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Smart camera networks have recently emerged as a new class of sensor network infrastructure that is
capable of supporting high-power in-network signal processing and enabling a wide range of applications.
In this article, we provide an exposition of our efforts to build a low-bandwidth wireless camera network
platform, called CITRIC, and its applications in smart camera networks. The platform integrates a camera,
a microphone, a frequency-scalable (up to 624 MHz) CPU, 16 MB FLASH, and 64 MB RAM onto a single
device. The device then connects with a standard sensor network mote to form a wireless camera mote.
With reasonably low power consumption and extensive algorithmic libraries running on a decent operating
system that is easy to program, CITRIC is ideal for research and applications in distributed image and
video processing. Its capabilities of in-network image processing also reduce communication requirements,
which has been high in other existing camera networks with centralized processing. Furthermore, the mote
easily integrates with other low-bandwidth sensor networks via the IEEE 802.15.4 protocol. To justify the
utility of CITRIC, we present several representative applications. In particular, concrete research results
will be demonstrated in two areas, namely, distributed coverage hole identification and distributed object
recognition.
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1. INTRODUCTION

Traditionally, research in wireless sensor networks has been focused on low-bandwidth
sensors, for example, acoustic, infrared, and temperature, which limit the ability to
identify complex, high-level physical phenomena. This limitation can be effectively
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Fig. 1. An example of a wireless camera network architecture.

addressed by integrating high-bandwidth sensors such as camera sensors. Recently,
smart camera networks have emerged as a new class of sensor network infrastructure
that is capable of supporting high-power in-network signal processing and enabling a
wide range of applications, such as visual verification, object recognition, and tracking.

Figure 1 shows a typical network configuration for a surveillance system based on
a camera network. The camera motes are networked with each other and possibly
with other types of motes over standard wireless protocols, such as IEEE 802.15.4 and
Bluetooth. Some motes also communicate with gateway computers that are connected
to the Internet. The motes would first perform preprocessing functions on images cap-
tured from the camera sensors and then send the results over the network to a central
server, which routes the information to various clients for further processing and visu-
alization. The server itself may also provide some centralized processing and logging of
data. This architecture allows various clients to interact with different subsets of the
motes and supports different high-level applications.

In this article, we provide a comprehensive review of our efforts to design a wireless
camera sensor platform, called CITRIC [Chen et al. 2008]. The platform is a wireless
camera mote with a 1.3 megapixel camera, a PDA class processor, 64 MB RAM, and
16 MB FLASH. Given the existing technology constraints, our design has to make
appropriate performance and usability trade-offs for emerging smart camera network
applications. These trade-offs include computational power, power consumption, ease
of programming, and ease of integrating with existing wireless sensor networks. The
CITRIC platform enables a new set of in-network information processing techniques
and also provides a suitable infrastructure to support the development of high-level
applications in the areas of sensor networks and computer vision.

The CITRIC platform has been successfully deployed as a basic camera sensor infras-
tructure in several smart camera applications. Examples include recovery of camera
network topology [Lobaton et al. 2009, 2010], distributed object recognition [Yang et al.
2009; Naikal et al. 2010], cooperative event detection and tracking [Wang et al. 2009,
2010], and traffic modeling and prediction [Shuai et al. 2010]. In the second part of
the article, we review these representative applications to validate our choice of per-
formance and usability trade-offs for the CITRIC platform. The reader is referred to
the respective works for the implementation detail.

2. SMART CAMERA PLATFORMS: AN OVERVIEW

In the literature, the design of many existing camera motes consist of a camera-and-
processor board and a networking mote, similar to the design of the CITRIC platform.
Before we discuss the architecture of CITRIC in the next section, we first compare
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notable existing platforms in the literature. The comparison also justifies the need for
a new smart camera platform such as CITRIC for the applications we are interested
in. A good treatment on the baseline computation requirements for in-network image
processing can be found in Downes et al. [2006]. More detailed reviews of existing
camera sensor platforms can be also found [Akyildiz et al. 2008; Rinner et al. 2008].

Some platforms in the past focused on streaming video to a centralized server for
processing, such as eCAM [Park and Chou 2006], a small wearable camera platform
consisting of an image compression module (no programmable CPU) and a networking
node.

One of the earliest camera motes with significant on-board processing is Panoptes
[Feng et al. 2005]. The latest version of the Panoptes platform consists of a Stargate
gateway mote, an 802.11b PCMCIA wireless card, and a USB camera. Panoptes
targets applications where one would selectively stream video to conserve bandwidth.
The use of commercial devices in Panoptes, instead of a tightly integrated design,
imposes extra limitations. Most notably, the frame rate of the camera is limited by
the USB bus speed, which forces the USB camera to compress the image and the
Stargate processor to decompress the image to perform processing, thus consuming
extra computation and power.

On the other hand, the Cyclops [Rahimi et al. 2005], WiSN [Downes et al. 2006],
and WiCa [Kleihorst et al. 2007] platforms have much tighter camera and on-board
processor integration. Cyclops was designed for low-power operation and connects a
complex programmable logic device (CPLD) directly to the camera for basic image
processing, such as background subtraction and frame differencing. However, the 8-
bit, 7.3 MHz low-power CPU and 64 KB RAM limits the computation capability for
supporting higher-level computer-vision algorithms. WiSN uses a more powerful 32-
bit, 48 MHz CPU and also 64 KB RAM, but the processor is shared between networking
and image processing processes. Similar to Cyclops, the second generation WiCa mote
speeds up low-level image processing using an 84-MHz Xetal-II SIMD processor, which
has a linear processor array of 320 parallel processing elements and a 16-bit global
control processor for higher-level sequential processing. It uses a separate 8051 MCU
and ZigBee module for networking [Kleihorst 2008].

