
Side effects are not sufficient to authenticate software

Umesh Shankar1

UC Berkeley
ushankar@cs.berkeley.edu

Monica Chew2

UC Berkeley
mmc@cs.berkeley.edu

J. D. Tygar
UC Berkeley

tygar@cs.berkeley.edu

Report No. UCB/CSD-04-1363
USPS 102592-01-Z-0236

September 2004

Computer Science Division (EECS)
University of California
Berkeley, California 94720

UC Berkeley Computer Science Division technical report UCB/CSD-04-1363

Abstract

Kennell and Jamieson [KJ03] recently introduced the
Genuinity system for authenticating trusted software on
a remote machine without using trusted hardware. Gen-
uinity relies on machine-specific computations, incorpo-
rating side effects that cannot be simulated quickly. The
system is vulnerable to a novel attack, which we call a
substitution attack. We implement a successful attack on
Genuinity, and further argue this class of schemes are not
only impractical but unlikely to succeed without trusted
hardware.

1 Introduction
A long-standing problem in computer security is remote
software authentication. The goal of this authentica-
tion is to ensure that the machine is running the correct
version of uncorrupted software. In 2003, Kennell and
Jamieson [KJ03] claimed to have found a software-only
solution that depended on sending a challenge problem
to a machine. Their approach requires the machine to
compute a checksum based on memory and system val-
ues and to send back the checksum quickly. Kennell and
Jamieson claimed that this approach would work well in
practice, and they have written software called Genuin-
ity that implements their ideas. Despite multiple requests
Kennell and Jamieson declined to allow their software to
be evaluated by us.

In this paper, we argue that
• Kennell and Jamieson fail to make their case be-

cause they do not properly consider powerful at-
tacks that can be performed by unauthorized “im-
poster” software;

• Genuinity and Genuinity-like software is vulner-
able to specific attacks (which we have imple-
mented, simulated, and made public);

• Genuinity cannot easily be repaired and any
software-only solution to software authentication
faces numerous challenges, making success un-
likely;

• proposed applications of Genuinity for Sun Net-
work File System authentication and AOL Instant
Messenger client authentication will not work; and

• even in best-case special purpose applications (such
as networked “game boxes” like the Playstation 2
or the Xbox) the Genuinity approach fails.

To appreciate the impact of Kennell and Jamieson’s
claims, it is useful to remember the variety of ap-
proaches used in the past to authenticate trusted soft-
ware. The idea dates back at least to the 1970s and
led in one direction to the Orange Book model [DoD85]
(and ultimately the Common Criteria Evaluation and
Validation Scheme [NIS04]). In this approach, ma-
chines often run in physically secure environments to

ensure an uncorrupted trusted computing base. In
other contemporary directions, security engineers are
exploring trusted hardware such as a secure copro-
cessor [SPWA99, YT95]. The Trusted Computing
Group (formerly the Trusted Computing Platform Al-
liance) [Gro01] and Microsoft’s “Palladium” Next Gen-
eration Security Computing Base [Mic] are now consid-
ering trusted hardware for commercial deployment. The
idea is that trusted code runs on a secure processor that
protects critical cryptographic keys and isolates security-
critical operations. One motivating application is digital
rights management systems [Int]. Such systems would
allow an end user’s computer to play digital content but
not to copy it, for example. These efforts have attracted
wide attention and controversy within the computer se-
curity community; whether or not they can work is de-
batable. Both Common Criteria and trusted hardware
efforts require elaborate systems and physical protection
of hardware. A common thread is that they are expensive
and there is not yet a consensus in the computer security
community that they can effectively ensure security.

If the claims of Kennell and Jamieson were true, this
picture would radically change. The designers of Gen-
uinity claim that an authority could verify that a partic-
ular trusted operating system kernel is running on a par-
ticular hardware architecture, without the use of trusted
hardware or even any prior contact with the client. In
their nomenclature, their system verifies the genuinity of
a remote machine. They have implemented their ideas
in a software package called Genuinity. In Kennell and
Jamieson’s model, a service provider, the authority, can
establish the genuinity of a remote machine, the entity,
and then the authority can safely provide services to
that machine. Genuinity uses hardware specific side ef-
fects to calculate the checksum. The entity computes
a checksum over the trusted kernel, combining the data
values of the code with architecture-specific side effects
of the computation itself, such as the TLB miss count,
cache tags, and performance counter values. Kennell
and Jamieson restrict themselves to considering only
uniprocessors with fixed, predetermined hardware char-
acteristics, and further assume that users can not change
hardware configurations. Unfortunately, as this paper
demonstrates, even with Kennell and Jamieson’s as-
sumptions of fixed-configuration, single-processor ma-
chines, Genuinity is vulnerable to a relatively easily im-
plemented attack.

To demonstrate our points, our paper present two
classes of attacks—one class on the Genuinity imple-
mentation as presented in the original paper [KJ03], and
more general attacks on the entire class of primitives
proposed by Kennell and Jamieson. We wanted to illus-
trate these attacks against a working version of Genuin-
ity, but Kennell and Jamieson declined to provide us with

access to their source code, despite repeated queries. We
therefore have attempted to simulate the main features of
Genuinity as best we can based on the description in the
original paper.

