such that the resulting

(controlled) trajectory p(k),k = 0, . . . ,K, satisfies
nu 
 pðkÞ 
 ne; k ¼ 1; . . . ;K � 1; ð64Þ

and
pðKÞ ¼ nu: ð65Þ

In particular, the ramp metering strategy steers the state from the initial congested equilibrium ne to the uncon-

gested equilibrium nu.

Proof. Set li(k) � 0, i > j. Following (6), the controlled trajectory is given by
piðk þ 1Þ ¼ piðkÞ � �b�1
i fiðpðkÞ þ fiþ1ðpðkÞÞ þ ri � liðkÞ; 0 6 i 6 N � 1; k P 0: ð66Þ
Observe that for i > j, pið0Þ ¼ ne
i ¼ nu

i and ri(k) = ri. Hence under any metering strategy of the form (63),
piðkÞ � ne

i ; i > j. Thus the metering strategy affects the densities only in sections 0, . . . , j.
Rewrite (66) as
piðk þ 1Þ ¼ giðpðkÞÞ � liðkÞ; 0 6 i 6 N � 1; k P 0;
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and define the metering strategy by
Plea
port
liðkÞ ¼
q; if giðpðkÞÞP nu

i þ q;

giðpðkÞÞ � nu
i ; if nu

i 6 giðpðkÞÞ < nu
i þ q:

�
ð67Þ
Since ri � li(k) P ri(k) � q P 0, the metering strategy is feasible (on-ramp flows are non-negative). By con-
struction of l, nu 
 p(k). By monotonicity, if p(k) 
 ne then p(k + 1) = g(p(k)) � l(k) 
 g(ne) � l(k), so (64)
holds by induction.

We now prove (65). Recall that
ri ¼ �b�1
i /i � /iþ1;
and substitute for ri in (66) to get
piðk þ 1Þ ¼ piðkÞ þ �b�1
i ½/i � fiðpðkÞ� � ½/iþ1 � fiþ1ðpðkÞÞ� � liðkÞ; 0 6 i 6 j:
Adding these equations gives
Xj

i¼0

piðk þ 1Þ ¼
Xj

i¼0

piðkÞ þ
Xj

i¼0

�b�1
i ½/i � fiðpðkÞ� �

Xj

i¼0

½/iþ1 � fiþ1ðpðkÞÞ� �
Xj

i¼0

liðkÞ

¼
Xj

i¼0

piðkÞ þ
Xj

i¼0

ð�b�1
i � 1Þ½/i � fiðpðkÞ� �

Xj

i¼0

liðkÞ þ �b�1
0 ½/0 � f0ðpðkÞ�

� ½/jþ1 � fjþ1ðpðkÞÞ�

¼
Xj

i¼0

piðkÞ þ
Xj

i¼0

ð�b�1
i � 1Þ½/i � fiðpðkÞ� �

Xj

i¼0

liðkÞ < �
Xj

i¼0

liðkÞ;
because f0(p(k)) = /0 = F0, fj+1(p(k)) = /j+1 and /i � fi(p(k)) < 0 by (62). Moreover, from (67),
Pj

i¼0liðkÞP q
for each k for which giðpðkÞP nu

i þ q for some i. It follows that p(K) = nu for some K 6 ½
P

iðne
i � nu

i Þ�=q. h

Theorem 6.2. Suppose the freeway begins in a congested equilibrium ne in which sections 0, . . . , j are congested

and sections j + 1, . . . ,N � 1 are uncongested. Then there exists a ramp metering strategy over a finite horizon

K at the end of which the freeway is in the uncongested equilibrium nu. Furthermore, the flows during

k = 0, . . . ,K are larger than the equilibrium flows. Finally, if the split ratio bi > 0 for some 0 6 i 6 j, then the total

discharge flow is strictly larger and the total travel time is strictly smaller than in the no-metering strategy.