The platform most similar to CITRIC is a prototype platform used by Teixeira et al.
[2006], which consists of an iMote2 [Memsic 2008] connected to a custom-built camera
sensor board. The platform consists of an XScale CPU running at a slightly lower clock
speed, 32 MB RAM, 32 MB FLASH, and an OmniVision camera. Unlike the CITRIC
mote, the networking and image processing functions are both performed on the XScale
processor, and the platform does not have a built-in microphone. The separation of the
image processing unit from the networking unit in the CITRIC mote allows for easy
development and testing of various image processing and computer vision algorithms.

Developed after iMote2 prototype camera mote and CITRIC, DSPcam [Kandhalu
et al. 2009] is another surveillance-oriented camera sensor system. DSPcam uses a
similar camera sensor from OmniVision as iMote2 and CITRIC but uses a different
processor (BF537) and has a smaller memory size. On the other hand, the platform
integrates a WiPort communication module that supports a faster 802.11 b/g protocol.
The software system is built on the uClinux OS and an open-source image processing
library.

Finally, multi-tiered camera networks have also been proposed to use low-cost, low-
power, and low-resolution camera motes to wake up higher-grade cameras to capture
and process interesting images. One such notable multi-tier camera network system is
SensEye [Kulkarni et al. 2005], which consists of three tiers of cameras.

Table I summarizes the key hardware specifications of these smart camera systems.
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Table I. Comparison of Existing Wireless Camera Mote Platforms with the CITRIC

Platform Processor RAM/ROM Camera Wireless

eCAM OV528 Serial Bridge — COMedia C328-7640 Eco node
(JPEG OV7640 camera nRF24E1 radio

Compression only) (640 × 480 @ 30 fps) (1 Mb/s, 10 m)
Panoptes Intel XScale PXA255 64/32 MB Logitech 3000 USB 802.11 PCMCIA

(400 MHz, 32-bit CPU) (640 × 480 @ ≈ 13 fps) (11 Mb/s
(160 × 120 @ ≈ 30 fps) for 802.11b)

Cyclops Atmel ATmega128L 64/512 KB ADCM-1700 Mica2 mote
(7.3728 MHz, 8-bit CPU) (352 × 288 @ 10 fps) TR1000 radio

Xilinx XC2C256 (40 kbps)
(16 MHz CPLD)

WiSN Atmel AT91SAM7S 64/256 KB ADCM-1670 CC2420 radio
(48 MHz, 32-bit (352 × 288 @ 15 fps) (802.15.4,

ARM7TDMI CPU) ADNS-3060 250 kbps)
(30 × 30 @ 100 fps)

WiCa Xetal-II 1.75 MB/- Philips Aquis Grain ZigBee
(84 MHz, (640 × 480 @ 30 fps) CC2420 radio

320 PE LPA + GCP) (802.15.4, 250 kbps)
iMote2 Intel XScale PXA271 32/32 MB OV7649 CC2420 radio
+Cam (up to 416 MHz, (640 × 480 @ 30 fps) (802.15.4, 250 kbps)

32-bit CPU) (320 × 240 @ 60 fps)
DSPcam Blackfin BF537 32/4 MB OV9653 WiPort

(600 MHz) (1280 × 1024 @ 15 fps) (802.11 b/g)
(640 × 480 @ 30 fps)

CITRIC Intel XScale PXA270 64/16 MB OV9655 TelosB mote
(up to 624 MHz, (1280 × 1024 @ 15 fps) CC2420 radio

32-bit CPU) (640 × 480 @ 30 fps) (802.15.4, 250 kbps)

Fig. 2. CITRIC mote. (a) Assembled camera daughter board with TelosB. (b) Camera daughter board with
major functional units outlined.

3. CITRIC SMART CAMERA PLATFORM

3.1. Architecture

The CITRIC platform consists of a camera daughter board connected to a TelosB
board [Polastre et al. 2005] (see Figure 2(a)), which uses a Texas Instruments MSP430
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Fig. 3. Block diagram of major components of the CITRIC camera daughter board.

microcontroller and Chipcon CC2420 IEEE 802.15.4-compliant radio, both selected for
low-power operation.

The camera daughter board (see Figure 3) is comprised of a 4.6 cm×5.8 cm processor
board and a detachable image sensor board (see Figure 2(b)). The design of the camera
board uses a small number of functional blocks to minimize size, power consumption,
and manufacturing cost.

The two main choices for the onboard processor are field-programmable gate arrays
(FPGAs) and general-purpose processors running embedded Linux. Although FPGAs
have advantages in terms of speed and low-power consumption, the user would need
to program in a hardware description language, making algorithm implementation
and debugging a time-consuming process. On the other hand, many well-known image
processing and computer vision algorithms have been efficiently coded in C/C++, such
as the OpenCV library [Bradski et al. 2005]. Therefore, we chose to use a general-
purpose processor running embedded Linux (as opposed to TinyOS) for the camera
board for rapid prototyping and ease of programming and maintenance.

In the following, we discuss our choice of imaging and microphone sensors, mobile
processor, power management, and wireless networking modules for the CITRIC
architecture. More extensive justification for choosing these modules is given in Chen
et al. [2008].

3.2. Imaging and Microphone Sensors

The camera for the CITRIC platform is the OmniVision OV9655, a low-voltage SXGA
(1.3 megapixel) CMOS image sensor that offers the full functionality of a camera and
image processor on a single chip. It supports image sizes SXGA (1280×1024), VGA, CIF,
and any size scaling down from CIF to 40 × 30, and provides 8-bit/10-bit images. The
image array is capable of operating at up to 30 frames per second (fps) in VGA, CIF, and
lower resolutions, and 15 fps in SXGA. The OV9655 is designed to perform well in low-
light conditions [Omnivision Technologies Incorporated 2006]. The typical active power
consumption is 90 mW (15 fps @SXGA) and the standby current is less than 20 μA.
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In order to run high-bandwidth, multimodal sensing algorithms that utilize both
audio and video sensor outputs, it is important to include a microphone on the camera
daughter board rather than use a microphone attached to the TelosB wireless mote.
This simplifies the operation of the entire system by dedicating the communication
between the TelosB and the camera daughter board to data that needed to be trans-
mitted over the wireless network. The microphone on the board is connected to the
Wolfson WM8950 mono audio ADC [Wolfson Micro PLC 2008], which is designed for
portable applications. The WM8950 features high-quality audio (at sample rates from
8 to 48 ks/s) with low-power consumption (10 mA all-on 48 ks/s mode) and integrates a
microphone preamplifier to reduce the number of external components.