The designers of Genuinity consider two applications:
NFS: Sun’s Network File System NFS is a well

known distributed file system allowing entities
(clients) to mount remote filesystems from an
authority (an NFS file server). Unfortunately,
NFSv3, the most widely deployed version, has
no real user authentication protocol, allowing
malicious users to impersonate other users. As a
result, NFS ultimately depends on entities to run
trusted software that authenticates the identities of
the end users. Genuinity’s designers propose using
Genuinity as a system for allowing the authority to
ensure that appropriate client software is running
on each entity. The Genuinity test verifies a trusted
kernel. However, a trusted kernel is not sufficient
to prevent adversaries from attacking NFS: the
weakness is in the protocol, not any particular
implementation. We describe the NFS problem in
more depth in Section 6.5.1.

AIM: AOL Instant Messenger AIM is a text messag-
ing system that allows two entities (AIM clients)
to communicate after authenticating to an author-
ity (an AIM central server). AIM has faced chal-
lenges because engineers have reverse engineered
AIM’s protocol and have built unauthorized entities
which the authority cannot distinguish from autho-
rized entities. Kennell and Jamieson propose the
use of Genuinity to authenticate that only approved
client software is running on entities, thus prevent-
ing communication from unauthorized rogue AIM
client software. As we discuss in Section 6.5.2 be-
low, Genuinity will not work in these applications
either.

In addition to these two applications, we consider a third
application not discussed by Kennell and Jamieson:
Game box authentication Popular set-top game boxes

such as Sony’s Playstation 2 or Microsoft’s Xbox
are actually computers that support network-
ing. They allow different users to play against
each other. However, a widespread community
of users attempts to subvert game box security
(e.g., [Hua03]), potentially allowing cheating in on-
line gaming. One might consider treating the game
boxes as entities and the central servers as authori-
ties and allowing Genuinity to authenticate the soft-
ware running on the game boxes. This is arguably
a best-case scenario for Genuinity: vendors man-
ufacture game boxes in a very limited number of
configurations and attempt to control all software

configurations, giving a homogeneous set of con-
figurations. However, even in this case, Genuinity
fails, as we discuss in Section 7.2 below.

In short, we argue below that Genuinity fails to provide
security guarantees, has unrealistic requirements, and
high maintenance costs. More generally, our criticisms
go to the heart of a wide spectrum of potential software-
only approaches for providing authentication of trusted
software in distributed systems. These criticisms have
important consequences not only for Genuinity, but for
a wide variety of applications from digital rights man-
agement to trusted operating system deployment.

Below, Section 2 summarizes the structure of Genuin-
ity based on Kennell and Jamieson’s original paper. Sec-
tion 3 outlines specific attacks on Genuinity. Section 4
describes a specific substitution attack that can be used
to successfully attack Genuinity and a specific imple-
mentation of that attack that we have executed. Section 5
details denial of service attacks against the current im-
plementation of Genuinity. Section 6 describes a number
of detailed problems with the Genuinity system and its
proposed applications. Finally, Section 7 concludes by
broadening our discussion to present general problems
with software-only authentication of remote software.

2 A description of Genuinity

The Genuinity scheme has two parts: a checksum primi-
tive, and a network key agreement protocol. The check-
sum primitive is designed so that no machine running
a different kernel or different hardware than stated can
compute a checksum as quickly as a legitimate entity
can. The network protocol leverages the primitive into a
key agreement that resists man-in-the-middle attacks.

Genuinity’s security goal is that no machine can com-
pute the same checksum as the entity in the allotted time
without using the same software and hardware. If we
substitute our data for the trusted data while computing
the same checksum in the allowed time, we break the
scheme.

As the authors of the original paper note, the check-
sum value can in principle be computed on any hard-
ware platform by simulating the target hardware and
software. The security of the scheme consequently rests
on how fast the simulation can be performed: if there
is a sufficient gap between the speed of the legitimate
computation and a simulated one, then we can distin-
guish one from the other. Kennell and Jamieson incor-
porate side effects of the checksum computation itself
into the checksum, including effects on the memory hi-
erarchy. They claim that such effects are difficult to sim-
ulate efficiently. In Section 3, however, we present an
attack that computes the correct checksum using mali-
cious code quickly enough to fool the authority. A key

trick is not to emulate all the hardware itself, but simply
to emulate the effects of slightly different software.

Genuinity makes the following assumptions:
1. The entity is a single-processor machine. A

multi-processor machine with a malicious proces-
sor could snoop the key after the key agreement
protocol finishes.

2. The authority knows the hardware and software
configuration of the entity. Since the checksum
depends on the configuration, the authority must
know the configuration to verify that the checksum
is correct.

3. There is a lower bound on the processor speed that
the authority can verify. For extremely slow pro-
cessors, the claim that no simulator is fast enough
is untrue.

4. The Genuinity test runs at boot time so the authority
can specify the initial memory map to compute the
checksum, and so the dynamic state of the kernel is
entirely known.

Genuinity also makes the implicit assumption that all
instructions used in computing the checksum are simu-
latable; otherwise, the authority could not simulate the
test to verify that the checksum result is correct. As we
discuss in Section 4.1.1, the precise-simulation require-
ment is quite stringent on newer processors.

In rest of this section we detail the Genuinity primi-
tive, a checksum computation that the authority uses to
verify the code and the hardware of the entity simul-
taneously. Following that, we review the higher level
network key agreement protocol that uses the checksum
primitive to verify an entity remotely.

2.1 The Genuinity checksum primitive

The checksum computation is the foundation of the Gen-
uinity scheme. The goal of this primitive is that no
machine with an untrusted kernel or different hardware
than claimed will be able to produce a correct checksum
quickly enough.