Proof. By Lemma 6.2 in each section i the flow fi(p(k)) > /i for at least one k. Hence the difference in the total
discharge
XK

k¼0

bi
�b�1

i ½fiðpÞ � /i� > 0;
from which the assertion follows. h

Two observations are worth making.

1. If the split ratios in the congested sections are all zero, bi = 0, i = 0, . . . , j, the ramp metering strategy does
not increase the total discharge, but it moves the system to the uncongested equilibrium nu by ‘moving’ the
‘excess’ vehicles

Pj
i¼0½ne

i � nu
i � from the congested sections to their on-ramps. The resulting total travel time

is unchanged but traffic in the freeway moves at free flow speeds. If some of the traffic in the queues is
diverted to alternative routes, perhaps along arterials, there will be a decline in total travel time just as with
non-zero split ratios.

2. There is another compelling reason for maintaining the freeway in free flow. The example of Fig. 6 illus-
trates a common situation in which the congestion density of 160 vehicles/mile (and speed of 30 mph) com-
pares with the uncongested density of 80 vehicles/mile (and speed of 60 mph) for a three-lane freeway.
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Storing the 80 additional vehicles would require a 3/4 mile-long one-lane on-ramp (at 50 feet vehicle spac-
ing). Clearly congestion causes the freeway to be used as a very expensive parking place.

3. A ‘free lunch’ result lurks behind Theorem 6.2. The result can be understood with the help of Fig. 13 of a
two-section freeway whose equilibrium set E is shown on the right. By Lemma 6.2 the flow in section 1 is
larger than the equilibrium flow in the rectangle {nu < p < ncon}. The ‘decongestion’ trajectory constructed
in Lemma 6.2 moves the system from ncon to nu and causes some additional vehicles to leave the freeway
from the off-ramp in section 1. The remainder of the ½ðncon

1 � nu
1Þ þ ðncon

0 � nu
0Þ� vehicles causing the initial

congestion are ‘stored’ on the on-ramps in sections 0 and 1. Once the sections become uncongested, the
ramp metering strategy can now be changed to release the stored vehicles onto the freeway, thereby creating
the congestion and moving the state from nu to ncon as indicated by the ‘congestion’ trajectory in the figure.
Since this trajectory is inside {nu < p < ncon} there will again be an additional off-ramp flow. Repeating the
two-phase decongestion–congestion cycle provides a free lunch.

7. Conclusions

Despite the widespread use of the CTM model for simulation and analysis of problems in freeway planning
and operations, theoretical understanding of the model is spotty. This paper fills this gap by providing a com-
plete analysis of the behavior of the CTM model of a freeway with stationary demand.

The key to the behavior is the location of bottlenecks—sections where flow equals capacity. The bottlenecks
partition the freeway into ‘decoupled’ segments. Each segment starts with a bottleneck and ends just before the
next upstream bottleneck. Each segment determines its own equilibrium set; and each equilibrium in the set
determines the number of congested sections in the segment.

It is characteristic of the CTM model that within each segment congested segments must lie immediately
upstream of the bottleneck. Another characteristic is that congestion must propagate upstream from the bot-
tleneck. Both characteristics are readily observed empirically (Chen et al., 2004; PeMS website, 2007). Of
course, as a consequence, as a segment becomes uncongested, upstream sections are relieved before down-
stream sections.

Bottlenecks may be caused by physical features that reduce capacity. More often, however, bottlenecks
depend on the pattern of demand. As the pattern of demand changes by time of day and day of week, bot-
tleneck locations change as well. This characteristic, too, is widely observed.

One surprising conclusion of the analysis is that depending on initial conditions, the same demand may
leave a segment uncongested or it may congest one or more sections, or even the entire segment. Thus con-
gestion is not a sign that capacity exceeds demand, as is commonly believed.

