
 
 

 

  
Abstract— In this paper we describe the experimental work 
and present an algorithm for vehicle detection using sensor 
node data. Both acoustic and magnetic signals are processed 
for vehicle detection. We propose a real-time vehicle detection 
algorithm called the Adaptive Threshold algorithm (ATA). 
This adaptive algorithm first computes the time-domain 
energy distribution curve and then slices the energy curve 
using a threshold updated adaptively by some decision states. 
Finally, the hard decision results from threshold slicing are 
passed to a finite-state machine, which makes the final vehicle 
detection decision. Real-time tests and offline simulations both 
demonstrate that the proposed algorithm is effective.  

 

I. INTRODUCTION 
  he idea of deploying sensors to monitor/measure the 
behaviour of a system is not novel; however, some of 

the technological and economic issues remain challenging. 
In particular, many issues need to be considered for the 
price one is willing to pay for collecting information and 
making system improvement. For example, can we collect 
the data we want with only wired sensors? Wireless sensors 
offer the flexibility advantage, but just like any portable 
device, the limit of the energy source is always a concern. 
Can we deploy a network of sensors so that we have a high 
density and fidelity of instrumentation? A high density of 
sensors is an obvious benefit, but it also means more cost. 
In other words, is large-scale deployment economically 
feasible? All these issues, nonetheless, can be categorised 
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into three inter-related categories: cost, benefit, and 
technological limitation. These three issues will dictate the 
choice of the sensing device for applications such as vehicle 
detection. 

A vehicle detection system has four main components: a 
sensor to sense the signals generated by vehicles, a 
processor to process the sensed data, a communication unit 
to transfer the processed data to the base station for further 
processing, and an energy source. Conventional vehicle 
detection technologies, such as inductive loop detectors, are 
not suitable for large-scale deployment because they are 
usually intrusive and disruptive to traffic, resulting in high 
installation and maintenance costs. By lowering the cost 
barriers and reducing the complexity of collecting 
information from the physical world, wireless sensor 
technology frees sensors to go where cost and practicality 
have kept them from going in the past. Also with recent 
advances in microelectronics and MEMS technology, all of 
the four main components of a vehicle detection system can 
now be integrated into a tiny single device called a sensor 
node. Each of these sensor nodes is called a Mote. In the 
future, a vehicle detection system can be a network of low-
cost sensor nodes interconnected as an ad hoc network via 
wireless communication. This could be deployed with low 
maintenance costs by controlling the power consumption of 
the energy source for transmission and reception of data 
packets [8]. One such sensor node,  shown in Figure 1, is 
developed under the Smart Dust research project conducted 
at the Department of Electrical Engineering and Computer 
Sciences, University of California, Berkeley [1, 2].  These 
wireless sensor nodes are battery powered and are expected 
to have a lifetime of couple of years.  Thus, it makes sense 
that each sensor node processes the sensor data locally and 
sends only the vehicle detection results back to the base 
station (or gateway sensor node). This will reduce the 
sensor network traffic and achieve a longer lifetime of 
operation. In what follows, we first review some of the 
current signal processing techniques for vehicle detection.  

Various signal-processing algorithms for vehicle 
detection have been proposed for vehicle detection [3,4,5]. 
These algorithms are for detecting vehicle acoustic signals, 
and the analysis are based in three domains: time, 
frequency, and time-frequency domains. Acoustic signal 

Signal Processing of Sensor Node Data for 
Vehicle Detection 

Jiagen (Jason) Ding, Sing-Yiu Cheung, Chin-Woo Tan and Pravin Varaiya, Fellow, IEEE 

T



 
 

 

processing in time domain, such as beam-forming [3], is a 
natural approach, but not an optimal one due to the 
complexity of the environment, i.e., the time domain 
signatures of acoustic signals can be hampered by noise 
from other moving vehicles, Doppler effects, wind, and so 
on. The frequency domain signal processing algorithms are 
focused on the frequency range from 20 to 200Hz where 
vehicle acoustic signals are generated from two main 
sources: the engine and the propulsion gear. The harmonic 
line association (HLA) algorithm was developed in [4, 5] 
based on these characteristics. However, since vehicle 
acoustic signals are non-stationary and wide-band, it is very 
difficult to pick peaks in the frequency spectrum. So other 
approaches in time-frequency domain, such as wavelet-
based algorithms, were developed as well [5]. Wavelet-
based algorithms are not suitable for real-time vehicle 
detection for they tendto require intensive computation and 
samples from a long period of time.  The simple algorithm 
for vehicle detection using magnetometer data is a fixed 
threshold detection algorithm [7]. This fixed threshold 
algorithm is not robust because the magnetic signal 
amplitude changes with the size of the vehicle.  In this 
paper we propose an adaptive threshold algorithm (ATA) 
suitable for real-time vehicle detection applications. The 
ATA is a time-domain energy- distribution-based alogrithm.  
This algorithm first computes the time-domain energy 
distribution curve and then slices the energy distribution 
curve using a threshold updated adaptively by some 
decision states. Finally, the hard decision results from 
threshold slicing  are passed to a finite state machine, which 
makes the vehicle detection decision. It is noted that the 
ATA is an energy-based algorithm with an adaptive 
threshold, which makes it robust and insensitive to 
environmental noises. The ATA is also a real-time vehicle 
detecion algorithm.  
 

