
Secure encrypted-data aggregation for wireless sensor networks

Shih-I Huang Æ Shiuhpyng Shieh Æ J. D. Tygar

Published online: 7 May 2009

� Springer Science+Business Media, LLC 2009

Abstract This paper proposes a secure encrypted-data

aggregation scheme for wireless sensor networks. Our

design for data aggregation eliminates redundant sensor

readings without using encryption and maintains data

secrecy and privacy during transmission. Conventional

aggregation functions operate when readings are received

in plaintext. If readings are encrypted, aggregation requires

decryption creating extra overhead and key management

issues. In contrast to conventional schemes, our proposed

scheme provides security and privacy, and duplicate

instances of original readings will be aggregated into a

single packet. Our scheme is resilient to known-plaintext

attacks, chosen-plaintext attacks, ciphertext-only attacks

and man-in-the-middle attacks. Our experiments show that

our proposed aggregation method significantly reduces

communication overhead and can be practically imple-

mented in on-the-shelf sensor platforms.

Keywords Data aggregation � Wireless �
Sensor networks � Secrecy � Privacy

List of symbols

Si Sensor mote i

g A one-way function having the following property:

g x� yð Þ ¼ g xð Þ � g yð Þ
Ki

EK An encryption key randomly generated by sensor

mote i

Ki
VK A verification key used to verify data from sensor

mote i

1 Introduction

Wireless Sensor Networks (WSN) have emerged as an

important new area in wireless technology. A wireless

sensor network [1] is a distributed system interacting with

physical environment. It consists of motes equipped with

task-specific sensors to measure the surrounding environ-

ment, e.g., temperature, movement, etc. It provides solu-

tions to many challenging problems such as wildlife,

battlefield, wildfire, or building safety monitoring. A key

component in a WSN is the sensor mote, which contains (a)

a simple microprocessor, (b) application-specific sensors,

and (c) a wireless transceiver. Each sensor mote is typically

powered by batteries, making energy consumption an issue.

A major application for a wireless mote is to measure

environmental values using embedded sensors, and trans-

mit sensed data to a remote repository or a remote server.

Because of limited transmission capabilities, this often

requires multi-hop forwarding of messages, and is power

consuming.

One specific power-saving mechanism used in wireless

sensor networks is data aggregation [2–8]. Our paper

This work was supported in part by National Science Foundation,

ITRI, Chung Shan Institute of Science and Technology, the

International Collaboration for Advancing Security Technology

(iCAST) and Taiwan Information Security Center (TWISC), under

National Science Council grants NSC96-3114-P-001-002-Y and

NSC96-2219-E-009-013, respectively.

S.-I. Huang � S. Shieh

Department of Computer Science and Information Engineering,

National Chiao Tung Univerisity, Hsinchu, Taiwan

e-mail: ssp@csie.nctu.edu.tw

S.-I. Huang (&)

Industrial Technology Research Institute, Hsinchu, Taiwan

e-mail: sihuang@csie.nctu.edu.tw

J. D. Tygar

University of California Berkeley, Berkeley, USA

e-mail: doug.tygar@gmail.com

123

Wireless Netw (2010) 16:915–927

DOI 10.1007/s11276-009-0177-y

In Wireless Networks, 16:4, May 2010, pp. 915-927

proposes a novel method for eliminating duplicate

encrypted data during aggregation without decryption.

Data aggregation [9–16] has been put forward as an

essential paradigm in sensor networks. The aggregator uses

specific functions, such as addition, subtraction or exclusive-

or, to aggregate incoming readings, and only aggregated

result are forwarded [17–23]. Therefore, communication

overhead can be reduced by decreasing the number of

transmitted packets [24–30]. Without encryption, adversar-

ies can monitor and inject false data into the network.

Encryption can solve this problem, but how can we aggregate

over encrypted data [31]?

Adversaries can use the following attacks:

• Adversaries can deploy sensors near existing sensors to

determine their likely value.

• Adversaries can use common key encryption systems

(which always encrypt common sensor data in the same

way) to see when two readings are identical. By using

nearby sensors under the adversaries’ control, adver-

saries can conduct a known-plaintext attack.

• Adversaries can tamper with sensors to force them to

predetermined values (such as heating a temperature

sensor) and thus conduct a chosen-plaintext attack.

• Adversaries can inject false readings or resend logged

readings from legitimate sensor motes to manipulate

the data aggregation process, conducting a man-in-the-

middle attack.

Table 1 presents encryption policies, possible attacks,

and vulnerabilities in data aggregation schemes.

This paper proposes a new method for determining and

eliminating duplicate data while protecting privacy (using

encryption) without excessive key-management or power

management issues. Our scheme has the following contri-

butions. First, we provide a lightweight data aggregation

mechanism which protects data when data are processed in

aggregators. Aggregators can help to eliminate redundant

data without decrypting data. Thus, aggregators do not

need to spend extra power in data decryption, and more

network lifetime can be guaranteed. Second, our proposed

scheme is resilient to known-plaintext attacks, chosen-

plaintext attacks, ciphertext-only attacks, and man-in-the-

middle attacks. The rest of the paper is organized as

follows: Sect. 2 provides background on related work. In

Sect. 3, we describe our system architecture and proposed

aggregation protocol.Security analysis and performance

evaluation are given in Sects. 5 and 6 offers conclusions

and future directions.

2 Related work

Previous work in data aggregation assumes that every mote

is honest and only transmits their correct readings. Intan-

agonwiwat, Govindan, Estrin, and Heidemann [17] pro-

posed a data-centric diffusion method to aggregate data.

Their method enables diffusion to achieve energy savings

by selecting empirically good paths and by caching and

processing data in-network. Though their method can

achieve significant energy savings, security is not put into

consideration in their design.

Hu and Evans [13] further examined the problem that a

single compromised sensor mote can render the networks

useless, or worse, mislead the operator into trusting a false

reading. They proposed an aggregation protocol that is

resilient to both intruder devices and single device key

compromises, but their scheme suffers a problem that the

aggregated data will be expanded every time when it was

aggregated and forwarded by any intermediate sensor

mote.

Przydatek et al. [30] proposed a secure information

aggregation protocol to answer queries over the data

acquired by the sensors. In particular, their proposed pro-

tocols are designed especially for secure computation of

the median and the average of the measurements, for the

estimation of the network size and for finding the minimum

and maximum sensor reading. Even though their scheme

provided data authentication to provide secrecy, the data is

still delivered in plaintext format which provides no pri-

vacy during transmission.