If, however, the demand does exceed capacity in a segment the entire segment will become congested. If
ramps are not metered when there is excess demand, freeway utilization will drop and congestion deepen,
in comparison with conditions that would prevail under an appropriate ramp metering strategy. When there
is excess demand, which typically occurs in every rush hour, proper ramp metering always reduces total travel
time because of larger discharge flows, and increases flow and freeway speed. It is a false belief that metering
merely transfers delay from a congested freeway to queuing delay on the ramp (except in the singular case of a
freeway in which everyone gets off at the same exit).
Please cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
port. Res. Part C (2007), doi:10.1016/j.trc.2007.10.005



24 G. Gomes et al. / Transportation Research Part C xxx (2007) xxx–xxx

ARTICLE IN PRESS
Surprisingly, even when there is no excess demand, ramp metering can eliminate congestion and reduce
total travel time.

Thus the most important practical conclusion of the analysis is that the presence of sustained congestion is
a sure indication of the wastefulness of freeway capacity and of travelers’ time. Appropriate ramp metering
can eliminate this waste. The benefit of ramp metering reported here may underestimate the true benefit if
there is a capacity drop in a section when density exceeds its critical value.
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Appendix

Proof of Lemma 5.1. Suppose x 6 y. We must show
Plea
port
giðxi�1; xi; xiþ1Þ 6 giðyi�1; yi; yiþ1Þ: ð68Þ

We verify the inequality one coordinate at a time. Suppose first that xi�1 6 yi�1 but xi = yi,xi+1 = yi+1. Then
from (6) and (7)
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
¼ ��b�1

i minf�bivixi;wi�1½�ni�1 � xi�1�; F ig
þ �b�1

i minf�biviyi;wi�1½�ni�1 � xi�1�; F ig 6 0:
Suppose next that xi+1 6 yi+1 but xi�1 = yi�1,xi = yi. Then from (6) and (7)
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
¼ �b�1

iþ1 minf�biþ1viþ1xiþ1;wi½�ni � xi�; F iþ1g
� �b�1

iþ1 minf�biþ1viþ1yiþ1;wi½�ni � xi�; F iþ1g 6 0:
Lastly suppose xi 6 yi but xi�1 = yi�1, xi+1 = yi+1. To show (68) consider three separate cases.

Case 1:
xi < yi 6 nc

i . Then from (6), (7) and (11)
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
¼ xi � �b�1

i minf�bivixi;wi�1½�ni�1 � xi�1�; F ig � yi þ �b�1
i minf�biviyi;wi�1½�ni�1 � xi�1�; F ig

¼ xi � yi if �bivixi P minf�bivixi;wi�1½�ni�1 � xi�1�; F ig
6 ð1� viÞxi � ð1� viÞyi if �bivixi ¼ minf�bivixi;wi�1½�ni�1 � xi�1�; F ig

(

6 0; because 0 < vi < 1:
Case 2:
xi 6 nc

i < yi. Then from (6), (7) and (11)
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
¼ xi � �b�1

i minf�bivixi;wi�1½�ni�1 � xi�1�; F ig þminf�biþ1viþ1xiþ1;wi½�ni � xi�; F ig
� yi þ �b�1

i minf�biviyi;wi�1½�ni�1 � xi�1�; F ig �minf�biþ1viþ1xiþ1;wi½�ni � yi�; F ig
If �bivixi P minf�bivixi;wi�1½�ni�1 � xi�1�; F ig,
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Plea
port
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
¼ xi � yi þminf�biþ1viþ1xiþ1;wi½�ni � xi�; F ig �minf�biþ1viþ1xiþ1;wi½�ni � yi�; F ig

6 xi � yi 6 0 if wi½�ni � xi� 6 minf�biþ1viþ1xiþ1; F ig
¼ ð1� wiÞðxi � yiÞ 6 0; if wi½�ni � xi� ¼ minf�biþ1viþ1xiþ1; F ig; because 0 < vi < 1;