The details of the test are specified in the paper [KJ03]
for a Pentium machine. First, the entity maps the ker-
nel image into virtual memory using a mapping supplied
by the authority, where each page of physical memory
is mapped into multiple pages of virtual memory. This
makes precomputation more difficult. Next, the author-
ity sends a pseudorandom sequence of addresses in the
form of a linear-feedback shift register. The entity then
constructs the checksum by adding the one-byte data
values at these virtual addresses. The original paper does
not indicate how many iterations are performed during
the course of the test. Between additions, the entity in-
corporates one of the following values into the checksum
(the original paper under-specifies algorithmic details;

see Table 2 for assumptions):
1. Whether a particular Instruction or Data TLB en-

try exists, and if so, its mapping. The original pa-
per does not make clear which potential entries are
queried (in addition, according to the Intel refer-
ence page [Int03], using the special test registers
needed to access the TLB and cache data can lead
to unpredictable results afterwards);

2. Instruction or data cache tags (again, the original
paper does not indicate which cache entries to ac-
cess);

3. A performance counter which measures the number
of branch instructions encountered;

4. A performance counter which measures the number
of instructions executed.

These processor-specific data sources are summarized in
Table 1.

The authority must also compute the checksum. Since
Kennell and Jamieson assume there is no fast simula-
tor, the authority must compute the checksum natively
or simulated it in advance. If the entity calculates the
same checksum as the authority and returns it to the au-
thority quickly enough, the entity is considered genuine.

The maximum allowable time is determined by the
time it takes an “ideal simulator” to complete the task.
An ideal simulator is one that receives the checksum
code in advance, and can optimize the simulation code
to run fast on the native hardware for that particular case.
In the example given, Kennell and Jamieson report that
the 133MHz Pentium legitimate entity took 7.93 seconds
to complete the test, whereas the idealized simulator run-
ning on a 2.4GHz Pentium 4 took 10.72 seconds (35%
longer than native execution); the latter figure was used
as the cutoff time for a response. The unaided (non-
ideal) simulator required 18.53 seconds (134% longer).
Our attack below (Section 3) inserts malicious code,
computes the checksum correctly, and falls within the
cutoff of 35% (Section 4.1.1).

Since the operations of integer addition and exclusive-
or operate in different fields, the operation is nonlinear,
and therefore ex post facto fixing up of the checksum is
difficult. Any modification must be done on the fly, as
the checksum is being computed.

2.2 The Genuinity key agreement protocol
The Genuinity checksum primitive is incorporated into
a network key agreement protocol. At the end of a suc-
cessful completion of the protocol, the authority will
know that

1. The entity is running verified software on verified
hardware, and

2. The entity is the one who passed the test if the key
agreement succeeds.

Table 1: Processor-specific data included in the checksum. In addition to checksumming over kernel image byte
values, the checksum incorporates these pieces of processor specific data. The function used to incorporate the data
is unspecified in the original paper, so our attack preserves references to this data exactly.

Data source Description
Instruction TLB ITLB miss count, physical page number
Data TLB DTLB miss count, physical page number
Instruction cache Cache line contents (which line is unspecified)
Data cache Cache line contents (which line is unspecified)
Performance counter 1 Number of branches taken
Performance counter 2 Number of instructions executed

The authority embeds its public key into the verified
space of the Genuinity test to prevent man-in the mid-
dle attacks.
E → A The entity requests a challenge.
A → E The authority accepts the request, and sends

the client a memory mapping to use during com-
putation of the checksum. The virtual-to-physical
page mappings are randomized, with many map-
pings pointing to the checksum code page. In par-
ticular, 2661 out of the 4096 total mappings pointed
to the physical code page. The code contains many
jumps to itself via alternate page mappings rather
than local, relative jumps. These biases toward the
code page are designed to make modification of the
code more difficult.

E → A The entity notifies the authority of acceptance
and installs the supplied memory mapping.

A → E The authority
1. sends the challenge (public key for the re-

sponse and code for the checksum, both
signed by the authority’s key), and

2. starts the timer.
E → A The entity calculates the checksum using the

initial memory map and the code that the authority
sent. The entity encrypts the checksum and a nonce
with the authority’s public key and sends them to
the authority.

A → E The authority stops the timer and checks if the
checksum is correct. It sends either a qualification
or rejection message to the entity.

E → A The entity uses periodic samples from the hard-
ware cycle counter to generate as a symmetric ses-
sion key. The entity encrypts the session key and
a nonce with the authority’s public key and sends
them to the authority. The session key is never
transmitted over the network.

3 Specific attacks against Genuinity

Attack overview We describe a specific attack on the
Genuinity checksum primitive for the x86 architecture.

We focus on x86 because it is the only one for which the
algorithm is specified in in the original paper.

We were unable to obtain a copy of the code used in
the original Genuinity paper. Therefore, our attacks refer
to the published description of the algorithm; wherever
we have had to make assumptions, we have documented
them (see Table 2).

The premise of Genuinity is that if an entity passes
the test, then that entity is running an approved operat-
ing system kernel on approved hardware. If we can in-
sert a small amount of malicious code while still passing
the test, then we can gain complete control of the sys-
tem without being detected by the authority. In particu-
lar, once our modified checksum code succeeds, we have
subverted the trusted exit path, which normally contin-
ues execution of the kernel. Instead, we may load any
other kernel we wish, or send the session key to a third
party.