Table 1 Encryption plicies, attacks and vulnerabilities in data aggregation schemes

Encryption policy Possible attacks Secrecy Privacy Data aggregation

Sensors transmit readings without encryption Man-in-the-middle No No Generating wrong aggregated results

Sensors transmit encrypted readings

with permanent keys

Known-plaintext attack Yes No Data aggregation cannot be achieved when

data are encrypted unless the aggregator has

encryption keys
Chosen-plaintext attack

Man-in-the-middle

Sensors transmit encrypted readings

with dynamic keys

None of above Yes Yes Data aggregation cannot be achieved when data

are encrypted unless the aggregator has

encryption keys

916 Wireless Netw (2010) 16:915–927

123

Wagner [14] presented a paper studying related attacks

on data aggregation in sensor networks. He thoroughly

examined current aggregation functions and proved that

these aggregation functions are vulnerable and insecure

under several attacks. He also proposed a theoretical

framework for evaluating data aggregation resiliently in

sensor networks and in its security against these attacks.

Still privacy is not guaranteed in his scheme.

Acharya and Girao [2] proposed an end-to-end encryp-

tion algorithm supporting operations over ciphertexts for

wireless sensor networks. Their scheme uses a special class

of encryption functions, Privacy Homomorphisms (PH)

[32–35, 16], that allow end-to-end encryption and provide

aggregation functions that are applied to ciphertexts. PH is

an encryption transformation that allows direct computa-

tions on encrypted data. Two functions E and D are addi-

tively homomorphic encryption and decryption if the

following property is satisfied: for plaintext operands x and

y and key k, xþ y ¼ Dk Ek xð Þ þ Ek yð Þð Þ: However, privacy

homomorphisms have exponential bound in computation.

It is too computationally expensive to implement in wire-

less sensor networks. Moreover, it has been proved that

privacy homomorphism is insecure even against ciphertext

only attacks which are commonly encountered in wireless

sensor networks.

Cam et al. [6] proposed a secure energy-efficient data

aggregation (ESPDA) to prevent redundant data transmis-

sion in data aggregation. Unlike conventional techniques,

their scheme prevents the redundant transmission from

sensor motes to the aggregator. Before transmitting sensed

data, each sensor transmits a secure pattern to the aggre-

gator. The secure pattern is generated by associating ori-

ginal data with a random number. Instead of transmitting

‘‘real’’ data, the sensor mote transmits the secure patter to

the cluster-head before transmitting it. The cluster-head

then uses these secure patterns to check which sensors have

same readings. Then, the cluster-head notifies certain sen-

sor motes to transmit their data. Only sensors with different

data are allowed to transmit their data to the cluster-head.

However, since each sensor at least needs to transmit a

packet containing a pattern once, power cannot be signif-

icantly saved. In addition, each sensor mote uses a fixed

encryption key to encrypt data; data privacy cannot be

maintained in their scheme.

Perrig and Tygar [36] proposed several secure broadcast

schemes suitable for wireless sensor networks. The com-

putation overhead for their schemes is affordable for tiny

sensor motes. They proposed a hashed key-chain scheme to

sequentially generate encryption/decryption keys for sensor

motes without notifying others. Przydatek, Song and Perrig

[30] further extended these schemes and proposed a secure

data aggregation scheme for sensor network. Their scheme

provided an efficient random sampling mechanisms and

interactive proofs to enable the querier to verify that the

answer given by the aggregator is a good approximation of

the true value, even when the aggregator and some sensor

motes were compromised.

3 Problem statement and proposed data aggregation

Data aggregation uses primitive functions, such as mean,

average, addition, subtraction, and exclusive or to elimi-

nate identical readings, and only unique results are be

forwarded, reducing the cost of data transmission.

Figure 1 depicts an overview of data aggregation flow.

3.1 Proposed data aggregation method

3.1.1 Architecture

There are two commonly used network topologies in sensor

networks. One is the self-organized sensor network

(Fig. 2). A self-organized network is a multi-hop, tempo-

rary autonomous system composed of sensor motes with

wireless transmission capability. It is easy to form such

networks but every mote in such networks consumes sig-

nificant amounts of power in data transmission as each

node must spend power to transmit/forward data to other

sensor nodes because of the dynamic network topology.

The other network topology is the clustered sensor network

(Fig. 3). In this architecture, the entire network is parti-

tioned into non-overlapping clusters. Each cluster has an

aggregator (or cluster head) to receive readings from other

sensor motes and to forward these readings to the remote

server. To extend operation lifetime, we choose the clus-

tered topology as our network architecture [29]. In a

clustered sensor network, each mote temporarily belongs to

a cluster, and sensors in this cluster will receive and for-

ward data for sensors in the same cluster. Since a mote only

transmits data for several motes instead of all motes, it can

obviously reduce its power consumption for data

transmission.

In a clustered WSN, we assume the network is divided

into clusters. Each cluster owns an aggregator having a

more powerful wireless transceiver that can transmit data

Fig. 1 Conventional data aggregation process

Wireless Netw (2010) 16:915–927 917

123

directly to the backend server. In our framework, we also

assume each sensor transmits data only to the aggregator;

hence, each sensor mote can reduce overhead in forwarding

data packets. We also assume sensor motes have no

mobility, i.e., they are fixed in a position and will not be

moved forever. The question of how to best deploy sensor

motes and how to cluster these sensor motes is interesting

to consider but is beyond the scope of this paper.

Using a clustered network to reduce power consumption,

we propose a data aggregation method which maintains both

secrecy and privacy. In terms of secrecy, each sensor mote

encrypts its reading and transmits the encrypted data to the

aggregator (Fig. 4). Adversaries will not be able to recognize

what reading it is during data transmission. In terms of pri-

vacy, our design aims to eliminate redundant reading for data

aggregation but this reading remains secret to the aggregator,

i.e., the aggregator cannot know anything about these read-

ings. Besides, our design can also prevent known-plaintext

attacks, chosen-plaintext attacks and ciphertext-only attacks.

3.1.2 System setup

Before deploying a wireless sensor network, we have to set

up three roles: the sensor mote, the aggregator, and the

remote database.

Fig. 2 Self-organized WSN

architecture and its data

aggregation flow

Fig. 3 A clustered sensor network topology

)(
1

xE tK

x x x y

)(
2

xE tK

y

)(
3

xE tK
)(

4
yE tK

)(
5

yE tK

)()(
41

yExEV tt KK
=

Fig. 4 Encrypted-data aggregation

918 Wireless Netw (2010) 16:915–927

123

1. The sensor mote: each sensor mote i is assigned an

one-way function g, and a verification key Ki
VK.

2. The aggregator: the aggregator is given the one-way

function g, and all KVK
i � KVK

iþ1 Vi. Hereafter, these

keys are referred as aggregation verification keys.