(

and if �bivixi < minf�bivixi;wi�1½�ni�1 � xi�1�; F ig,
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
6 xi � yi þminf�biþ1viþ1xiþ1;wi½�ni � xi�; F ig �minf�biþ1viþ1xiþ1;wi½�ni � yi�; F ig 6 0; as before:
Case 3:
nc

i 6 xi < yi 6 nc
i . Then from (6), (7) and (11)
giðxi�1; xi; xiþ1Þ � giðyi�1; yi; yiþ1Þ
¼ xi � yi þminf�biþ1viþ1xiþ1;wi½�ni � xi�g �minf�biþ1viþ1xiþ1;wi½�ni � yi�g

¼ xi � yi 6 0; if wi½�ni � yi� > �biþ1viþ1xiþ1

6 ð1� wiÞðxi � yiÞ 6 0; if wi½�ni � yi� 6 �biþ1viþ1xiþ1; because 0 < vi < 1:

(

Thus g is strictly monotone, because if x 6 y,
giðxi�1; xi; xiþ1Þ 6 giðyi�1; xi; xiþ1Þ 6 giðyi�1; yi; xiþ1Þ 6 giðyi�1; yi; yiþ1Þ;
moreover, it is trivial to check that if x 5 y then g(x) 5 g(y).

Lastly g is not strongly monotone, because if x < y but xi�1 = yi�1, xi = yi, xi+1 = yi+1, then
gi(x) = gi(y). h

Proof of Lemma 5.6. Suppose, as induction hypothesis, that (54) holds for m � 1P0. Fix m P 1. By Theorem
4.1 ne;m 2 Em

ImþjðrÞ for some j P 0, so that at ne,m sections Im, . . . , Im + j are congested and sections
Im + j + 1, . . . , Im+1 � 1 are not congested as in Fig. 10.

We will prove (54) for m, separately analyzing the three cases: j = Im+1 � 1, j = Im, and Im < j < Im+1 � 1.

Case (i): j = Im+1 � 1. In this case at ne,m the entire segment Sm is congested. The induction hypothesis is not
used for this case.By Theorem 4.1 ne,m = ncon,m and, by (31),
ne;m
i ¼ nc

i þ w�1
i ðF iþ1 � /iþ1Þ > nc

i ; i 2 Sm: ð69Þ

By (52) for g > 0 we can select d > 0 so that
jnm � ne;mj < d) 0 6 F Im � fImðkÞ ¼ gðkÞ < g: ð70Þ
Assume for now that
nm
i ðkÞ > nc

i ; k P 0; i 2 Sm; ð71Þ
so that
fiðkÞ ¼ minf�bivinm
i ðkÞ; F i � wi�1½nm

i�1ðkÞ � nc
i�1�; F ig

¼ F i � wi�1½nm
i�1ðkÞ � nc

i�1�; i ¼ Im þ 1; . . . ; Imþ1: ð72Þ
Substituting (69), (70), (72) and (49) in
nm
i ðk þ 1Þ ¼ nm

i ðkÞ � �b�1
i fiðkÞ þ fiþ1ðkÞ þ ri ¼ nm

i ðkÞ � �b�1
i ½fiðkÞ � /i� þ fiþ1ðkÞ � /iþ1;
gives, for i = Im,
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Plea
port
nm
i ðk þ 1Þ ¼ nm

i ðkÞ � �b�1
i ½F Im � gðkÞ � /i� þ F iþ1 � wi½nm

i ðkÞ � nc
i � � /iþ1

¼ nm
i ðkÞ � wi½nm

i ðkÞ � nc
i � w�1

i ðF iþ1 � /iþ1Þ� þ �b�1
i gðkÞ; as F Im ¼ /Im

¼ nm
i ðkÞ � wi½nm

i ðkÞ � ne;m
i � þ �b�1

i gðkÞ; ð73Þ
and, for i = Im + 1, . . . , Im+1 � 1,
nm
i ðk þ 1Þ ¼ nm

i ðkÞ � �b�1
i ½F i � wi�1ðnm

i�1ðkÞ � nc
i�1Þ � /i� þ F iþ1 � wi½nm

i ðkÞ � nc
i � � /iþ1

¼ nm
i ðkÞ þ �b�1

i wi½nm
i�1ðkÞ � nc

i�1 � w�1
i ðF i � /iÞ� � wi½nm

i ðkÞ � nc
i � w�1

i ðF iþ1 � /iþ1Þ�
¼ nm

i ðkÞ þ �b�1
i wi�1½nm

i ðkÞ � ne;m
i � � wi½nm

i ðkÞ � ne;m
i �: ð74Þ
Define the vectors xm(k) with components xm
i ðkÞ ¼ nm

i ðkÞ � ne;m
i ; i 2 Sm. In terms of xm(k) the difference Eqs.