4 Breaking Genuinity: substitution at-
tacks

In this section, we describe two substitution attacks that
work against the current implementation of Genuinity.
The goal of a substitution attack is to modify the check-
sum code without modifying the checksum result. The
first attack appends malicious code at the bottom of the
checksum page. The second attack does not rely on extra
space at the bottom of the checksum page.

4.1 The single page substitution attack
In the single page substitution attack, we append mali-
cious checksum code on the same physical page as the
original code; once it has computed the correct check-
sum, it can modify the machine’s memory at will. Al-
though the malicious code cannot initially be very large
in order for the attack to work, we need only substitute
enough to start loading arbitrary code.

This attack assumes there is extra space on the same
page of physical memory as the checksum code page.
We believe this is a reasonable assumption given Gen-
uinity’s description in the original paper; our own skele-

checksum

0

0

4095

checksum

0

0

4095

imposter
checksum

imposter
start

Chunk 1

Chunk 22

...
Chunk 1

Chunk 22

...

Chunk 1

Chunk 22

...

Lookup
Code

Figure 1: The original checksum code page, and the malicious checksum code page. The checksum code is
divided into 22 code chunks. The imposter checksum code page replicates the original code entirely, then adds of
imposter lookup code. The imposter lookup code checks each memory reference. If the address is in the imposter
region (between imposter start and the end of the page), the lookup code returns 0 as the byte value. For all
other memory references, the imposter lookup code returns the same value as the original lookup code.

ton implementation of that algorithm consumed less than
two kilobytes of memory of the four kilobyte page. Fig-
ure 1 illustrates the code page layout.

Table 1 describes processor-specific information that
Genuinity uses to compute the checksum. The original
paper does not specify how the data is incorporated into
the checksum, but our attack is independent of the oper-
ation.

The checksum code is divided into 22 code chunks,
called nodes in the original paper. 16 of these chunks,
the memory chunks, choose a pseudorandom address in
memory and add the value of the byte at that address
to the checksum. The other 6 chunks incorporate the
processor-specific data sources (TLB miss count, cache
tags, etc.) described in Table 1. How the data is incorpo-
rated is not specified, so we preserve references to these
sources exactly.

According to the original Genuinity paper, the check-
sum code fits into a single page in memory. Our imple-
mentation of the checksum code takes about 2KB, leav-
ing about 2KB free with a page size of 4KB. The kernel
used in the original Genuinity implementation is 2MB,
but the virtual memory space over which the checksum
is computed is 16MB since there are many-to-one map-
pings from virtual to physical pages. Since each page is
4KB, there are 4K virtual pages, but only 512 physical

pages. Of the virtual pages, 65% (2661) of these map to
the checksum code page, and about 3 virtual pages map
to each of the other pages. For the sake of analysis, we
assume the empty space on the checksum code page is
in the high memory of the page and is zero-filled. We
discuss alternatives to this in Section 4.3. Figure 1 is our
abstraction of the checksum code page.

The pseudocode representing the memory chunk is

memory_node:
addr = next_LFSR()
sum += memory[addr]

We rewrite the checksum code page maliciously. We
can leave the original checksum code intact, and add im-
poster checksum code in the zero-filled space (Figure 1).
To fool the authority into thinking we are running the
original code, we need to know whether or not the pseu-
dorandom address maps to the checksum code page. If
the address does map to the checksum code page, the
imposter checksum code must return the byte value from
the original code page.

imposter_memory_node:
addr = next_LFSR()
if (is_codepage (addr) &&

offset (addr) > imposter_start)

Table 2: Assumptions made about the Genuinity algorithm in the absence of specification in the original paper.
Despite repeated requests of the original authors, we were unable to obtain a copy of the code for the Genuinity test.
Our assumptions are used to fill in gaps in the published description.

Value/Behavior Assumption
Layout of checksum code Code at top of page, rest zero-filled
Iterations of compute chunks 16M iterations for each of 22 chunks
Operation to incorporate processor-specific data exclusive-or
Frequency of incorporation of processor-specific data 6x for each iteration through 22 chunks
Which TLB entry or cache entry to examine Unspecified but unimportant because we preserve all these values

// Preserve data cache, TLB
temp = memory[addr]
// Add the original byte value
sum += 0

else
sum += memory[addr]

The difficulty lies in is codepage: ideally a bit
vector would represent the virtual memory space, where
biti = 1 if virtual page i maps to the checksum code
page. However, since we cannot make any memory ref-
erences or use any variables without changing the data
cache (Table 1), we must encode this vector in instruc-
tions. The bit vector requires 4K bits, or 128 32-bit
words, to represent the page table. The vector is encoded
by a sequence of 128 code chunks, one for each word.
Each chunk loads one word of the vector into a regis-
ter. We use the page number of the address to calculate
the correct word of the bit vector, and jump to the cor-
responding code chunk. The chunk loads corresponding
immediate word of the vector into a register, and we test
the correct bit to see if the address is in the codepage.

is_codepage:
// $r0 = virtual page number
$r0 = addr >> 12
// $r1 = bit index within the word
$r1 = $r0 & 31
// $r0 = which word to jump to
$r0 = $r0 >> 5
// Jump to the corresponding chunk
jump ($r0*chunk_size) + chunk_base

chunk_base:
// Chunk 1
$r0 = immediate word1
goto end
// Chunk 2
$r0 = immediate word2
goto end
...

end:
/* Test bit $r1 of $r0 */

is_codepage = ($r0 & (1 << $r1))

Note that only two registers are used. Kennell and
Jamieson designed the Genuinity algorithm not to access
any data so as not to pollute the cache. It must therefore
reserve two or three registers for temporary values in cal-
culations. Our modifications do not need any additional
registers for temporaries, and so are largely independent
of the specifics of the Genuinity algorithm.