3. The remote database: The remote database needs to

decrypt aggregated data, and thus we need to store the

one-way hash function f, the one-way function g, and

all verification key KVK
i for all i.

Necessary keys, identities, and functions are pre-dis-

tributed in the sensor mote, the aggregator, and the remote

database before they are physically deployed and used.

Table 2 lists all pre-installed elements in individual roles.

Key pre-distribution is a scheme where keys are dis-

tributed among all sensor motes prior to deployment. Our

proposed key pre-distribution scheme does not rely on prior

deployment knowledge. Sensor motes are installed with

random keys for encryption. These encryption keys have

no mandatory relations between each other, and this makes

system setup more flexible.

Random keys can be generated by using random source

of data, such as values based on CPU clock, radioactive

decay, or atmospheric noise. The question of how to gen-

erating random numbers is interesting to consider but is

beyond the scope of this paper.

3.1.3 Proposed scheme

There are two phases in our proposed scheme: data

encryption phase and data aggregation phase. The

encryption phase provides a lightweight encryption algo-

rithm that supports data aggregation property, and provides

secrecy and privacy for data transmission. The data

aggregation phase provides a method to eliminate redun-

dant readings from sensor motes without decrypting them.

Since the aggregator cannot decrypt incoming packets, the

aggregator cannot know anything about the plaintext, and

therefore more power can be saved.

Data encryption phase Our encryption design aims to

provide lightweight encryption overhead and secrecy while

providing data aggregation property.

When a sensor mote i has a reading mi and wishes to

transmit this reading to the aggregator, it first randomly

generates a new key KEK
i ; which will be used as the next-

round encryption key. By using g, KEK
i ; and KVK

i ; the

corresponding ciphertext Ei(mi) is defined in Eq. 1.

Ei mið Þ ¼ mi � g KEK
i

� �
� KEK

i KEK
i � KVK

i

�� ; ð1Þ

where k indicates data concatenation.

Our proposed scheme is very close to the one-time pad

method [37] as each mote changes to a different key for

encrypting data but provides more capabilities. It is obvi-

ous that the length of data is required to be at least as long

as the length of encryption key in our proposed scheme.

When the length of data is shorter than the length of the

key, extra padding must be appended to the data so that the

appended data can be encrypted. As the message mi is

xored with g KEK
i

� �
� KEK

i ; it does not matter if we pad

random values or fixed values (e.g., all 0’s or 1’s). It does

not reduce any security strength in our scheme.

Next, we will introduce how to find out redundant

readings among these ciphertexts without decrypting them

in our data aggregation phase.

Data aggregation phase Our data aggregation method

provides a pair-wise method to identify if two readings are

identical. Although the goal of our data aggregation scheme

is to find redundant readings among n incoming encrypted

packets in the aggregator, our aggregation scheme can be

further extended by pairing off these n incoming encrypted

packets. By iteratively performing pair-wise comparisons

we can eliminate all redundant readings among them. If n

same readings are encrypted and transmitted to the aggre-

gator, the aggregator needs to check n - 1 times to verify

these inputs and save n - 1 packet transmission. It needs

computation overhead for data aggregation but saves more

energy from fewer data transmissions.

In the following section, first we will introduce our

approach to find redundant readings in two packets; then,

we will introduce how to extend our approach to find

redundant readings among n packets.

Assume sensor mote i and j sends two encrypted read-

ings to the aggregator, and these encrypted readings can be

expressed by the following equations:

Ei mið Þ ¼ mi � g KEK
i

� �
� KEK

i KEK
i � KVK

i

�� ; ð2Þ

Ej mj

� �
¼ mj � g KEK

j

� �
� KEK

j KEK
j � KVK

j

��� : ð3Þ

First, the aggregator XOR the first parts of these two

ciphertexts, and it can be expressed by the following

equation:

mi � g KEK
i

� �
� KEK

i � mj � g KEK
j

� �
� KEK

j ð4Þ

Next, since the aggregator is pre-installed with KVK
i �

KVK
iþ18i;KVK

i � KVK
j can be obtained by KVK

i � KVK
iþ1

� �
�

KVK
iþ1 � KVK

iþ2

� �
� � � � � KVK

j�1 � KVK
j

� �
; the aggregator can

XOR the last two parts of Eqs. 2 and 3 to obtain:

Table 2 Pre-installed elements in three roles

Role Pre-installed elements

The sensor mote SIDi, g, and Ki
VK

The aggregator g, and KVK
i � KVK

iþ1 Vi.

The remote server g, and Ki
VK Vi

Wireless Netw (2010) 16:915–927 919

123

KEK
i � KVK

i � KEK
j � KVK

j � KVK
i � KVK

j

¼ KEK
i � KEK

j

ð5Þ

It can be found that the aggregator can use Ei(mi) and

Ej(mj) to retrieve KEK
i � KEK

j ; but cannot retrieve Ki
EK or

Kj
EK separately; therefore, the aggregator cannot decrypt

Ei(mi) and Ej(mj).

Next, we define a check value V, and V is calculated by

XOR Eqs. 4 and 5 and g KEK
i � KEK

j

� �
: The check value is

used to distinguish if two encrypted readings are the

redundant in their plaintext format. As a result, the check

value V can be expressed by the following equation:

V i;jð Þ ¼ mi � g KEK
i

� �
� KEK

i � mj � g KEK
j

� �

� KEK
j � KEK

i � KEK
j � g KEK

i � KEK
j

� � ð6Þ

By using the properties of function g, Eq. 6 can be further

reduced to:

V i;jð Þ ¼ mi � g KEK
i

� �
� KEK

i � mj � g KEK
j

� �

� KEK
j � KEK

i � KEK
j � g KEK

i � KEK
j

� �

¼ mi � mj

ð7Þ

It is easier observed that if mi is equal mj, V i;jð Þ ¼ mi �
mj ¼ 0; and vice versa. We can formally describe V(i,j) by

the following equations:

if
Vði;jÞ ¼ 0; then mi ¼ mj

Vði;jÞ 6¼ 0; otherwise

(

ð8Þ

Figure 5 depicts the data aggregation phase.

If these two readings are the same, the aggregator just

needs to send either Ei(mi) or Ej(mj) to the remote server. If

these two readings are different, the aggregator then sends

Ei(mi)||Ej(mj) to the remote server. Since remote server is

pre-installed with the verification key KVK
i ; the remote

server therefore can use KVK
i to obtain KEK

i by: KEK
i ¼

ðKEK
i � KVK

i Þ � KVK
i : Then, the original data mi can be

recovered by: mi ¼ mi � g KEK
i

� �
� KEK

i

� �
� g KEK

i

� �
�

KEK
i : In above case, the aggregator only needs to examine

two incoming ciphertexts, but in general cases, the aggre-

gator usually receives more than two incoming ciphertexts.