3.3. Processor and Memory

The PXA270 [Marvell Corporation 2010] is a fixed-point processor with a maximum
speed of 624 MHz, 256 KB of internal SRAM, and a wireless MMX coprocessor to ac-
celerate multimedia operations. The processor is voltage and frequency scalable for
low-power operation, with a minimum voltage and frequency of 0.85 V and 13 MHz, re-
spectively. Furthermore, the PXA270 features the Intel Quick Capture Interface, which
eliminates the need for external preprocessors to connect the processor to the camera
sensor. Finally, we chose the PXA270 because of its maturity and the popularity of its
software and development tools. The current CITRIC platform supports CPU speeds
of 208, 312, 416, and 520 MHz, which can be set in a program by sending specific bit
sequences to an I/O memory address.

The PXA270 is connected to 64 MB of 1.8 V Qimonda Mobile SDRAM and 16 MB of
1.8 V Intel NOR FLASH. The SDRAM is for storing image frames during processing,
and the FLASH is for storing code. 64 MB of SDRAM is more than sufficient for storing
2 frames at 1.3 megapixel resolution (3 Bytes/pixel×1.3 megapixel×2 frames = 8 MB),
the minimal requirement for background subtraction. 64 MB is also the largest size
of the single data rate (SDR) mobile SDRAM components natively supported by the
PXA270 currently available on the market. As for the FLASH, the code size for most
computer vision algorithms falls well under 16 MB.

3.4. Power Management

The camera daughter board uses the NXP PCF50606, a power management IC for the
XScale application processors, to manage the power supply and put the system into
sleep mode. When compared to an equivalent solution with multiple discrete compo-
nents, the PCF50606 significantly reduces the system cost and size [NXP Semiconduc-
tor 2003]. The entire camera mote, including the TelosB, is designed to be powered by
either four AA batteries, a USB cable, or a 5 V DC power adapter cable.

3.5. Wireless Communications

Sensor data in a CITRIC system are designed to flow from the motes to a gateway
over the IEEE 802.15.4 protocol, then from the gateway over an Internet back-end to a
centralized server, and finally from the server to the client(s). The maximum data rate
of 802.15.4 is 250 kbps per frequency channel (16 channels available in the 2.4 GHz
band), far too low for a camera mote to stream images back to the server at a high
enough quality and frame rate for real-time applications. A key tenet of the design is to
push computing out to the edge of the network and only send post-processed data (for
instance, low-dimensional features from an image) in real-time back to the centralized
server and clients for further processing. If an event of interest occurs in the network,
we can then send a query for the relevant image sequence to be compressed and sent
back to the server over a slightly longer period of time. Since we are using commercial
off-the-shelf motes running TinyOS/NesC, we can easily substitute different standard
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routing protocols to suit an application’s particular needs. For instance, the real-time
requirements of surveillance imply that typical communication does not need to run
over a reliable transport protocol.

4. PERFORMANCE BENCHMARKS

4.1. Energy Consumption

The power consumption of the camera mote is determined by logging the current and
voltage of the device when it is connected to four AA batteries (outputting ≈ 6 V). A
Tektronix AM 503B Current Probe Amplifier is used to convert current to voltage1,
and a National Instruments 9215 USB data logger is used to log both the voltage of
the batteries and the voltage of the current probe.

First, we measure the power consumption of the camera daughter board alone run-
ning Linux but with no active processes (Idle). We then take the same measurement
but with the Tmote attached, although no data is sent to the Tmote (Idle + Tmote). In
this test, the Tmote is running an application that waits to receive any packets from the
camera board and transmits over the radio. On average, Idle consumes 428–478 mW,
and Idle + Tmote consumes 527–594 mW, depending on the processor speed.

We also measure the power consumption of the mote running a typical background
subtraction function. The test utilizes all the components of the mote by both running
the CPU and using the Tmote to transmit the image coordinates of the foreground. At
the processor speed 520 MHz, the power consumption is 970 mW. Note that the power
consumption may be reduced by enabling power management on the Tmote. Using four
fully charged AA batteries each with a capacity of 2870 mAh, the average life span of
the CITRIC mote continuously running background subtraction ranges from 5.7 hours
at 520 MHz to 7.5 hours at 208 MHz.2

4.2. CPU Speed Benchmarks

The speed benchmarks for the camera board are chosen to reflect typical image process-
ing computations. We compare the benchmarks with and without the Intel Integrated
Performance Primitives (IPP) library to evaluate whether IPP provides a significant
performance increase.

(1) The Add benchmark adds two arrays.
(2) The Background Subtraction benchmark computes the difference of two arrays

and then compares the result against a constant threshold to get a boolean array
(mask).

(3) The Median Filter benchmark performs smoothing by taking the median pixel value
of a 3 × 3 pixel area at each pixel.

(4) The Canny benchmark implements the first stage of the Canny edge detection
algorithm.

The benchmark results for Add and Background Subtraction are averaged over 1,000
trials, while those for Median Filter and Canny are averaged over 100 trials.

Two sets of benchmarks are performed. Figure 4 shows the average runtime for each
function when the processor speed varies from 208 MHz to 520 MHz, while the image
resolution is fixed at 512 × 512. Figure 5 shows the average runtime in the logarithmic
scale when the image resolution varies from 512×512 to 64×64, while the CPU speed
is fixed at 520 MHz.