We have guaranteed that all memory reads will return
the values for the original codepage—all that remains is
to show that we can preserve the other invariants from
Table 1.

1. Instruction TLB. Since the imposter checksum
code resides on the same physical page as the orig-
inal code, and we have not changed any page table
entries, there are no changes to the ITLB. The miss
count and contents are unaffected.

2. Data TLB. The imposter checksum code performs
exactly the same memory loads as the original
code, so there are no changes to the DTLB.

3. Instruction cache. We preserve all cache entries.
Cache lines corresponding to the original code
never get loaded, so for accesses to them we sub-
stitute in the correct physical page number. This
number is unambiguous, since there is only one in-
struction code page (containing both the imposter
code and the original code).

4. Data cache. The imposter checksum code per-
forms exactly the same memory loads as the origi-
nal code, so there are no changes to the data cache.

5. Branch counter. On x86, there is an instruction to
disable performance counters, including the branch
counter. We can simply disable it before taking a
branch that is not present in the original code, and
re-enable it afterwards.

6. Instruction counter. As with the branch counter, it
is possible to disable the instruction counter. Since
we execute the same or more instructions per node,
by disabling and re-enabling the counter at the right
time, we can ensure that it holds the correct value

for the original checksum code.

4.1.1 Prototype implementation
We implemented a rough prototype of our attack as a
Linux loadable kernel module on a 1.5GHz Pentium 4
machine running the 2.4.20-28.9 Linux kernel. We did
not have ready access to a Pentium machine, the pro-
cessor used in the original paper. Using a kernel mod-
ule allowed us to avoid rebooting and to disable inter-
rupts as well as perform other privileged instructions
needed to implement the Genuinity algorithm. Unfortu-
nately, this approach made it impossible to remap the en-
tire memory space; we performed our test in a reserved
block of memory without remapping. Our implementa-
tion was in C with large blocks of inline assembly code
to perform machine-specific instructions and to imple-
ment the is codepage lookup function. Our imple-
mentation iterated 3000000 times over 16 memory reads
interleaved with the processor-specific code chunks.

We learned a number of lessons in reproducing the
Genuinity test. First, the special instructions used in
the original test to access the instruction and data caches
and the TLB directly are not supported on Intel proces-
sors after the Pentium. To the best of our knowledge,
there are no available mechanisms to gain access to these
structures in more recent Intel processors. In addition,
the instruction counter did not return consistent results
between trials. Intel does not guarantee the precision
or reproducibility of performance counters; they are in-
tended to be used as a guide for optimization. We there-
fore focused on two empirically repeatable counters that
approximated those from the original Genuinity descrip-
tion: one that measured ITLB misses and one that mea-
sured the number of conditional branch instructions.

We successfully implemented our attack; we were
able to compute the same checksum using the imposter
code as when using the unmodified checksum code. The
initial version of our attack code simply disabled the per-
formance counters before running any added code, then
re-enabled them before continuing. Unfortunately, the
multipurpose instructions required to do this are serializ-
ing (preventing instruction-level parallelism) on the x86
and cause a significant slowdown; we stress that this is
an artifact of the design of the instruction set architec-
ture. On other architectures that provide dedicated in-
structions for this purpose, performance may be much
better. In response, we modified our attack code to cal-
culate the number of additional branches encountered
and the number of additional ITLB misses generated by
the attack and adjusted the counters appropriately.

The performance of the attack code, while not defini-
tive in the absence of the original Genuinity code, was
encouraging. We ran each test with and without inlining
three times; the standard deviations in both cases were

less than 0.6%.
With inlining turned off in the C compiler, the im-

poster code took 35% longer than the legitimate code
(6.38s vs. 4.71s). This is the same as the 35% slow-
down allowed by Genuinity as determined by the ideal
simulator.

We also ran tests within inlining turned on. Due to
suboptimal inlining by our C compiler, the best per-
formance was obtained with no inlining. However, we
found that inlining all but the bit vector lookup table of
the imposter code could lead to a significant speedup.
Inlining this portion in isolation gave an 18% speedup.
Adding in the time to execute the lookup table yielded a
net 42% slowdown over the fully inlined legitimate code.
While this is not within the 35% boundary, in Section 4.2
we discuss using a higher clock speed machine to reduce
the effective slowdown.

4.2 Improving attack performance
Suppose an adversary has an attack that computes the
checksum while inserting malicious code, but the com-
putation time does not fall inside the cutoff. The easiest
way to improve the checksum computing performance
is to increase clock speed. None of the side effects mea-
sures timing directly, because it is too difficult to get ex-
actly repeatable results. Therefore, if all the CPU param-
eters except for clock speed are fixed, an adversary will
compute the identical checksum value. This is easy to
do, since typically CPUs in the same line are released at
different clock speeds already. Another method would
be to use a higher-performance main memory system,
since main memory reads are the largest component of
the overall time. This modification would not be re-
flected in the checksum value either. It is reasonable to
expect that by claiming to have a 2 GHz Pentium 4 while
actually having a 3 GHz machine—a 50% increase in
clock speed—with an identical memory system, a con-
siderable amount of additional code could be executed
within the required time.