When the aggregator receive n (n [2) incoming cipher-

texts E1;E2; . . .;Enð Þ; our proposed scheme can be easily

extended. First, we group these ciphertexts into pairs, i.e.,

Ei;Ej

� �
8i: Then, we can repeat above steps to generate

their check value V. Next, we can use V to check if Ei has

the same reading with Ej. Finally, if Vð1;2Þ ¼ Vð2;3Þ ¼ � � � ¼
Vðn�1;nÞ; then we can conclude that E1;E2; . . .;En has the

same reading. Figure 6 depicts necessary comparisons for

data aggregation when n = 5. It can be observed that

Si SjAgg

VK
j

VK
i KK ⊕

EK
i

VK
i

EK
i

EK
iiii KKKgKmmE ⊕⊕⊕=)()(

EK
j

VK
j

EK
j

EK
jjjj KKKgKmmE ⊕⊕⊕=)()(

EK
j

VK
j

EK
i

VK
i

VK
j

VK
i

EK
j

EK
i KKKKKKKK ⊕⊕⊕⊕⊕=⊕

ji

EK
j

EK
i

EK
j

EK
i

EK
j

EK
jj

EK
i

EK
iiji

mm

KKgKKKgKmKgKmV

⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕==)()()(),(

Step 1:

Step 2:

Fig. 5 Data aggregation phase

Fig. 6 Data aggregation verification steps for n = 5

920 Wireless Netw (2010) 16:915–927

123

these comparisons can be viewed as all edges in a com-

plete graph, and we will discuss this property in next

section.

Preliminaries: When the aggregator receives n encrypted

readings, the minimum number of comparisons is n - 1

under the condition that all these readings (when unen-

crypted) are the same. The maximum number of compari-

sons is
nðn�1Þ

2
when all these readings (when unencrypted) are

totally different from each other.

4 Threat models

The goals of the adversaries are to read, insert, and even

modify sensor readings. We consider several possible

threats, classified according to the capabilities of the

adversaries.

4.1 Known-plaintext attacks

To implement known-plaintext attacks, no capabilities are

need except the ability to deploy malicious sensors close to

legitimate sensors. In this scenario, an adversary can

• Collect all readings from all sensors, calculated aggre-

gated values, know their routing paths, and inject

wrong readings or aggregated values to the network.

• Collect abundant encrypted readings to enhance the

compromise of encryption keys.

In practice, known-plaintext attacks can be easily

achieved by deploying same sensor very close to legitimate

sensors. The goal of these attacks is merely to read readings

and to record corresponding responses of a sensor mote.

4.2 Chosen-plaintext attacks

• Adjust the sensors by changing physical conditions,

such as temperature or moisture.

• Log all plaintext-ciphertext mappings without knowing

what the encryption keys are.

In practice, adversaries can take some physical methods to

adjust the sensing environment in order to make sensor

motes generate false readings the adversaries desired. For

example, adversaries can use heaters to raise the temper-

ature to a certain degree, and temperature sensors will send

the false temperature readings making the aggregators

generate incorrect results.

4.3 Man-in-the-middle attacks

• Read, insert, or modify messages between sensor

motes.

• Inject false readings or resend logged readings on

behalf of legitimate sensor motes to malfunction data

aggregation.

Significantly, we assume that an adversary cannot retrieve

encryption keys from a sensor mote by physically com-

promising it. Otherwise, there will be no security at all.

5 Security analysis and performance evaluation

In this section, we evaluate our proposed scheme according

to two aspects: theoretical and practical. In theoretical

aspect, we use random oracle model to justify our protocol

is secure in terms of provable security. We firstly built an

ideal random oracle model and show that our proposed

encryption algorithm is an implementation of the ideal

random oracle. Then, we use the random oracle model to

justify that it can resist know-ciphertext attacks. In prac-

tical aspect, we estimate necessary time for compromising

our proposed scheme using different key lengths. The

result shows that using encryption keys longer than 80 bits

would be considerable secure enough even if the adversary

uses 1,000,000 4 GHz PCs running simultaneously to

compromise our scheme. Then, we show that our proposed

scheme can resist known-plaintext attacks, chose-plaintext

attacks, and know-ciphertext attacks.

Before we proceed to theoretical proof, we first describe

the security requirement specifying the adversary’s abili-

ties and when the latter is considered successful. The

abilities and disabilities of the adversary include:

• The adversary has an arbitrary polynomial-time com-

putation power.

• The adversary can eavesdrop on messages in the air.

• The adversary can know the original readings of any

sensor.

• The adversary cannot access the encryption keys.

An attack is considered to be successful if the adversary

can compromise the encryption keys. In terms of system

security, we adopt the idea in [38]. A system is considered

secure if any adversary with the given abilities has only a

negligible probability of success.

A random oracle is a theoretical black box that replies to

queries with random response chosen uniformly in its

output domain. A methodology for designing a crypto-

graphic protocol can be divided into two steps. In first step,

one designs an ideal system in which all participants as

well as adversaries have oracle access to a truly random

function, and proves the security of the ideal system. In

second step, we replace the random oracle by a ‘‘good

cryptographic hashing function’’. We can therefore obtain

an implementation of the ideal system in a real-word where

Wireless Netw (2010) 16:915–927 921

123

random oracles do not exist. This methodology is referred

to as the random oracle methodology.

Before we build our ideal system, we first describe the

notion.

{0, 1}* the space of finite binary strings

{0, 1}? the space of infinite binary strings

G : 0; 1f g�! 0; 1f g1 a random generator

f a trapdoor permutation with

inverse f-1

k the security parameter

H : 0; 1f g�! 0; 1f gk
a random has function

GðrÞ � x the bitwise XOR of x with the first

|x| bits of the output of G(r)

5.1 Preliminaries

Definition A function e(k) is negligible if for every c there

exists a kc satisfying e(k) B k-c for every k C k-c.

Definition If AP is a probabilistic algorithm, then for any

inputs m1, m2,…, AP(m1, m2,…) is the probability space

which to the sting r assigns the probability that AP outputs r.

For probabilistic spaces S, T,…, Pr[x / S; y / T;…:p(x,

y,…)] denotes the probability that the predicate p(x, y,…) is

true after the execution of the algorithms x / S, y / T, etc.

Definition A random oracle R is a map from {0, 1}* to {0,

1}? chosen by selecting each bit of R(x) uniformly for every x.

Without lost of generosity, our proposed scheme can be

formulated as the following oracle:

EG
r mð Þ ¼ m� G rð Þ f rð Þk . . . ð9Þ

5.2 Known-plaintext security

For known-plaintext attacks, the adversary knows some m,

and Pr The attacker successfully guesses G r1ð Þ½ � can be

described as:

Pr r1 G rð Þ½ � ¼ 1

2 r1j j � 0; when r1 is large enough.