1The current probe device converts current to voltage through the use of inductance.
2In comparison, the battery life of a completely idle CITRIC lasts approximately 20 hours.
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Fig. 4. Average runtime of basic image processing functions on 512 × 512 images. The fastest run time at
520 MHz is shown in parentheses.

Fig. 5. Average runtime (in log scale) of basic image processing functions on various image resolutions. The
speed of the CPU is fixed at 520 MHz. The fastest runtime (on 64 × 64 images) is shown in parentheses.

First, note that the IPP versions of the functions are not necessarily always faster
than their non-IPP counterparts. For example, the Background Subtraction benchmark
consists of an arithmetic operation and a comparison. Implemented in IPP, this requires
two function calls and thus two iterations through the entire array. But implemented
without IPP, we can perform both operations in the same iteration through the array,
resulting in only one iteration and fewer memory accesses. Such non-IPP optimizations
should be taken into consideration when building future applications in order to achieve
optimal performance.

Second, the nonlinear performance curve for different CPU frequencies in Figure 4
can be attributed to the constant speed of memory access (the bus speed is 208 MHz
regardless of the processor speed).

Finally, in Figure 5, we can see that the change in the average runtime of each
image processing function with respect to different image resolutions largely depends
on the complexity of the algorithm. For simple calculations such as image addition
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and background subtraction, the computational complexity (and hence the average
runtime) grows proportionally to the total number of pixels in the image. For more ex-
pensive algorithms, such as median filter and edge detector, reducing the image resolu-
tion can still significantly improve the real-time performance. For example, the fastest
runtime to execute Canny edge detector on a 64 × 64 downsampled image is 5.2 ms.

4.3. Multihop Route Communication Performance

Although the CITRIC mote is designed for camera sensor networks that mainly per-
form in-network processing and consume very little communication bandwidth, some
applications occasionally may transmit bursts of images over wireless channels using
multihop routing. This bursty, heavy traffic may result in congestion and unpredictable
behavior. In this experiment, we study the end-to-end performance of communicating
over a multihop route with a complete communication stack that includes the popular
WSN routing protocol, collection tree protocol (CTP) [Gnawali et al. 2009], under
bursty, heavy traffic loads [Hong et al. 2009]. CTP is a tree-based, address-free, multi-
hop routing protocol implemented in TinyOS. We choose to evaluate the communication
overhead introduced by CTP because of its widespread use in WSNs and because its
source code is readily available. The following experiments are meant to help practi-
tioners find the optimal network configurations for different application scenarios.

In order to study the behavior of the network with a fixed number of hops, we first
need to modify the routing engine of CTP such that the path from a source CITRIC mote
to the gateway is fixed. As such, we are not studying routing instability (the routing
algorithm changing paths). Along the path, a line of TelosB motes relays images from
the source to the gateway. Each node is placed within the interference range of all
the other nodes to test the performance of CTP under the worst network congestion
conditions. The image data to be transmitted from the source node is 60 kByte, which
is equivalent to the file size of a typical 640 × 480 JPEG color image that captures a
natural scene.

We conduct two experiments to measure the throughput, end-to-end packet delivery
ratio, and latency under different packet payload sizes and packet generation rates.
Here, the packet generation period (1/rate) is the time the source CITRIC mote waits
between sending successive packets containing the parts of an image. Each experiment
include trials for 3-, 5-, 7-, 9-, and 11-hop topologies.

In the first experiment, we measure the network performance under 25-, 50-, 75-,
and 100-byte packet payloads.3 The results are shown in Figure 6.

As expected, the throughput and end-to-end packet delivery ratio decreases with
increasing hop counts because of increased self-interference. In addition, experiments
with a payload size of 100 bytes shows slightly lower throughput than the other smaller
payload sizes when the number of hops increases. This is because a larger payload will
take longer to transmit and have a higher chance of collision with other packets (CTP
runs on a CSMA MAC layer).

In the second experiment, we measure network performance when the packet gener-
ation period is 0,4 40, 80, 120, and 160 ms. Packet generation intervals over 160 ms are
not tested because we rarely observe retransmissions at 160 ms intervals. The results
are shown in Figure 7.

Note that using a packet generation period of 0 may not necessarily yield the best
throughput and packet delivery ratio in a multihop network. For instance, a packet
generation period of 40 ms performs better than other packet generation periods in

3The maximum packet size of an IEEE 802.15.4 packet is 127 bytes, and each packet has a header of 25 bytes
consisting of the CTP, IEEE 802.15.4, and CITRIC mote specific header fields.
4There are always packets ready for transmission when the package generation period is 0.
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Fig. 6. Network performance with different payload sizes while using the maximum packet generation rate
(0 ms delay between generating/sending successive packets at the source).

many of the experiment runs. Also, the throughput and packet delivery ratio for
different packet generation periods start to drop at different hop counts. This shows
that the packet generation period can be optimized based on the network density.

5. DISTRIBUTED COVERAGE HOLE IDENTIFICATION

In the next two sections, we present two applications of CITRIC camera networks
which demonstrate the utility of the computation and communication capabilities of
these systems. The first application is recovering the coverage of a distributed camera
network, which is defined as the set of locations in the physical space in which an
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Fig. 7. Network performance with different packet generation periods while using a 100-byte packet payload
(0 ms means no delay between generating/sending successive packets at the source).

agent is visible by at least one of the cameras. Extracting topological information (e.g.,
number of holes) about this coverage can enable surveillance and optimal message
routing in the network without the need for calibration of the cameras. Holes in the
coverage may be caused by lack of coverage or object occlusion in the scene. Identifying
holes in a camera network helps us determine where new sensors need to be placed,
and it also helps extract geometric information about the environment, such as the
existence of circular corridors, without relying on exact localization. These two features
are essential for ad hoc camera networks.