(73) and (74) can be written as
xmðk þ 1Þ ¼

1� wIm 0 0 . . . 0

b�1
Imþ1wIm 1� wImþ1 0 . . . 0

� � � � �
0 � � b�1

Imþ1
wImþ1�2 1� wImþ1�1

2
6664

3
7775xmðkÞ þ

b�1
Im

gðkÞ
0

�
0

2
6664

3
7775: ð75Þ
The difference Eq. (75) is of the form
xmðk þ 1Þ ¼ AxmðkÞ þ uðkÞ; xmð0Þ ¼ nm � ne;m;
and has the solution
xmðkÞ ¼ Akðnm � ne;mÞ þ
Xk�1

l¼0

Ak�1�luðlÞ:
The eigenvalues of A are ð1� wImÞ; . . . ; ð1� wImþ1�1Þ, all of which lie in (0, 1), since 0 < wi < 1. Hence
kAkk 6 Mkk for some M <1 and 0 < k < 1. Also j uðlÞ j6 ð�bImÞ

�1g. It follows that if jnm � ne,mj < d, suffi-
ciently small, then (71) holds and jxm(k)j 6 � for all k P 0.
Case (ii): j = Im. In this case sections j + 1 = Im + 1, . . . , Im+1 � 1 are not congested; so /j = Fj, /i < Fi, i > j,

i 2 Sm.By the induction hypothesis, for � > 0 there is d > 0 such that for jn � nej < d, there is an
equilibrium ñe such that
jnm�1ðkÞ � ~ne;m�1j < �; k P 0:
By Proposition 4.3, ~ne;m�1
j�1 < nc

j�1; hence, for � > 0 small
nm�1
j�1 ðkÞ < ~ne;m�1

j�1 þ � < nc
j�1: ð76Þ
Next, by (52) we can select d > 0 so that
jn� nej < d) 0 6 F Imþ1 � fImþ1ðkÞ ¼ gðkÞ ! 0: ð77Þ
By Lemma 4.3, ne,m has the form (see bottom part of Fig. 3)
ne;m
i ¼

nc
j þ ð1� 2wÞw�1

j ðF jþ1 � /jþ1Þ; i ¼ j; for some 0 6 w 6 1=2;

nu
i ¼ ð�biviÞ�1/i < nc

i ; i P jþ 1; i 2 Sm:

(

We now examine the trajectory {n(k)} starting at n. Assume for now that
nm
j ðkÞ < ne;m

j þ ww�1
j ðF jþ1 � /jþ1Þ ¼ nc

j þ ð1� wÞw�1
j ðF jþ1 � /jþ1Þ; ð78Þ

nm
i ðkÞ < ne;m

i þ wð�biviÞ�1ðnc
i � ne;m

i Þ; i P jþ 1; i 2 Sm: ð79Þ
From (76) and (78)
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Plea
port
fjðkÞ ¼ minf�bjvjnm
j ðkÞ; F j � wj�1ðnm�1