We suggest that |r1| C 88 is adequate and mathematical

induction will be given later.

5.3 Chosen-plaintext security

We adapt the notion of CP-adversary (chosen-plaintext

adversary) in [39] to the random oracle model. A CP-

adversary A is a pair of non-uniform polynomial algorithms

(F, A1), each with access to an oracle. For an encryption

algorithm # to be secure, it requires that

P Chosen�Plaintext Fails½ �¼PrR 21; E;Dð Þ # 1k
� �

;

ðm0;m1Þ FRðEÞ; b 0;1f g;r ERðmbÞ :
AR

1 ðE;m0;m1;aÞ¼b�0:5þk�wð1Þ: ð10Þ

Proof The proof is by contradiction. Let A = (F, A1) be

an adversary that defeats our protocol. Often, the adversary

gains advantage k(k) for some inverse polynomial k. We

construct an algorithm M(f, d, y) that, when ðf ;f�1;dÞ
 #ð1kÞ;r dð1kÞ;y f ðrÞ; manages to compute f-1(y). It

simulates the oracle G and samples (m0, m1) / FG(E). If G

is asked an r such that f(r) = y, then Moutputs r and halts;

otherwise, the F(E) terminates and M chooses a yjjs for

s f0;1gjm0j: Then M simulates AG
1 ðE;m0;m1;aÞ; watching

the oracle queries that A1 makes to see if there is any oracle

query r for which f(r) = y. Let Ak be the event that A1 does

not ask for the image of G at r. It satisfies that

1=2þ kðkÞ ¼ Pr½A succeeds jAK � � Pr½Ak� þ Pr

½A succeeds jAk� � Pr½Ak�:
Thus, Eq. 10 is satisfied.

5.4 Chosen-ciphertext security

The chosen-ciphertext attack is defined as: the adversary

can adaptively choose ciphertexts and access to the

decryption algorithm to get the corresponding plaintexts.

Though it is usually occurred in asymmetric cryptographic

systems, it can also be happened in our scheme as the

adversary can know both ciphertexts and plaintexts (by

using same sensors) in the same time. We adapt the defi-

nition of [39, 40] to the random oracle [38] setting. An RS-

adversary (‘‘Rackoff-Simon adversary’’) A is a pair of non-

uniform algorithms A = (F, A1), each with access to an

oracle R and a black box implementation of DR. The

algorithm F is used to generate two messages m0 and m1

such that if A1 is given the encryption a, A1 won’t be able

to guess well whether a comes m0 or m1. Formally, an

encryption scheme # is secure against RS-attack if the

following equation is satisfied:

P½Chosen� Ciphertext Fails�
¼ Pr½R 21; ðE;DÞ #ð1kÞ; ðm0;m1Þ
 FR;DRðEÞ; b 0; 1f g; a ERðmbÞ :

AR;DR

1 ðE;m0;m1; aÞ ¼ b� � 0:5þ k�wð1Þ ð11Þ

Proof To see our scheme is secure against chosen

ciphertext attacks, we prove the above equation is satisfied.

Let Ak denotes the event that akb FðEÞ; for some a and

b. Let A = (F, A1) be an RS-adversary that succeeds with

probability 1
2
þ kðkÞ for some non-negligible function k(k).

The adversary A can make some oracle call of G(r1) or

HðGðr1ÞÞ: Let Lk denotes the event that A1 asked DG;H

some queries where a ¼ m� f�1ðr1Þ � Hðf�1ðr1ÞÞ; but A1

never asked its H-oracle for Hðf�1ðr1ÞÞ. Let n(k) denotes

the total number of oracle queries made. It is easy to see

that Pr½Lk� � nðkÞ2�k and Pr½A succeeds �LK \ �AK � ¼ 0:5

according to [39].

Thus Pr½A succeeds] ¼ Pr½Choosen� Cipher Attack

succeeds] ¼ 1
2
þ kðkÞ is bounded above by

922 Wireless Netw (2010) 16:915–927

123

Pr A succeeds LK½ �Pr Lk½ �
þ Pr A succeeds j�Lk \ Ak½ �Pr

�Lk \ Ak½ �
þ Pr A succeeds j�Lk \ �Ak½ �Pr

�Lk \ �Ak½ �

� n kð Þ2�k þ Pr Ak½ � þ
1

2
:

Therefore, our proposed scheme satisfies Eq. 11, and is

chosen-ciphertext-attack resistant.

In practice aspect, we evaluate the difficulties to brute

force our proposed scheme. To brute force our proposed

scheme, first the adversary need to spend time generating

all possible keys and test the result with every possible key.

We assume that the adversary can generate an encryption

key and test the result in one duty cycle, our proposed

scheme uses r-bit keys to encrypt data, and the adversary

uses a g G-Hz PC to brute force our propose scheme. To

completely test all possibilities by exhaustive search, the

adversary would need to spend

2rðcyclesÞ
g � 10; 000; 000 � 86400 � 365

years to compromise our scheme.

Assume the adversary uses a 4G-Hz PC to brute force

our scheme which uses a 64-bit encryption key, the

adversary needs to generate all 264 keys and uses these keys

to test the result. If we assume that the adversary can test

our encryption scheme within one duty cycle, the total

computation time to test all 264 keys is:

264=4G=86400=365 � 14; 624 years:

However, the adversary can use more PCs simultaneously

to compromise our algorithm. If the adversary uses

1,000,000 PCs running simultaneously to compromise

our scheme, the total computation time to test all

conditions is

264=4G=86400=365=1M � 0:01 years:

In this case, it takes about 3–4 days to compromise our

scheme which is unacceptably insecure. Table 3 lists esti-

mated time to brute force our proposed scheme with dif-

ferent key lengths. To maintain acceptable security while

using minimal key length, we suggest use 80-bit keys to

encrypt data as the adversaries need about 958 years to

compromise our scheme even if they use 1,000,000 PCs to

attack our scheme in parallel.

Moreover, using longer encryption keys can dramati-

cally increase difficulties to compromise our scheme as it

exponentially expend the key space which makes adver-

saries spend more time to brute force the proposed scheme.

Figure 7 illustrate the growth rate of key size (2r) and the

growth rate (g) of PCs.

Assume the adversary know sensor reading m and cor-

responding ciphertext

EiðmiÞ ¼ mi � gðKEK
i Þ � KEK

i KEK
i � KVK

i

�� ; the adver-

sary can therefore know gðKEK
i Þ � KEK

i and KEK
i � XVK

i :

Without knowing KVK
i in advance, the adversary cannot

compromiseKEK
i : Furthermore, since the encryption keys

will be arbitrarily changed, our scheme can hence resist

known-plaintext attacks. Even adversary can generate

designate data m to confuse sensor motes, still the adver-

sary cannot learn anything about the encryption keys.