Recovering network coverage and topology from sensor data has been a classical
problem in sensor networks. Many prior works [Meguerdichian et al. 2001; de Silva and
Ghrist 2007] have focused on estimating the static communication graph of a sensor
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Fig. 8. A graphical representation of the CN-Complex, built using CITRIC camera network in Figure 9.
(a) The physical layout with a sample path for the target. (b) The CN-Complex where the mapping of
the path is determined by specifying the sequence of cameras for which the target is visible. Each vertex
represents a single decomposed region; edges correspond to the pairwise intersection between regions;
triangles correspond to the three-way intersections, etc. Coordinates for the vertices are assigned arbitrarily
and are irrelevant in the identification of holes using the homology of the complex.

network. In this approach, each sensor node would be assumed to occupy a radially
symmetric broadcast region and a symmetric sensing region. However, for camera
sensor networks, it is more relevant to consider recovering the visual coverage of
the network because the common field of view of a camera sensor is not radially
symmetrical and is susceptible to various image nuisances (e.g., occlusion and false
detection). For example, computing the camera adjacency graph (CAG) has been
the topic of several recent studies which are based on either structure-from-motion
techniques [Cheng et al. 2007; Turcot and Lowe 2009] or object tracking algorithms
[Khan and Shah 2003; Rahimi et al. 2004; Calderara et al. 2005]. One of the main con-
straints of the CAG approach is that due to the computational complexity of extracting
and matching robust image features across multiple images, the algorithm/system
typically requires considerable power and communication bandwidth, and therefore is
implemented in a centralized fashion.

5.1. A Topological Approach

Our objective of distributed coverage hole identification is the distributed aggregation
of observations from the nodes in order to localize holes in the coverage of the camera
network. An approach for solving this problem requires the estimation of the overlap
between cameras in order to extract some topological invariants [Lobaton et al. 2009,
2010] without localizing the cameras. In Figure 8, we illustrate a graphical representa-
tion of the coverage of a CITRIC camera network. The representation is in a distributed
fashion based on the CN-Complex, a concept that will be introduced next. As our focus
is to identify holes in the coverage of a camera network, we can assume that all the
nodes are synchronized, a communication network has been established, and they are
capable of detecting agents in their field of view.5

The distributed algorithm to find coverage holes is illustrated in Figure 9, in which
the CITRIC cameras are used and no calibration information is assumed (i.e., cam-
era locations and the scene are unknown). Lobaton et al. [2009] first introduced a

5Synchronization can be accomplished by methods such as the Flooding Time Synchronization Protocol
(FTSP) [Maroti et al. 2004] for TinyOS. Agents can be detected using simple computer vision algorithms
such as background subtraction for which some benchmarks have been provided for the CITRIC platform in
Section 4.2.
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Fig. 9. A network setup consisting of six CITRIC motes. (a) The testbed in which the network is deployed and
where a remote-controlled car is used as a target. (b) Occluding contours detected in the view of camera 5 are
used to decomposed its image domain. (c) This decomposition of the image domain leads to a decomposition
of the coverage of camera 5 into regions 5a and 5b. (d) The decomposed regions for all cameras are shown.

simplicial representation called the CN-Complex, which captures accurate topological
information about the coverage of the network. The CN-Complex is built by following
two simple steps.

Step 1. Decomposing the coverage of each camera utilizing the observed occlusions
of agents moving through the scene.
Step 2. Determining the overlap between the resulting regions.

The CN-Complex is the nerve complex of the decomposed regions. In simple words, the
nerve of a collection of regions is a list where each element corresponds to the sets of
regions with a non-empty intersection. The CN-Complex can be used to identify holes
in the coverage by computing the homology from the simplicial complex.

Using the CN-Complex model, the coverage hole of the test bed shown in Figure 9
can be established as follows (see [Lobaton et al. 2009] for more details). Each mote
observes a remote-controlled car moving through the environment. Occluding contours
are detected in the image domain of each camera as the target appears and disap-
pears behind the obstacles. Figure 9(b) illustrates how these contours can be used to
decompose the image domain of camera 5, which in turn specifies a decomposition of
the coverage of the camera (Figure 9(c)). Figure 9(d) illustrates all of the decomposed
regions (e.g., the coverage of camera 1 is decomposed into region 1a and 1b). Note
that this process is performed locally without transmitting any information or using
calibration of the cameras. The detections of the target is done using the background
subtraction function described in Section 4.2 followed by a median filtering step. As ob-
served in Figure 4, these computations can be done at about 8 frames per second using
512×512 images. The detection of occluding contours is accomplished by detecting the
edges along which a target disappears and then fitting lines.

Next, the overlap between the resulting regions is obtained by having each mote
transmit an appearance or disappearance message to the network every time that an
agent enters or leaves a region. Given that the motes have already synchronized their
clocks, this is sufficient information to determine the overlap between the decomposed
regions. The overlap information is captured in the collection of sets of overlapping
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regions, the nerve. The following collection determines all overlaps in the network.

{[1a 1b 4b], [1b 2a 2b], [2b 3a 3b], [3b 4a 4b 5a], [3b 5a 6a], [5a 5b 6a]} . (1)

This collection specifies an abstract simplicial complex that is depicted visually in
Figure 8(b). This is a visual representation displayed to a user logging into the CITRIC
network. Note that this representation captures the fact that there is a hole in the cov-
erage corresponding to a circular corridor. In Lobaton et al. [2009], it is proven that the
decomposition step using the occluding contours in the images is essential to guarantee
that the complex accurately captures topological information of the network coverage.

During the construction process using the CITRIC platform, the amount of informa-
tion transmitted is minimal (a few transmissions per minute), since the only observa-
tions transmitted were due to the agent moving in and out of the view of cameras. Note
that direct streaming of video from multiple motes to a centralized location could not
be supported by our network due to bandwidth and battery power limitations.