 
Figure 1: Sensor nodes, also known as Motes 

The rest of this paper is organized as follows: Section II 
discusses the type of wireless sensor node (Mote) used for 
vehicle detection. Section III develops the Adaptive 
Threshold Algorithm (ATA) for vehicle detection. Section 
IV demonstrates the simulation and experimental results of 
ATA for vehicle detection. Some concluding remarks are 
given section V.  

II.  SENSOR NODES  
The sensor nodes (Motes) used in our vehicle detection 

experiments are jointly developed by the EECS Department 
at UC Berkeley and Intel [1]. In a Mote, the essential 

components for vehicle detection (processor, memory, 
sensor and radio) are integrated together with a form factor 
as small as a quarter coin (see Figure 1). The Mote consists 
of two major components: a motherboard and a sensor 
board. The sensor board includes both acoustic and 
magnetic sensors, both used in our vehicle detection 
experiments.  

The basic operating principles of  acoustic sensors and 
magnetometers will be presented next.  
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Figure 2: Schematic of a condenser microphone 

A. Acoustic Sensors 
The acoustic sensor in the Mote is the Panasonic WM-

62A microphone, which is a condenser type microphone. 
The schematic for a typical condenser acoustic sensor is 
shown in Figure 2. It includes a stretched metal diaphragm 
that forms one plate of a capacitor. A metal disk placed 
close to the diaphragm acts as a back-plate. A stable DC 
voltage is applied to the plates through a high resistance to 
keep electrical charges on the plates. When a sound field 
excites the diaphragm, the capacitance between the two 
plates varies according to the variation in the sound 
pressure. The change in the capacitance generates an AC 
output voltage proportional to the sound pressure. Figure 3 
shows a typical measured vehicle acoustic signal waveform. 
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Figure 3: A typical measured vehicle acoustic signal 

 

B. Magnetic Sensors 
The magnetic sensor in the Mote is the Honeywell 

HMC1002 magnetometer, which is a magnetoresistive 
sensor. The anisotropic magnetoresistive (AMR) sensor has 



 
 

 

a wide range for sensing the Earth’s magnetic field and 
provides both the strength and direction of the Earth field 
[6]. Figure 4 shows the magnetoresistive effect of 
Permalloy.  The resistance of Permalloy is a function of the 
angle (θ) between the bias current and the magnetization 
vector ( M

���

).  The applied magnetic field changes the 
direction of the magnetization vector and thus changes the 
resistance, which is used for magnetic field sensing.  The 
AMR sensor is made of a nickel-iron (Permalloy) thin film 
deposited on a silicon wafer and patterned as resistive 
strips.  Typically, four of these resistive strips are connected 
in a Wheatstone bridge configuration so that both 
magnitude and direction of a field along a single axis can be 
measured. The key benefit of AMR sensors is that they can 
be bulk manufactured on silicon wafers and mounted into 
commercial integrated circuit packages. 
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Figure 4: Permalloy magnetoresistive effect 

 
Figure 5 shows a typical change of Earth magnetic field 

along one axis when a vehicle passes over the AMR sensor. 
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Figure 5: A typical measured vehicle magnetic signal 

III. ADAPTIVE THRESHOLD ALGORITHM 
This section presents the adaptive threshold detection 
algorithm. The algorithm consists of computation of energy 
distribution curve, filtering of energy signal, state machine 
detector and threshold adaptation. The block diagram of the 
adaptive threshold detection algorithm is shown in Figure 6. 
As shown in the figure, Square&Decimator, Filtering, 
Adaptive Threshold and Decision correspond to energy 
distribution curve computation, energy signal filtering, 

threshold adaptation and state machine detector, 
respectively. 

 
   A. Energy Distribution Computation 
    The original measured acoustic or magnet signal may 
need to be first filtered by a band-pass filter to remove 
environmental noise (not shown in Fig. 6), such as the wind 
noise for acoustic signal. The band-pass filter output s(k) is 
squared and may be decimated, which results in energy  
signal e(k). This energy  signal e(k) is related to the  s(k) by: 

2( ) [ ( )]e k s Nk=                            (1) 
where N is the decimating rate.  
 