Therefore, our scheme can resist know-ciphertext attacks

and chosen-ciphertext attacks.

One workload we have to pay is the number of com-

parisons it takes to verify encrypted-data from n motes. Our

proposed scheme can reduce the number of comparisons as

it has transitive property. The transitive property is

described as: Given Eh(mh), Ei(mi), and Ej(mj), if V(h,i) = 0

and V(i,j) = 0, then V(h,j) = 0. This is pretty simple to

prove. If V(h,i) = 0 and V(i,j) = 0, then mh = mi and

mi = mj It can therefore be easily seen that mh = mi = mj.

With this transitive property, if all readings are the

same, the minimum number comparisons for verifying data

from n sensor motes is n - 1. And, according to Fig. 6, the

maximum number comparisons for verifying data from n

Table 3 Estimated time (years) to brute force our proposed scheme with different key lengths

Key length One 4 GHz PC 10,000 4 GHz PCs 100,000 4 GHz PCs 1 M 4 GHz PCs

64 bits 14624 1.5 0.15 0.01

72 bits 374363 374.4 37.4 3.74

80 bits 958369660 95837 9583.7 958.37

88 bits 2.45E?11 24534263 2453426.3 245342.6

0

40

80

120

160

200

240

1 2 3 4 5 6 7 8 9 10

Key size

Number of PCs

Fig. 7 The growth rate of key size (2r) and the growth rate (g) of PCs

Wireless Netw (2010) 16:915–927 923

123

sensor motes is equal to the number of edges in a n-com-

plete graph which is
nðn�1Þ

2
: It is shown in Fig. 8 that our

computation bound is limited between O(n) and O(n2), and

this can be affordable for off-the-shelf sensor platforms.

In comparison with other schemes, our encryption

algorithm uses XOR and a hash function. Our encryption

algorithm is more lightweight. Our proposed encryption

algorithm changes its encryption key whenever there’s a

reading that needs to be transmitted. This makes our

scheme more feasible for wireless sensor networks.

Table 4 lists the differences between our scheme and other

schemes.

Key Compromise One major issue in our scheme is the

key compromise problem. As the aggregator stored KVK
i �

KVK
iþ1 Vi, once an encryption key KVK

i is been compromised,

all other encryption key Kj
VK 8j 6¼ i will be compromised.

Therefore, the aggregator must have stronger security

protection than sensor motes. One way to enhance the

hardware security strength in the aggregator is to install a

TPM (Trust Platform Module) chip inside the sensor mote,

and all paired encryption keys KVK
i � KVK

iþ1 Vi are stored

inside TPM. It can significantly reduce the possibility that

adversaries compromise the aggregators.

Data Size Variation Here we discuss the storage

requirement when the length of data is increased. When the

length of data is increased, the encryption key must be

increased correspondingly. Assume the length of data is

increased by l0, the length of key as well will increase l0

bits. As each sensor mote stores Ki
VK only, it requires more

l0 bits to store the encryption key. For the aggregator, as the

aggregator stores all paired encryption keys KVK
i � KVK

iþ1 Vi,

it requires more h � l0 bits where h is the number of sensor

motes in the cluster. It can be seen that when the length of

data is increased linearly, the storage requirement for

storing keys is also increased linearly.

Efficiency Here we discuss the efficiency caused from

our proposed scheme. Our proposed saves power by

eliminating redundant packets. Thus, the more packets are

eliminated, the more power can be saved. As we mentioned

earlier, the minimum number of comparisons is n-1 under

the condition that all these readings (when unencrypted)

are the same, amd the maximum number of comparisons is
nðn�1Þ

2
. For the best case, it reduces (n-1) packet transmis-

sions. For the worst case, it does not reduce any packet

transmission overhead. For average case, assume that there

totally n packets and m of them are the same, the number of

comparisons is ðm� 1Þ þ ðn� mÞðn� m� 1Þ=2: It redu-

ces n - m packets in average case. Table 5 lists the effi-

ciency comparisons for the best, average, and the worst

cases.

6 Conclusion and future directions

In this paper, we proposed a secure encrypted-data aggre-

gation scheme for wireless sensor networks. Our scheme

has the following enhancements: (1) the aggregator does

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

n(n-1)/2

n-1

Fig. 8 The number of comparisons for verifying n encrypted-data

Table 4 Performance evaluations compared with other schemes

Our proposed scheme Flooding-base scheme Privacy homomorphism-based scheme

Encryption Lightweight Heavyweight Heavyweight

Encryption key Easy to change,

and always changes

Only one encryption key,

and is hard to change

Only one encryption key,

and is hard to change

Decryption (in aggregator) No Yes Yes

Aggregated result Only one data Many redundant data Only one data

Table 5 Efficiency comparisons for the best, average, and the worst case

Best case Average case Worst case

Number of comparison n - 1 ðm� 1Þ þ ðn� mÞðn� m� 1Þ=2 nðn� 1Þ=2

Packet eliminated n - 1 n – m 0

924 Wireless Netw (2010) 16:915–927

123

not need to decrypt its received encrypted-data to verify if

these data are the same; no extra power are wasted in data

decryption, (2) the aggregator does not have decryption

keys and therefore cannot know anything about the data,

and (3) our proposed scheme uses random keys to encrypt

data; this property makes our scheme resilient to known-

plaintext attacks, chosen-plaintext attacks, ciphertext-only

attacks, and man-in-the-middle attacks. Moreover, com-

pared with conventional PH-based data aggregation

schemes, received data can be recovered and decrypted to

be further analyzed. Our proposed scheme provides secrecy

and privacy in the sense that each sensor mote randomly

generates a new encryption key each time providing

semantic security for data encryption phase proposed data

aggregation, and the intermediate aggregators cannot

decrypt these encrypted-data. Aiming at secrecy and pri-

vacy, our proposed scheme is resilient to several attacks in

sensor networks, and makes data aggregation more prac-

tical in these environments.

Our proposed scheme extends one-time pad to provide a

secure encrypted-data aggregation paradigm for wireless

sensor. Though it supports secrecy and privacy, our scheme

provides only equality check. More general mathematical

operations, such as addition, subtraction, and so on, should

be further investigated under the same condition: the

encryption keys are always changing and the aggregator

cannot decrypt data through it. Except these mathematical

operands, operands for strings, such as finding substring,

should also be provided.