Finally, a distributed version of the CN-Complex that uses observations from mul-
tiple unidentifiable agents has been proposed without localization information of the
cameras or the objects in the scene by exploiting temporal correlation of the detections
of unidentified agents [Lobaton et al. 2010]. Imperfect foreground regions can be used
to identify occluding contours in the image domain of each camera, and then the detec-
tion results of agents entering or leaving each of these regions can be aggregated in a
distributed fashion in order to discover overlaps between camera regions. This process
requires the storage of a few arrays of size equal to an image which could be easily
accommodated by the CITRIC platform thanks to its 64 MB of SDRAM. In Lobaton
et al. [2010], the CN-Complex is also used for tracking unidentified agents.

5.2. Discussion

This particular application illustrates a family of distributed algorithms that require
real-time processing of images with low-bandwidth communication requirements.
The following are the key hardware requirements for the implementation of these
algorithms.

Video Processing. The video from the cameras need to be processed in real-time in
order to detect agents in the field of view of each node. Since the only events broadcasted
by the nodes are the entrance/exit of agents within each camera view, the camera
resolutions and frame rates need to be sufficient to identify these events. Each node
needs to have enough memory and computational power in order to achieve this goal.
A frame rate of 5 fps with an image resolution of 512 × 512 pixels was sufficient for the
experiments outlined in this section. However, higher temporal and special resolution
would be required for more complex scenarios.

Communication. For this application, the bandwidth requirements were minimal.
Latency of packets is not a concern as long as enough agent detections can be stored in
memory, which is the case for our platform. In order to further reduce the number of
messages transmitted from each node, it is possible to aggregate detection events and
transmit them as a batch of observations.

Power. As stated in Section 4.1, we expect a lifetime of about five hours for each
node running the algorithm presented in this section, which requires the continuous
detection of agents using background subtraction. However, as the probabilities of
overlaps between cameras can be learned, they can be used to predict the transitions of
agents tracked in the network. Under these assumptions, the camera daughter board
in each node could be placed in Idle mode whenever there are no agents present nearby.
This adaptation procedure can significantly extend the life of the network.
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6. DISTRIBUTED OBJECT RECOGNITION

Object recognition is one of the most active topics in computer vision. As human per-
ception is known to excel in recognizing complex objects with little effort in images, it
is reasonable to expect that a well-designed computer vision system may also perform
the same functionality. Traditionally, this problem has been studied with respect to
only single camera sensors. The development of smart camera sensors such as CIT-
RIC has led to growing interest to be able to recognize object images in a distributed
fashion. One of the advantages is that the multiview information can effectively com-
pensate many well-known visual nuisances in the shared field of view, such as object
occlusion and pose variation, and hence boost the recognition accuracy. In this section,
we discuss several novel algorithmic techniques that enable such distributed object
recognition systems.

6.1. Literature Review

First, we shall briefly review existing methods for recognizing object images on single
cameras. In the literature, there exist two dominant approaches, namely, appearance-
based methods and feature-based methods. Appearance-based methods classify query
images based on their raw pixel values, edges, color histograms, or image gradients.
The solutions usually appeal to only a small class of object categories, such as human
faces and vehicles. One of the challenges for appearance-based methods is that with
varying illumination, camera vantage point, and object surface texture and shape, it
is quite impossible to measure and train all appearances of the objects in question.
Therefore, in our discussion, we will only focus on feature-based methods.

One influential theory in human vision explains the object recognition function on
the basis of decomposing objects into constituent parts (i.e., distinctive image patches)
[Oram and Perrett 1994; Agarwal and Roth 2002]. This approach in computer vision
is generally referred to as the bag-of-words (BoW) methods [Nistér and Stewénius
2006]. Local invariant features such as SIFT-type6 features (e.g., SIFT [Lowe 1999],
SURF [Bay et al. 2008], or CHoG [Chandrasekhar et al. 2009]) are first extracted
from images. The vector representation of these features are also called codewords.
Each codeword can be shared among multiple object classes. Hence, the codewords
from all object categories can be clustered into a vocabulary (or codebook). The size of
a typical vocabulary ranges from thousands to hundreds of thousands. One popular
representation of the object features computes the frequencies of the instances of the
codewords in an image, which is called a histogram [Nistér and Stewénius 2006; Chen
et al. 2009] (as an example shown in Figure 10). As a result, the histogram becomes a
compact representation of the object(s) that appear in the image.

6.2. Distributed Object Recognition with Camera Sensor Networks

Object recognition solutions have been demonstrated on several smart camera plat-
forms, such as SensEye [Kulkarni et al. 2005] and Panoptes [Feng et al. 2005]. Using
the CITRIC platform, we have recently studied more sophisticated distributed object
recognition systems with bandwidth constraints [Yang et al. 2009; Naikal et al. 2010].
Figure 11 illustrates the flow diagram of a typical distributed object recognition system.
The key idea is that the lightweight module that extracts and encodes high-dimensional
image features should be implemented on the smart camera and could be deployed in
a distributed fashion, while the second module that decodes the compressed features

6SIFT stands for scale-invariant feature transform. In computer vision, certain 2D image features are con-
sidered viewpoint-invariant, such as corner points, T-junctions, and local extremal illumination regions, as
their relative pixel values compared to the neighboring pixels are invariant to moderate camera viewpoint
changes.
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Fig. 10. Left: CHoG feature points detected in an image of a building. Right: the corresponding histogram
vector based on a 10,000-D codebook.

Fig. 11. The flow diagram of a distributed object recognition system consisting of multiple smart camera
sensors and a base station computer.

over the network and performs classification should be implemented on a base station
computer.