j�1 ðkÞ � nc
j�1Þ; F jg

¼ minf�bjvjnm
j ðkÞ; F jg ¼

F j; if nm
j ðkÞ > nc

j

�bjvjnm
j ðkÞ; if nm

j ðkÞ 6 nc
j

(
: ð80Þ
Next,
fjþ1ðkÞ ¼ minf�bjþ1vjþ1nm
jþ1ðkÞ; F jþ1 � wjðnm

j ðkÞ � nc
jÞ; F jþ1g: ð81Þ
From (79),
�bjþ1vjþ1nm
jþ1ðkÞ < �bjþ1vjþ1½ne;m

jþ1 þ wð�bjþ1vjþ1Þ�1ðnc
jþ1 � ne;m

jþ1Þ� ¼ /jþ1 þ wðF jþ1 � /jþ1Þ;
and from (78)
F jþ1 � wjðnm
j ðkÞ � nc

jÞP F jþ1 � wj½ð1� wÞw�1
j ðF jþ1 � /jþ1Þ� ¼ wF jþ1 þ ð1� wÞ/jþ1:
Substituting the preceding two inequalities into (81) gives
fjþ1ðkÞ ¼ �bjþ1vjþ1nm
jþ1ðkÞ: ð82Þ
Lastly, for i P j + 2, i 2 Sm, from (79)
fiðmÞ ¼ minf�bivinm
i ðkÞ; F i � wi�1ðnm

i�1ðkÞ � nc
i�1; F ig ¼ �bivinm

i ðkÞ: ð83Þ
Substituting (80), (82), (83) and (49) in
nm
i ðk þ 1Þ ¼ nm

i ðkÞ � �b�1
i fiðkÞ þ fiþ1ðkÞ þ ri ¼ nm

i ðkÞ � �b�1
i ½fiðkÞ � /i� þ ½fiþ1ðkÞ � /iþ1�;
gives the difference equation system for {nm(k)}:
nm
j ðk þ 1Þ ¼ nm

j ðkÞ � �b�1
j ½minf�bjvjnm

j ðkÞ; F jg � �bjvjn
e;m
j � þ �bjþ1vjþ1½nm

jþ1ðkÞ � ne;m
jþ1ðkÞ�

nm
i ðk þ 1Þ ¼ nm

i ðkÞ � vi½nm
i ðkÞ � ne;m

i ðkÞ� þ �biþ1viþ1½nm
iþ1 � ne;m

iþ1�; i ¼ jþ 1; . . . ; Imþ1 � 2

nm
Imþ1�1ðk þ 1Þ ¼ nm

Imþ1�1ðkÞ � vImþ1�1ðkÞ½nm
Imþ1�1ðkÞ � ne;m

Imþ1�1ðkÞ� � gðkÞ:
In terms of the variables xm
i ðkÞ ¼ nm

i ðkÞ � ne;m
i ; i P j; i 2 Sm, this system can be rewritten as
xm
j ðk þ 1Þ ¼ xm

j ðkÞ � �b�1
j ½minf�bjvjnm

j ðkÞ; F jg � �bjvjn
e;m
j � þ �bjþ1vjþ1xm

jþ1ðkÞ ð84Þ
and
xjþ1ðk þ 1Þ
xjþ2ðk þ 1Þ

�
xImþ1�1ðk þ 1Þ

2
6664

3
7775 ¼

1� vjþ1
�bjþ2vjþ2 0 . . . 0

0 1� vjþ2
�bjþ3vjþ3 . . . 0

� � � � �
0 � � 0 1� vImþ1�1

2
6664

3
7775

xjþ1ðkÞ
xjþ2ðkÞ
�

xImþ1�1ðkÞ

2
6664

3
7775þ

0

0

�
�gðkÞ

2
6664

3
7775: ð85Þ
The difference Eq. (85) is of the form
zðk þ 1Þ ¼ AzðkÞ � bgðkÞ;

and has the solution
zðkÞ ¼ Akzð0Þ �
Xk�1

l¼0

Ak�1�lbgðlÞ:
The eigenvalues of A are ð1� vjþ1Þ; . . . ; ð1� vImþ1�1Þ, all of which lie in (0, 1), since 0 < vi < 1. By (77), g(l)! 0,
g(l) P 0. Hence z(k)! z* 6 0, and (79) is assured by induction. Furthermore, because g(l) P 0,
xm
jþ1ðkÞ 6 Mkk; ð86Þ
for some M <1 and 0 < k < 1.Lastly, rewrite (84) as
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xm
j ðk þ 1Þ ¼