Currently, our scheme is workable in a one-level clus-

tered network environment, i.e., the aggregator can one-

hop to the base station. However, in real deployment, it is

usually not the case. Our future work toward this problem

is to extend our scheme to multi-level cluster environment.

Another problem in our scheme is that our experimental

sensor motes must be fixed to a cluster and can no longer

be moved to another cluster. We will also address this issue

in our future work.

For key management, our proposed scheme pre-installs

keys for verification and data aggregation in the aggregator

before deployment. This limits the flexibility of system

deployment and aggregation. In future work, we expect to

modify our key management method so that these keys will

not be stored in aggregators in advance but will be

exchanged and retrieved when necessary. We also look

forward to extending privacy homomorphism functions to

support dynamic key management to bring more flexibility

in data aggregation.

Our protocol uses only XOR operations and an irre-

versible hash function to encrypt data. The security

strength is not as strong as block cipher encryption algo-

rithms, such as AES, DES, etc. We also expect to extend

our scheme to adopt block-cipher encryption algorithms to

provide higher security strength for aggregation.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E.

(2002). A survey on sensor networks. IEEE Communications
Magazine, 40, 102–114. doi:10.1109/MCOM.2002.1024422.

2. Acharya, M., & Girao, J. (2005). Secure comparison of encrypted

data in wireless sensor networks. In 3rd international symposium
on modeling and optimization in mobile, ad hoc, and wireless
networks (pp. 47–53).

3. Al-Karaki, J., Ul-Mustafa, R., & Kamal, A. (2004). Data aggre-

gation in wireless sensor networks—exact and approximate

algorithms. In proceedings of the workshop on high performance
switching and routing (pp. 241–245).

4. Atonishi, T., & Matsuda, T. (2006). Impact of aggregation effi-

ciency on GIT routing for wireless sensor networks. In pro-
ceedings of IEEE international conference oon parallel
processing workshops.

5. Buttyan, L., Shaffer, P., & Vajda, I. N. (2006). Resilient aggre-

gation with attack detection in sensor networks. In proceedings of
the fourth annual IEEE international conference on pervasive
computing and communications workshops (p. 332).

6. Cam, H., Ozdemir, S., Nair, P., Muthuavinashinappan, D., &

Ozgur Sanli, H. (2006). ESPDA: Energy-efficient secure pattern

based data aggregation for wireless sensor networks. Computer
Communication, 29, 446–455.

7. Chen, Y., Liestman, A., & Liu, J. (2006). A hierachical energy-

efficient framework for data aggregation in wireless sensor net-

works. IEEE Transactions on Vehicular Technology, 55, 789–

796. doi:10.1109/TVT.2006.873841.

8. Choi, J., Lee, J., Lee, K., Choi, S., Kwon, W., & Park, H. (2006).

Aggregation time control algorithm for time constrained data

delivery in wireless sensor networks. In proceedings of vehicu-
lare technology (pp. 563–567).

9. Considine, J., Li, F., Kollios, G., & Byers, J. (2004). Approximate

aggregation techniques for sensor databases. In proceedings of
IEEE conference on data engineering (p. 449).

10. Gatani, L., Lo Re, G., & Ortolani, M. (2006). Robust and efficient

data gathering for wireless sensor networks. In proceedings of the
39th Hawaii international conference on system sciences (p. 235).

11. Girao, J., Westhoff, D., & Schneider, M. (2005). CDA: Con-

cealed data aggregation for reverse multicast traffic in wireless

sensor networks. In proceedings of 40th international conference
on communications (pp. 3044–3049).

12. Girao, J., Westhoff, D., & Scheneider, M. (2004).Concealed data

aggregation in wireless sensor networks. In proceedings of ACM
WiSe conference.

13. Hu, L., & Evans, D. (2003). Secure aggregation for wireless

networks. In proceedings of applications and internet workshops
(pp. 27–31).

14. Wagner, D. (2004). Resilient aggregation in sensor networks. In
proceedings of the 2nd ACM workshop on security of ad hoc and
sensor networks (pp. 78–87).

15. Westhoff, D., Girao, J., & Acharya, M. (2006).Concealed data

aggregation for reverse multicast traffic in sensor networks:

Encryption, key distribution and routing adaptation. In proceed-
ings of IEEE transactions on mobile computing (pp. 1417–1431).

16. Wu, K., Dreef, D., Sun, B., & Xiao, Y. (2006). Secure data

aggregation without persistent cryptographic operations in

Wireless Netw (2010) 16:915–927 925

123

http://dx.doi.org/10.1109/MCOM.2002.1024422
http://dx.doi.org/10.1109/TVT.2006.873841

wireless sensor networks. In proceedings of performance, com-
puting, and communications conference (p. 6).

17. Intanagonwiwat, C., Govindan, R., Estrin, D., & Heidemann, J.

(2003). Directed diffusion for wireless sensor networking. In
IEEE/ACM transactions on networking (pp. 2–16).

18. Jiang, H., & Jin, S. (2006). Scalable and robust aggregation

techniques for extracting statistical information in sensor net-

works. In proceedings of the 26th IEEE international conference
on distributed computing systems (p. 69).

19. Krishnamachari, L., Estrin, D., & Wicker, S. (2002). The impact

of data aggregation in wireless sensor networks. In proceedings of
distributed computing systems workshops.

20. Li, H., Yu, H., & Liu, A. (2006). A tree based data collection

scheme for wireless sensor network. In proceedings of the IEEE
international conference of networking (p. 119).

21. Raina, M., Ghosh, S., Patro, R., Viswanath, G., & Chadrashekhar,

T. (2006). Secure data aggregation using commitment schemes

and quasi commutative functions. In proceedings of 1st interna-
tional symposium on wireless pervasive computing (pp. 16–18).

22. Shin, S., Lee, J., Baek, J., & Seo, D. (2006). Reliable data

aggregation protocol for ad-hoc sensor network environments. In
proceedings of the 8th international conference on advanced
technology.

23. Shrivastava, N., Buragohain, C., Agrawal, D., & Suri, S. (2004).

Medians and beyond: New aggregation techniques for sensor

networks. In proceedings of the 2nd international conferece on
embedded networked sensor systems (pp. 239–249).

24. Li, Z., Li, K., Wen, C., & Soh, Y.(2003). A new chaotic secure

communication system. In proceedings of IEEE transactions on
communications (pp. 1306–1312).

25. Li, T., Wu, Y., & Zhu, H. (2006). An efficient scheme for

encrypted data aggregation on sensor networks. In proceedings of
vehicular technology conference (pp. 831–835).

26. Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W.

(2002). TAG: A tiny aggregation service for ad-hoc sensor net-

works. In proceedings of 5th symposium on operating systems
design and implementation.