4.3 Countermeasures against substitution
attacks

One can already see a kind of arms race developing: test
writers might add new elements to the checksum, while
adversaries develop additional circumventions. While
it is possible to change the algorithm continually, it is
likely that hardware constraints will limit the scope of
the test in terms of available side effects; all an attacker
must do is break the scheme on some hardware. While
we believe that the attackers’ ability to have the “last
move” will always give them the advantage, we now
consider some countermeasures and examine why they
are unlikely to be significantly more difficult to accomo-
date than those we have already explored.

To prevent the single page substitution attack, Gen-
uinity could fill the checksum code page with random
bits.

Genuinity could also use different performance
counter events or change the set used during the test.
However, since the authority precomputes the checksum
result, Genuinity must only use predictable counters in a
completely deterministic way; we can compute the ef-
fects of our malicious code on such counters and fix
them on the fly. For example, when the imposter check-
sum code starts executing instrutions that do not appear
in the original code, it disables the instruction counters,
and re-enables them after the extra instructions. Another
possible solution which we did not implement is to cal-
culate the difference in the number of instructions exe-
cuted by the imposter code and the original code, and
add this difference to the counter. We can treat other
counters similarly.

At least two other improvements are suggested in the
paper: self-modifying code and inspection of other in-
ternal CPU state related to instruction decoding. Since
our attack code is a superset of the legitimate checksum
code, and since we run on the same hardware (mod-
ulo clock speed) that we claim to have, neither of these
seems insurmountable. Clearly, self-modifying code
would require more sophisticated on-the-fly rewriting of
the attack code, but by simply using a slightly faster ma-
chine (with the same TLB and cache parameters) this is
easily overcome: the attack code is quite modular and
easy to insert. As for inspection of instruction decod-
ing, since the original code is a subset of our code, the
internal state for the original instructions should be the
same.

4.4 Response to countermeasures: the two
page substitution attack

In Section 4.3, we describe some countermeasures Gen-
uinity could take to prevent the single page substitution
attack. We pick the first of these, filling the code page
with random bits, and sketch a two page substitution at-
tack that defeats this countermeasure.

Suppose Genuinity fills the unused code page with
random bits, so the code page is not compressible. Then
the single page substitution attack does not work and the
imposter code must reside on a separate page.

We modify our attack somewhat to accomodate
this change. The first step is to identify an easily-
compressible page of code. Naturally, which particular
page is most easily compressible will depend on the par-
ticular build. Simple inspection of a recent Linux kernel
revealed that not only was the entire kernel compress-
ible by a factor of 3 (the original vmlinux kernel vs.
the compressed vmlinuz file), there were multiple 4K
contiguous regions containing either all zeroes or almost

all zeroes. Let us assume for the remainder of the discus-
sion that the page is all zeroes; it would take only minor
modifications to handle some non-zero values. In ad-
dition, since our hijacked page is referenced very infre-
quently (approximately one data read out of every thou-
sand) that even if it took a little time to “uncompress” the
data, this would likely not increase the execution time
significantly.

The key step is to “hijack” the page and use it to store
our imposter checksum code. The only memory region
this step requires modifying is the hijacked page. This
page, formerly zero-filled, now contains imposter check-
sum code.

The imposter code requires several fixups to preserve
the invariants in Table 1.

The pseudocode looks like this:

imposter_memory_node:
addr = next_LFSR()
if page_number is hijacked_page

// Preserve data cache
temp = memory[addr]
// Add the original byte value
sum += 0

else
sum += memory[addr]

Let us review the checklist of invariants:
1. Instruction TLB. Instructions only come from only

one physical page. To preserve references to the
physical page number, we substitute the physical
address of the original code page. To preserve the
miss count, we can run the original checksum code
in advance and observe the TLB miss count when-
ever it is incorporated into the checksum. Eventu-
ally, this miss count should stabilize. Recall that
the checksum code is divided into 22 code chunks,
each of which refer to up to 2 virtual addresses.
Since the instruction TLB on the Pentium is fully
associative and contains 48 entries, all 44 of these
virtual addresses fit into the ITLB. We estimate that
the TLB should stabilize quickly, so the observation
delay should not add significantly to the total time
between receiving the challenge from the authority
and sending our response. After observing the pat-
tern of miss counts, the imposter checksum code
can use these wherever the TLB miss count should
be incorporated into the checksum.

In our implementation of the single page substi-
tution attack, the ITLB miss count stabilizes after
a single iteration through 22 code chunks, so this
fixup is easy to accomplish.

2. Data TLB. The imposter checksum code performs
exactly the same pattern of memory loads as the
original code, so there are no changes to the DTLB.

3. Instruction cache. We simply fill the cache line with
the contents of the original code page prior to ex-
ecuting the code to incorporate the cache data into
the checksum. To do this, we need to encode the
original checksum code in instructions, just as we
did for the bit vector in the single page attack (Sec-
tion 4.1). We unfortunately cannot read data di-
rectly from the original code page without altering
the data cache.

4. Data cache. There is no change to the data cache,
since the imposter code performs the same memory
loads as the original code.