ð1� vjÞxm
j þ �bjþ1vjþ1xm

jþ1ðkÞ; if xm
j 6 �D;

xm
j ðkÞ þ Dþ �bjþ1vjþ1xm

jþ1ðkÞ; if xm
j P �D;

(
ð87Þ
in which D ¼ ð1� 2wÞw�1
j ðF jþ1 � /jþ1Þ.Because D > 0 and xm

jþ1 ! 0, the second alternative in (87) cannot hold
for k P K, for some finite K, and so
xm
j ðkÞ ¼ ð1� vjÞk�Kxm

j ðKÞ þ
Xk�1

l¼K

ð1� vjÞk�1�l�bjþ1vjþ1xm
jþ1ðlÞ;
can be made arbitrarily small, proving (78).
Case (iii): Im < j < Im+1 � 1. In this case at ne,m sections Im, . . . ,j are congested and sections j + 1, . . . ,Im+1 � 1

are uncongested. The proof for this case combines the argument in Case (i) for the congested sec-
tions and the argument in Case (ii) for the uncongested sections. The details are omitted. h
References

Almasri, E., Friedrich, B., 2005. Online Offset Optimisation in Urban Networks Based on Cell Transmission Model. ITS Hanover.
Aw, A., Rascle, M., 2000. Resurrection of ‘second order’ models of traffic flow. SIAM Journal on Applied Mathematics 63 (1), 916–938.
Buisson, C., Lebacque, J.-P., Lesort, J.B., 1996a. STRADA, a discretized macroscopic model of vehicular traffic flow in complex networks

based on the Godunov scheme. In: CESA’96 IMACS Multiconference.
Buisson, C., Lebacque, J.-P., Lesort, J.B., Mongeot, H., 1996b. The STRADA dynamic assignment model. In: Proceedings of the 1996

ITS Conference.
Chen, C., Skabardonis, A., Varaiya, P., 2004. Systematic identification of freeway bottlenecks. Transportation Research Record 1867, 46–

52.
Daganzo, C., 1994. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory.

Transportation Research, Part B 28 (4), 269–287.
Daganzo, C., 1995. Requiem for second-order fluid approximations of traffic flow. Transportation Research Part B 29, 277–286.
Daganzo, C.F., Lin, W.-H., 1993. The spatial evolution of queues during the morning commute in a single corridor. Working Paper UCB-

ITS-PWP-93-7, California PATH, University of California, Berkeley, CA 94720.
Godlewski, E., Raviart, P.-A., 1996. Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag.
Godunov, S., 1959. A difference method for numerical calculation of discontinuous solutions of hydrodynamic equations.

Matematicheskii Sbornik 47, 271–290.
Gomes, G., 2004. Optimization and microsimulation of on-ramp metering for congested freeways. Ph.D. Thesis, University of California,

Department of Mechanical Engineering, Berkeley, CA.
Gomes, G., Horowitz, R., 2006. Optimal freeway ramp metering using the asymmetric cell transmission model. Transportation Research,

Part C 14 (4), 244–262.
Haut, B., Bastin, G., 2005. A second order model for road traffic networks. In: Proceedings of the IEEE Intelligent Transportation

Systems Conference, pp. 178–184.
Helbing, D., 1995. Improved fluid dynamic model for vehicular traffic. Physical Review E, 3164–3169.
Herty, M., Rascle, M., 2006. Coupling conditions for a class of second order models for traffic flow. SIAM Journal on Mathematical

Analysis 38 (2), 595–616.
Hirsch, M.W., Smith, H., 2005. Monotone maps: a review. Journal of Difference Equations and Applications 11 (4–5), 379–398. Also