To execute this design strategy, we note that the implementation of feature extraction
on CITRIC is straightforward, as existing public computer vision code (e.g., SIFT and
SURF) can be simply recompiled on the embedded Linux system. However, when the
sensor measurements are received at the base station, it becomes more involved to
achieve higher the recognition rate using multiple camera views compared to single
cameras. More specifically, one needs to find good answers to the following problems.

(1) When a common object appears in a shared field of view, shared object features and
their correspondence need to be identified across multiple camera views.

(2) Once the local measurements from the camera sensors are transmitted to a network
computer, the classification algorithms should be able to harness the multiview
information about the objects to boost the recognition accuracy.

In the rest of the section, we will highlight several approaches to these two problems.
The most important factor that one needs to consider in distributed object recognition

is whether the sensors are allowed to exchange viewpoint information during the recog-
nition. If information exchange between sensors is permitted, the power consumption
to support such communication will increase significantly compared to the alternative
scenario. This will be a major disadvantage in wireless sensor networks. Nevertheless,
if the object of interest is a rigid body, its feature correspondence in multiple views
can be established by standard structure-from-motion techniques [Turcot and Lowe
2009]. Using random sample consensus (RANSAC) algorithms [Fischler and Bolles
1981], the existing methods would iteratively sample a small set of image features
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that have similar vector representation in a pair of images to establish a hypothesis
of a rigid-body motion. The motion model that achieves the highest consensus among
the correspondences in the two views is declared as the optimal solution. Ferrari et al.
[2004] further proposed to improve the robustness of the matching process by building
a group of aggregated matches (GAM) to cover larger image regions than individual
features, subsequently establishing a dense two-view correspondences using a sorted
list of GAMs with the largest sizes.

In addition to the excessive power consumption involved in information exchange be-
tween sensors, the computational complexity of the structure-from-motion algorithms
typically grows exponentially with the number of camera views. Namely, estimating
consensus rigid-body models in three or four images is significantly more expensive
than in a pair of images. Furthermore, if BoW methods are used for classification, the
location information of the image features often does not play a significant role. There-
fore, complementary to the preceding multiview geometric algorithms, our works [Yang
et al. 2009; Naikal et al. 2010] have studied signal processing algorithms to simultane-
ously compress high-dimensional visual histograms from multiple views and identify
shared object features without resorting to prior training data, camera calibration, or
inter-sensor communication.

Our proposal has been motivated by the theory of compressive sensing [Donoho 2006;
Candès and Tao 2006] and its recent extension in sensor networks [Baron et al. 2006].
The key observation on the visual histograms that describe the object feature instances
in individual images is that the representation is often spare on a large vocabulary,
more specifically, all coefficients are nonnegative and most of them are (approximately)
zero (as shown in Figure 10), as only a small number of features may be exhibited in
a single image. Furthermore, since SIFT-type features are robust to some degree of
camera rotation and translation, images from different vantage points may share a
subset of the same features, thus yielding histograms with similar nonzero coefficient
values. This phenomenon is called joint sparsity (JS).

Denote L as the number of the camera sensors that observe the same object in
3-D, and let x1, x2, . . . , xL ∈ R

D be the corresponding SIFT histogram vectors. The
problem of encoding multiple-view object images can be formulated as follows. For the
high-dimensional histogram vectors extracted from the L images, define a JS model
as follows.

x1 = xc + z1,
...

xL = xc + zL,

(2)

where xc, called the common component, represents the JS pattern, and each zi
represents an innovation pertained to the ith view. Furthermore, both xc and zi are
also sparse.

On each camera sensor i, a linear sampling function is sought using a random matrix
Ai ∈ R

d×n.

fi : xi ∈ R
n �→ bi

.= Ai xi ∈ R
d. (3)

At the base station, upon receiving b1, . . . , bL compressed features, the multiview JS
model can be modeled in a single linear system.[

b1

...
bL

]
=

[
A1 A1 0 ··· 0
...

... ...
AL 0 ··· 0 AL

] ⎡
⎣ xc

z1

...
zL

⎤
⎦

⇔ b′ = A′x′ ∈ R
dL.

(4)
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This underdetermined linear system of equations with respect to the unknowns
xc, z1, . . . , zL then can be solved via �1-minimization [Naikal et al. 2010].

min ‖x′‖1 subj. to b′ = A′x′. (5)

Equation (5) can be formulated as a linear programming problem and has stable and
efficient numerical solvers [Yang et al. 2010]. Using the JS model, one can flexibly
choose different sampling rates (i.e., d/n) determined by the sampling matrix Ai for
individual camera channels, and the subset of shared image features together with
the innovations are simultaneously decoded without any prior information about the
objects and camera locations.

6.3. Experiments

In the following, we present experimental results to validate the performance of the JS
model under network bandwidth constraints. To aid peer evaluation, we have released
a public multiple-view image database called the Berkeley Multiview Wireless (BMW)
database [Naikal et al. 2010].7 The BMW database consists of multiple-view images of
20 landmark buildings on the campus of University of California, Berkeley, collected by
the CITRIC cameras. For each building, 16 different vantage points have been selected
to measure the 3D appearance of the building.

Using the BMW database, we have benchmarked the performance of the distributed
object recognition system shown in Figure 11 (more detail presented in [Naikal et al.
2010]). We design two testing scenarios to evaluate the performance of the distributed
recognition scheme, namely, the small-baseline and the large-baseline scenarios. In the
small-baseline scenario, images captured concurrently from multiple cameras at one
vantage point are used to determine the object category. In the large-baseline scenario,
images captured from one to three different vantage points are randomly chosen from
the same testing category for recognition. In all the experiments, the query histograms
are projected from 10,000-D space via random projection to lower projection dimensions
ranging from 1,000 to 9,000 using the encoding function of Equation (3).