5. Branch counter, instruction counter. These are the
same as in the original attack.

5 Breaking the key agreement protocol:
denial of service attacks

At the key agreement protocol level, two denial of ser-
vice attacks are possible. The first is an attack against
the entity. Since there is no shared key between the au-
thority and the entity (the entity only has the authority’s
public key), anyone could simply submit fake Genuinity
test results for an entity, thereby causing the authority
to reject that entity and force a retest. A retest is par-
ticularly painful, since the Genuinity test must be run on
boot. Since the Genuinity test is designed to take as long
as possible, this DoS attack requires minimal effort on
the part of the attacker, since the attacker could wait as
long as the amount of time a genuine entity would take
to complete the test between sending DoS packets. It is
possible that Genuinity could fix this problem by chang-
ing the key agreement protocol, but this attack works
against the current implementation.

The second denial of service attack, analyzed in more
depth in Section 6.2, is against the authority. Genuinity
assumes that an adversary does not have a fast simula-
tor for computing checksums, and so neither does the
authority. The authority must precompute checksums,
since the authority can compute them no more quickly
than a legitimate entity. The original paper claims that
the authority needs only enough checksums to satisfy the
initial burst of requests. This is true only in the absence
of malicious adversaries. It costs two messages for an
adversary to request a challenge and checksum. The ad-
versary can then throw away the challenge and repeat
indefinitely. Further, the adversary can request a chal-
lenge for any type of processor the authority supports.
The adversary can choose a platform for which the au-
thority cannot compute the checksum natively. To make
matters worse, the authority cannot reuse the challenges
without compromising the security of the scheme, and
might have to deny legitimate requests.

5.1 Countermeasures against DoS attacks
To avoid the denial of service attack against the client,
Genuinity could assume that the client already has the
public key of the authority.

The second denial of service attack is more difficult
to prevent. The authority could rate limit the number of
challenges it receives, but this solution does not scale for
widely-deployed, frequently used clients such as AIM.

6 Practical problems with implementing
the Genuinity test

We have presented a specific attack on the checksum
primitive, and an attack at the network key agreement
level. Genuinity could attempt to fix these attacks with
countermeasures. However, even with countermeasures
to prevent attacks on the primitive or protocol, Genuinity
has myriad practical problems.

6.1 Difficulty of precisely simulating per-
formance counters

Based on our experience in implementing Genuinity, we
feel that it is likely to become increasingly difficult, if
not impossible, to use many performance counters for a
genuinity test. Not only are many performance counter
values unrepeatable, even with interrupts disabled, they
are the product of a very complex microarchitecture do-
ing prefetching, branch prediction, and speculative exe-
cution. Any simulator—including the one used by the
authority—would have to do a very low-level simula-
tion in order to predict the values of performance coun-
ters with any certainty, and indeed many are not certain
even on the real hardware! We do not believe that such
simulators are likely to be available, let alone efficient,
and may be virtually impossible; if the value of a per-
formance counter is off by even one out of millions of
samples, the results will be incorrect. This phenomenon
is not surprising, since the purpose of the counters is to
aid in debugging and optimization, where such small dif-
ferences are not significant. The only counters that may
be used for Genuinity are those that are coarser and per-
fectly repeatable: precisely the ones on which the ef-
fects of attack code may be easily computed in order to
compensate for any difference. Finally, differences in
counter architecture between processor families can se-
riously hamper the effectiveness of the test. Much of the
strength of Genuinity in the original paper came from its
invariants of cache and TLB information, much of which
are no longer available for use.

6.2 Lack of asymmetry
Asymmetry is often a desirable trait in cryptographic
primitives and other security mechanisms. We want de-
cryption to be inexpensive, even if it costs more to en-

crypt. We want proof verification for proof-carrying
code [Nec97] to be lightweight, even if generating
proofs is difficult. Client puzzles [DS01] are used by
servers to prevent denial of service attacks by leveraging
asymmetry: clients must carry out a difficult computa-
tion that is easy for the server to check.

Genuinity, by design, is not asymmetric: it costs the
authority as much, and likely more (because simulation
is necessary), to compute the correct checksum for a test
as it does for the client to compute it. This carries with
it two problems. First, it exposes the authority to de-
nial of service attacks, since the authority may be forced
to perform a large amount of computation in response,
ironically, to a short and easily-computed series of mes-
sages from a client. Second, it makes it no more expen-
sive for a well-organized impostor to calculate correct
checksums en masse than for legitimate clients or the
authority itself. We shall explore this latter possibility
further in Section 7.2.

6.3 Unsuitability for access control
The authors of the original paper propose to use Genuin-
ity to implement certain types of access control. A com-
mon form of access control ensures that a certain user
has certain access rights to a set of resources. Genuinity
does not solve this problem: it does not have any provi-
sion for authenticating any particular user. At best, it can
verify a client operating system and delegate the task to
the client machine. However, we already have solutions
to the user authentication problem that do not require a
trusted client operating system: use a shared secret, typi-
cally a password, or use a public-key approach. Another
kind of access control, used to maintain a proprietary in-
terest, ensures that a particular application is being used
to access a service. For example, a company may wish to
ensure that only its client software, rather than an open-
source clone, is being used on its instant-messenging
network. In this case, the trusted kernel would presum-
ably allow loading of the approved client software, but
would also have to know which other applications not to
load in order to prevent loading of a clone. The alter-
native is to restrict the set of programs that may be run
to an allowed set, but it is unlikely that any one service
vendor will get to choose this set for all its customers’
machines.