 
  B. Smoothing of Acoustic Energy Signal 
    The energy signal, e(k), could be very jerky and a low-
pass filter is used to smooth it for later detection. In our 
ATA algorithm, the low-pass smooth filter is chosen to be 
low-pass FIR filter, which has the advantages of linear 
phase and inherent stability. The key design parameters for 
low-pass FIR filters are the -3dB cutoff frequency ( pω ), 

the stop band frequency ( sω ) and the stop band attenuation 
gain. The smoothed energy signal f(k) is passed to the 
Adaptive Threshold block to make the hard decision.  

 
 
 

Figure 7: State diagram for state machine detector 
   C. Adaptive Threshold Decision 
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Figure 6: Block diagram of adaptive threshold detection 
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    The hard decision produces an output u(k) = 1 if the 
input sample f(k) is larger than the current detection 
threshold T(k). Otherwise, the hard decision will produce an 
output u(k) = 0. The value of the threshold T(k) is 
adaptively updated, which will be addressed in next. First, 
the  moving average of the energy signal  is computed as: 

 
( ) ( 1) ... ( 1)( ) f k f k f k MMA k

M
+ − + + − +=     (2) 

where MA denotes the moving average of the smoothed 
energy signal f(k) and M is the number of moving average 
samples. The adaptive threshold T(k) is updated as follows: 

If the current decision state is  at “car” state 
T(k) = αMA(k - Md) + Toffset 

else 
T(k) = βMA(k-Md) + Toffset                             (3) 

where α (<1) and β ( >1) are two parameters for adjusting 
the moving average, Md is an integer for delaying the 
moving average, and Toffset is a constant which sets the 
minimum threshold. It is noted that the adaptive threshold is 
the delayed moving average of the past energy levels which 
is scaled corresponding to the decision states. We next 
discuss how the decision states are computed.  

 D. State Machine Detector 
 Figure 7 shows the state diagram for the state machine 

corresponding to the decision block shown in Figure 6.  The 
state machine consists of : 

State(x(k)) : { nocar, car, count1, count0, count00 } 
Input(u(k)) : { 1, 0 } 

Output(d(k)) : { car, nocar } 
The input in the state machine is defined as: 

u(k) = 1 if  f(k)>T(k) 
= 0 otherwise 

There is a counter for each state of {count1, count0, 
count00} and the counter at each state resets whenever the 
state machine jumps back from other states. 

The state machine starts at the state no car and stays at 
this state if the input u(k) remains 0. The state machine 
jumps from state no car to state count1 if the input is 1 
(u(k) = 1). When the state machine enters state count1, the 
counter counts up and the state machine stays at this state if 
the input u(k) is 1 and the previous counter value is less 
than Ns. The state machine jumps from count1 to count0 if 
the input is 0 and to car if the input is 1 and the previous 
counter value is not less than Ns. When the state machine 
enters state count0, the counter at this state counts up and 
the state machine stays at this state if the input u(k) is 0 and 
the previous counter value is less than Ms. The state 
machines jumps from count0 to count1 if the input u(k) is 1 
and to state no car if the input is zero and the previous 
counter value is not less than Ms. When the state machine 
enters state car, it will stays at this state if the input is 1 and 

jumps to count00 if the input is 0. When the state machine 
enters state count00, the counter at this state counts up and 
the state machine stays at this state if the input is 0 and the 
previous counter value is less than Ms. The state machine 
jumps from count00 to count car if the input is 1 and to no 
car if the input is zero and the previous counter value is not 
less than Ms. One vehicle is detected when the state machine 
jumps from state count1 to state car. 

It is noted that the counter at the states {count1, count0, 
count00} and parameters Ms and Ns introduce hysteresis in 
the detection, which will make the algorithm more robust to 
the short burst errors in the hard decision.  

IV. SIMULATION AND ONLINE EXPERIMENT 

A. Acoustic Signal Vehicle Detection 
This section will demonstrate the ATA algorithm by 

simulation and experiments. The algorithm is prototyped in 
a laptop-based system as shown in Figure 8. Real-time tests 
and offline simulation results are both presented for this 
prototype system. Secondly, only the offline algorithm 
simulation is presented for the acoustic signals measured by 
the Mote because the limited computing resource in the 
Mote system makes real-time tests difficult. 