27. Mahimkar, A., & Rappaport, T. (2004). SecureDAV: A secure

data aggregation and verfication protocol for sensor networks. In
proceedings of global communication.

28. Misra, R., & Mandal, C. (2006). Ant-aggregation: Ant colony

algorithm for optimal data aggregation in wireless sensor net-

works. In proceedings of international conference on wireless
and optical communication networks (p. 5).

29. Moussaoui, O., Ksentini, A., Naimi, M., & Gueroui, M. (2006).

Efficient energy saving in wireless sensor networks through

hierarchical-based clustering. In proceedings of the seventh IEEE
international symposium on computer networks.

30. Przydatek, B., Song, D., & Perrig, A. (2003). SIA: Secure

information aggregation in sensor networks. In proceedings of
ACM SenSys conference (pp. 255–265).

31. Chandramouli, R., Bapatla, S., & Subbalakshmi, K. P. (2006).

Battery power-aware encryption. In proceedings of ACM trans-
actions on information and system security (pp. 162–180).

32. Bao, F. (2003). Cryptoanalysis of a provable secure additive and

Multiplicative Privacy Homomorphism. In proceedings of the
international workshop on coding and cryptography (pp. 43–50).

33. Benaloh, J. (1986). Secret sharing homomorphisms: Keeping

shares of a secret sharing. In Advances in Cryptology—CRYPTO
(pp. 251–260).

34. Cramer, R., Damgard, I., & Nielsen, J. B. (2001). Multiparty

computation from threshold homomorphic encryption. In
advances in cryptology—EUROCRYPT (pp. 280–299).

35. Domingo-Ferrer, J. (2002). A provably secure additive and

multiplicative privacy homomorphism. In proceedings of infor-
mation security conference (pp. 471–483).

36. Perrig, A., & Tygar, J. D. (2002). Secure boradcast communi-
cation in wired and wireless networkss. Dordrecht: Kluwer

Academic Publisher.

37. Schneider, M., & Felten, E. (2000). Efficient commerce protocols

based on one-time pads. In proceedings of 16th annual computer
security applications conference (p. 317).

38. Canetti, R., Goldreich, O., & Halevi, S. (1998). The random

oracle methodology, revisited. In proceedings of the 30th annual
ACM symposium on the theory of computing (pp. 209–218).

39. Bellare, M., & Rogaway, P. (1993). Random oracles are practical:

a paradigm for designing efficient protocols. In proceedings of 1st
conferendce on computer and communications security (pp. 62–

73).

40. Rackoff, C., & Simon, D. (1991). Non-interactive zero-knowl-

edge proof of knowledge and chosen ciphertext attack. In pro-
ceedings of advances in cryptology.

Author Biographies

Shih-I Huang received B.S. and

M.S. degrees in Applied Math-

ematics from National Sun-Yat

Sen University, and he’s work-

ing toward his Ph.D. in EECS in

National Chiao Tung Univer-

sity. He’s also currently a R&D

engineer and project leader in

Industrial Technology Research

Institute in Taiwan. His research

interests include network secu-

rity, information security, wire-

less sensor network, data

protection, and data privacy.

Shiuhpyng Shieh received the

M.S. and Ph.D. degrees in Elec-

trical and Computer Engineering

from the University of Maryland,

College Park, respectively. He is

a professor of the Department of

Computer Science, National

Chiao Tung University (NCTU),

and the Director of Taiwan

Information Security Center at

NCTU. He served in the past as

the Computer Science Depart-

ment Chair of NCTU, Director of

GSN-CERT/CC, Advisor to

National Information and Communication Security Task Force, and

Advisor to National Security Bureau. Dr. Shieh currently serves as the

Chair of IEEE Reliability Society Taipei and Tainan Chapter, and a

steering committee member of ACM SIGSAC. He is also an associate

editor of IEEE Transactions on Dependable and Secure Computing,

IEEE Transactions on Reliability, ACM Transactions on Information

and System Security, Journal of Computer Security, former editor of

Journal of Information Science and Engineering, and guest editor of

IEEE Internet Computing, respectively. He was the former President of

Chinese Cryptology and Information Security Association (CCISA),

the largest non-profit academic organization for security research. He

was on the organizing committees of numerous conferences, such as

Steering Committee Chair of ACM Symposium on Information,

Computer and Communications Security. Dr. Shieh has published over

a hundred academic articles, including papers, patents, and books.

926 Wireless Netw (2010) 16:915–927

123

Recently he received ACM Award for his contribution to ACM, and

Distinguished Information Technology Award for his contribution to

computer security research. His research interest includes network and

system security, wireless security, and cryptography.

J. D. Tygar is Professor of

Computer Science at UC

Berkeley and also a Professor of

Information Management at UC

Berkeley. He works in the areas

of computer security, privacy,

and electronic commerce. His

current research includes pri-

vacy, security issues in sensor

webs, digital rights manage-

ment, and usable computer

security. His awards include a

National Science Foundation

Presidential Young Investigator

Award, an Okawa Foundation

Fellowship, a teaching award

from Carnegie Mellon, and invited keynote addresses at PODC,

PODS, VLDB, and many other conferences. Doug Tygar has written

three books; his book Secure Broadcast Communication in Wired and
Wireless Networks (with Adrian Perrig) is a standard reference and

has been translated to Japanese. He designed cryptographic postage

standards for the US Postal Service and has helped build a number of

security and electronic commerce systems including: Strongbox,

Dyad, Netbill, and Micro-Tesla. He served as chair of the Defense

Department’s ISAT Study Group on Security with Privacy, and was a

founding board member of ACM’s Special Interest Group on Elec-

tronic Commerce. He helped create and remains an active member of

TRUST (Team for Research in Ubiquitous Security Technologies).

TRUST is a new National Science Foundation Science and Tech-

nology Center with headquarters at UC Berkeley and involving fac-

ulty from Berkeley, Carnegie Mellon, Cornell, Stanford, and

Vanderbilt. Before coming to UC Berkeley, Dr. Tygar was tenured

faculty at Carnegie Mellon’s Computer Science Department, where

he continues to hold an Adjunct Professor position. He received his

doctorate from Harvard and his undergraduate degree from Berkeley.

Wireless Netw (2010) 16:915–927 927

123

	Secure encrypted-data aggregation for wireless sensor networks
	Abstract
	Introduction
	Related work
	Problem statement and proposed data aggregation
	Proposed data aggregation method
	Architecture
	System setup
	Proposed scheme

	Threat models
	Known-plaintext attacks
	Chosen-plaintext attacks
	Man-in-the-middle attacks

	Security analysis and performance evaluation
	Preliminaries
	Known-plaintext security
	Chosen-plaintext security
	Chosen-ciphertext security

	Conclusion and future directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