<http://repositories.cdlib.org/postprints/977/>.
Lago, A., Daganzo, C.F., 2007. Spillovers, merging traffic and the morning commute. Transportation Research Part B 41, 670–683.
Lebacque, J.P., 1996. The Godunov scheme and what it means for first order traffic flow models. In: Lesort, J.B. (Ed.), Proceedings of the

13th International Symposium on Transportation and Traffic Theory. Pergamon, pp. 647–677.
Leclercq, L., Laval, J., Chevallier, E., 2005. The Lagrangian coordinates and what it means for first order traffic flow models. In: Allsop,

B.R., Bell, M.G.H., Heydecker (Eds.), Proceedings of the 17th International Symposium on Transportation and Traffic Theory.
Elsevier.

LeVeque, R.J., 1992. Numerical Methods for Conservation Laws. Birkhäuser.
Lighthill, M., Whitham, G., 1955. On kinematic waves I: Flow movement in long rivers. II: A theory of traffic flow on long crowded roads.

Proceedings of the Royal Society of London, Part A 229 (1178), 281–345.
Lin, W.-H., Ahanotu, D., 1995. Validating the Basic Cell Transmission Model on a Single Freeway Link. Technical Note 95-03, California

PATH, University of California, Berkeley, CA 94720.
Lo, H.K., 2001. A cell-based traffic control formulation: strategies and benefits of dynamic timing plans. Transportation Science 35 (2),

148–164.
May, A.D., 1981. Models for freeway corridor analysis. Technical report. Transportation Research Special Report 194.
se cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
. Res. Part C (2007), doi:10.1016/j.trc.2007.10.005

http://repositories.cdlib.org/postprints/977/


G. Gomes et al. / Transportation Research Part C xxx (2007) xxx–xxx 29

ARTICLE IN PRESS
Munoz, L., Sun, X., Sun, D., Gomes, G., Horowitz, R., 2004. Methodological calibration of the cell transmission model. In: Proceedings
of American Control Conference, pp. 798–803.

Papageorgiou, M., Blosseville, J.-M., Hadj-Salem, H., 1990. Modelling and real-time control of traffic flow on the southern part of
Boulevard Peripherique in Paris. I: Modelling. II: Coordinated on-ramp metering. Transportation Research, Part A 24A (5), 345–370.

Payne, H., 1971. Models of freeway traffic and control. Mathematical Models of Public Systems 28 (1), 51–61.
Payne, H., 1979. FREEFLO: A macroscopic simulation model of freeway traffic. Transportation Research Record 722, 68–77.
PeMS. PeMS website, 2007. <http://pems.eecs.berkeley.edu> (accessed 8/28/2007).
Piccoli, B., Garavello, M., 2006. Traffic Flow on Networks. American Institute of Mathematical Sciences.
Richards, P., 1956. Shock waves on the highway. Operations Research 4 (1), 42–51.
Whitham, G.B., 1974. Linear and Nonlinear Waves. Wiley-Interscience.
Yperman, I., Logghe, S., Immers, B., 2004. Dynamic congestion pricing in a network with queue spillover. <http://www.kuleuven.be/

traffic/stats/>.
Zhang, M., Ritchie, S.G., Recker, W.W., 1996. Some general results on the optimal ramp control problem. Transportation Research, Part

C 4 (2), 51–69.
Ziliaskopoulos, A.K., 2000. A linear programming model for the single destination system optimum dynamic traffic assignment problem.

Transportation Science 34 (1), 37–49.
Please cite this article in press as: Gomes, G. et al., Behavior of the cell transmission model and effectiveness ..., Trans-
port. Res. Part C (2007), doi:10.1016/j.trc.2007.10.005

http://pems.eecs.berkeley.edu
http://www.kuleuven.be/traffic/stats/
http://www.kuleuven.be/traffic/stats/

	Behavior of the cell transmission model and effectiveness of ramp metering
	Introduction
	Background of CTM
	The CTM model
	Structure of equilibria
	Dynamic behavior
	Examples

	Implications for ramp metering
	Conclusions
	Acknowledgements
	 blank 
	References