 

   Figure 9 shows some real-time vehicle detection results of 
the adaptive threshold algorithm. The decision results with 
1’s at around 1.8, 4, 6.8, 8.2, 10, 12, and 14 seconds 
represent vehicle existence at those time instants. The states 
0,1,2,3 and 4 in the state transition traces correspond to 
states no car, car, count0, count1 and count00, respectively. 
It is noted that the Adaptive Threshold Algorithm gives the 
correct real-time detection. Figure 10 shows a snap shot of a 
long-time ATA simulation result. In this figure, the blue 
line corresponds to the energy distribution curve and the red 
line corresponds the threshold traces.  

  
   Next we study the effect of parameter choices on the 
performance of the ATA acoustic vehicle detection. The 
key parameters are the counter limits (Ms and Ns) in Figure 
7 and the threshold adjustment coefficients (α and β) in 
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Figure 8: Laptop based acoustic vehicle detection 



 
 

 

Equation 3.  
 

 
Figure 9: ATA acoustic vehicle detection 
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   Table 1 summarizes the effect of Ms and Ns on the ATA 
acoustic vehicle detection results with α=0.7, β=1.5 and  
the threshold offset Toffset =2e-5. The smoothing filter is just 
a 40point moving average and Md is chosen to be 20. It is 
noted that large Ms and Ns lead to better robustness but may 
miss detecting high speed vehicles. Ms and Ns should  be 
chosen by trading off the algorithm robustness and the 
speed range of detectable vehicle.  A small Ns  could result 
in overcount due to a   short burst of 1’s caused by noise 
while a large Ns may result in the  missed detection of fast 
vehicles. On the other hand,  a  small  Ms could cause 
overcount due to noise while a large Ms may have poor 
resolution when two vehicles are very close to each other.  

 
Table 1: The effect of Ms and Ns on ATA 

(Ns,Ms) Ground truth 
(# of vehicles) 

Detection result 
(# of vehicles) 

(10,10) 63 62 
(10,15) 63 64 
(10,20) 63 62 
(20,10) 63 60 
(15,10) 63 62 
(10,10) 63 63 
(6,  10) 63 70 

 
   Table 2 summarizes the effect of α and β on the ATA 
performance with (Ns, Ms) = (10, 10) and the threshold 

offset Toffset=2e-5. The smoothing filter is just the 40-point 
moving average and Md is chosen to be 20. It is noted that 
the performance is quite robust to the choices of α and β.   

 
   B.  Mote Acoustic Vehicle Detection 
 
    The sampling frequency for the acoustic sensor in Mote 
system is 256 Hz, which is much lower than the laptop-
based prototype system. The algorithm block diagram is the 
same as the laptop system. Since the Mote system has 
limited computing resources, the algorithm is not 
implemented in the Mote but is simulated offline with      
the measured acoustic signal from the Mote. Figure 10 
shows the ATA simulation results for the Mote system. In 
Figure 11, the left plot is the original acoustic waveform 
measured by the Mote and the right plot is the energy curve 
and the adaptive threshold trace. It is noted that ATA 
detected  three vehicles correctly.  
 

Table 2: The effect of  (αααα,ββββ) on ATA 

 

(α,β) Ground truth 
(# of vehicles) 

Detection result 
(# of vehicles) 

(0.7,1.8) 63 58 
(0.7,1.5) 63 62 
(0.7,1.3) 63 66 
(0.8,1.5) 63 66 
(1.0,1.5) 63 63 

 

C. Magnetic Signal Vehicle Detection 
The threshold slicing algorithm had been implemented on 

the Smart Dust [1] [2] MICA sensor mote. The following 
will  present the ATA magnetic vehicle detection results. 
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Figure 10: Long time simulation of ATA detection



 
 

 

 
Figure 12 shows the ATA magnetic vehicle detection.  

The left plot shows the magnetic signal waveform with 4 
vehicles passing over the Mote with a magetometer.  The 
sampling frequency for magentic signals  is  64 Hz. The 
same ATA was implemented  as for acoustic vehicle 
detection via Motes. All the four vehicles are correctly 
detected.  

Figure 11: ATA acoustic detection using the Mote
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V. CONCLUSION 
This paper discusses an innovative real-time vehicle 

detection algorithm: the Adaptive Threshold.  Real-time 
tests and offline simulations have demonstrated that the 
algorithm is effective for processing both acoustic and 
magnetic signals for vehicle detection. The effect of tuning 
several key parameters of the ATA were also presented. 
The signal processing of the magnetic signals using the 
threshold algorithm results in 0-1 pulses. From the widths 
of the pulses, we can estimate the vehicle speed if the length 
of the vehicle is known. Our future research work will 
involves speed estimation using multiple Motes. 
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Figure 12: ATA magnetic vehicle detection using
the Mote  
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