Figure 12 shows the recognition rates for one to three cameras in the small-baseline
scenario. With small projection dimensions close to 1,000, the recognition rates using
two or three cameras improves significantly compared to the single-view recognition
rates. For instance, at d = 1,000, the recognition rate from a single camera is about
45%. The rate is boosted to 68% with two cameras and 82% with three cameras. It
is also important to note that the improved recognition rates using the multiple-view
information are also higher than merely increasing the projection dimension (i.e., the
bandwidth) in the single-camera scenario. For instance, the recognition rate for 2-Cam
at d = 2,000 is higher than the rate for 1-Cam at d = 4,000.

The large-baseline performance is evaluated using the same procedure as in the
small-baseline experiments. Figure 13 shows the recognition rates versus the random
projection dimension. Clearly, the recognition rates using a single camera do not change
from the small-baseline scenario. As shown in the plot, the recognition rates at the low
projection dimension of 1,000 are lower than those of the small-baseline scenario for the
2- and 3-Cam cases. However, as the projection dimension increases, the multiple-view
recognition rates reach about 95% and begin to plateau. Such rates are never achieved
even without lossy compression in the single view case.

7The database can be accessed online at http://www.eecs.berkeley.edu/∼yang/software/CITRIC/.
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Fig. 12. Comparison of the CHoG recognition rates (in color) in the small-baseline scenario with different
random projection dimensions.

Fig. 13. Comparison of the CHoG recognition rates (in color) in the large-baseline scenario with different
random projection dimensions.

7. OTHER APPLICATIONS

In addition to the elementary image processing functions and the two applications
we have discussed so far, we here summarize a few more classes of camera network
applications that could utilize the CITRIC camera platform.

(1) Cooperative object detection and tracking. Object/event detection and tracking has
been a classical problem in computer vision and sensor networks [Javed et al. 2003;
Dick and Brooks 2004; Gilbert and Bowden 2006; Song and Roy-Chowdhury 2008].
Traditional solutions have been based on a centralized scheme where the system
relies on a back-end layer of computer servers to process the video sequences.
Utilizing the computational power of CITRIC, the Wang et al. [2009, 2010] have
studied how to perform cooperative object detection and tracking based on only
peer-to-peer communication, and therefore completely forgo the centralized server
model. The system is designed to locally detect certain well-defined primitive events
on individual CITRIC sensors. When an event is detected on a camera sensor, it will
inform its neighboring sensors about the event. Over time, more complex events
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can be recognized by aggregating several primitive local events in the perimeter of
the camera network.

(2) Traffic modeling and prediction. Beyond the low-level object detection and track-
ing, there has been a consistent interest in modeling and predicting traffic patterns
using information obtained from camera sensor networks. The goals of the applica-
tion typically include path discovery [Kettnaker and Zabih 1999; Melo et al. 2006],
traffic statistics prediction [Guitton et al. 2007; Tubaishat et al. 2009], and accident
detection [Kamijo et al. 2000; Bramberger et al. 2006], to name a few. A concrete
example using CITRIC motes is presented in Shuai et al. [2010]. Without assum-
ing camera calibration and reconstruction of global object tracks, the work utilizes
a Bayesian framework to predict the traveling time of moving objects, estimate
the object paths probabilistically, and perform object association between multiple
camera views in the region of interest.

(3) Human behavior interpretation. Another important topic in camera sensor net-
works is interpreting more complex human behavior, activities, and intent. The
intent of humans under surveillance must be considered in the context of the sur-
rounding environment. Therefore, analyzing the relations between humans and
their surrounding 3D structures has been the main focus of several studies (see
[Sankaranarayanan et al. 2009] and the references therein). A recent work [Tron
et al. 2008] also studied robust estimation of object poses using a camera network.
When an object is observed by multiple cameras, its 3D pose would be determined
by a distributed averaging consensus algorithm directly on the manifold of 3D rigid-
body transformations. Finally, systems based on grammatical inference have been
proposed to classify more complex human behavior and intent (see [Lymberopoulos
et al. 2008; Geyik and Szymanski 2009] and the references therein). For instance,
Lymberopoulos et al. [2008] propose a system called BScope to interpret human
activity patterns in an assisted-living application.

(4) Large-scale, multipurpose camera sensor networks. Eventually, any real-world de-
ployment of a large-scale camera sensor network would prefer the system to sup-
port a diverse list of applications, which may or may not be well defined at the
time of deployment. Kulkarni et al. [2005] advocate a heterogeneous, multi-tier
sensor network to reconcile the traditionally conflicting design goals of latency and
energy-efficiency. In VideoWeb [Nguyen et al. 2009], the authors argue that it is still
a challenge to create a robust wireless network to support multiple high-bandwidth
video cameras at their peak performance, while another challenge is to make the
entire camera system reconfigurable to implement a variety of real-world, real-
time surveillance applications. Despite these pioneering works, it is fair to say that
many open problems abound in this topic.

8. CONCLUSION AND FUTURE WORK

We have presented a comprehensive review of the architecture of CITRIC, a wireless
camera mote system for low-bandwidth networks. The system enables the captured
images to be processed locally on the camera board so that only compressed, low-
dimensional features or other small pieces of data need to be transmitted over the
wireless network. To this end, the CITRIC mote has been designed to have state-of-
the-art computing power and memory (up to 624MHz; 32-bit XScale processor; 64 MB
RAM; 16 MB ROM), and runs embedded Linux. The mote communicates over the IEEE
802.15.4 protocol which also makes it easy to integrate with existing WSNs. In this
article, we have also discussed several convincing examples to demonstrate the utility
of the platform in smart camera networks.

For future work, we plan to continue improving the usability of our system by en-
abling clients to manage and interact with clusters of motes instead of individual
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motes. We will also expand the available C library of image processing functions on our
camera motes and evaluate their performance. Finally, we are interested in integra-
tion of CITRIC and other heterogeneous sensor modalities to create a truly large-scale,
multipurpose sensor network for urban surveillance applications.
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