6.4 Large Trusted Computing Base
When designing secure systems, we strive to keep the
trusted computing base (TCB)—the portion of the sys-
tem that must be kept secure—as small as possible.
For example, protocols should be designed such that if
one side cheats, the result is correct or the cheating de-
tectable by the other side. Unfortunately, the entire client
machine, including its operating system, must be trusted

in order for Genuinity to protect a service provider that
does not perform other authentication. If there is a lo-
cal root exploit in the kernel that allows the user to gain
root privilege, the user can recover the session key, im-
personate another user, or otherwise access the service
in an insecure way. Operating system kernels—and all
setuid-root applications—are not likely to be bug-free in
the near future. (A related discussion may be found in
Section 6.5.1.)

6.5 Applications
Although two applications, NFS and instant messeng-
ing, are proposed by Kennell and Jamieson, we argue
that neither would work well with the Genuinity test pro-
posed, because of two main flaws: first, the cost of im-
plementing the scheme is high in a heterogeneous envi-
ronment, and second, the inconvenience to the user is too
high in a widely distributed, intermittently-connected
network.

6.5.1 NFS
The first example given in the original Genuinity paper
is that an NFS server would like to serve only trusted
clients. In the example, Alice the administrator wants
to make sure that Mallory does not corrupt Bob’s data
by misconfiguring an NFS client. The true origin of
the problem is the lack of authentication by the NFSv3
server itself; it relies entirely on each client’s authen-
tication, and transitively, on the reliability of the client
kernels and configuration files. A good solution to this
problem would fix the protocol, by using NFSv4, an
NFS proxy, an authenticating file system, or a system
like Kerberos. NFSv4, which has provisions for user au-
thentication, obviates the need for Genuinity; the trusted
clients merely served as reliable user authenticators.

Unfortunately, the Genuinity test does not really solve
the problem. Why? The Genuinity test cannot distin-
guish two machines that are physically identical and run
the same kernel. As any system administrator knows,
there are myriad possible configurations and misconfig-
urations that have nothing to do with the kernel or pro-
cessor. In this case, Mallory could either subvert Bob’s
NFS client or buy an identical machine, install the same
kernel, and add himself as a user with Bob’s user id.
Since the user id is the only thing NFS uses to authenti-
cate filesystem operations over the network once the par-
tition has been mounted, Mallory can impersonate Bob
completely. This requires a change to system configura-
tion files (i.e., /etc/passwd), not the kernel. The bug
is in the NFS protocol, not the kernel.

The Genuinity test is not designed to address the user-
authentication problem. The Genuinity test does nothing
to verify the identity of a user specifically, and the scope
of its testing—verifying the operating system kernel—is

not enough preclude malicious user behavior. Just be-
cause a machine is running a specific kernel on a specific
processor does not mean its user will not misbehave.
Further, even though the Genuinity test allows the en-
tity to establish a session key with the authority, this key
does no good unless applications actually use it. Even
if rewriting applications were trivially easy (for exam-
ple, IP applications could run transparently over IPSec),
it does not make sense to go through so much work—
running a Genuinity test at boot time and disallowing
kernel and driver updates—for so little assurance about
the identity of the entity.

6.5.2 AIM

The second example mentioned in the original Genuinity
paper is that the AOL Instant Messenger service would
like to serve only AIM clients, not clones. The Gen-
uinity test requires the entity (AIM client) to be in con-
stant contact with the authority. The interval of con-
tact must be less than that required to, say, perform a
suspend-to-disk operation in order to recover the ses-
sion key. On a machine with a small amount of RAM,
that interval might be on the order of seconds. On
wide-area networks, interruptions in point-to-point ser-
vice on this scale are not uncommon for a variety of rea-
sons [LTWW93]. It does not seem plausible to ask a
user to reboot her machine in order to use AIM after a
temporary network glitch.

6.5.3 Set-top game boxes

Although the two applications discussed in the origi-
nal paper are unlikely to be best served by Genuinity, a
more plausible application is preventing cheating in mul-
tiplayer console games. In this scenario, Sony (maker of
the Playstation) or Microsoft (maker of the Xbox) would
use Genuinity to verify that the game software running
on a client was authentic and not a version modified to
allow cheating. This is a good scenario for the authority,
since it needs to deal with only one type of hardware,
specifically one that it designed. Even in the absence of
our substitution attack (Section 4.1), Genuinity is vul-
nerable to larger scale proxy attacks (Section 7.2).

7 General attacks on Genuinity-like
schemes

We have described two types of attacks against this im-
plementation of Genuinity: one type against the check-
sum primitive, and one type against the key agreement
protocol. In this section we describe general attacks
against any scheme like Genuinity, where

1. The authority has no prior information other than
the hardware and software of the entity, and

2. The entity does not have tamper-proof or tamper-
resistant hardware.

7.1 Key recovery using commonly used
hardware

Clearly, the Genuinity primitive is not of much use if the
negotiated session key is compromised after the test has
completed. Since the key is not stored in special tamper-
proof hardware, it is vulnerable to recovery by several
methods. Many of these, which are cheap and practical,
are noted by Kennell and Jamieson, but this does not
mitigate the possibility of attack by those routes. Multi-
processor machines or any bus-mastering I/O card may
be used to read the key off the system bus. This attack is
significant because multiprocessor machines are cheap
and easily available. Although the Genuinity primitive
takes pains to keep the key on the processor, Intel x86
machines have a small number of nameable general-
purpose registers and it is unlikely that one could be ded-
icated to the key. It is not clear where the key would be
stored while executing user programs that did not avoid
use of a reserved register. It is very inexpensive to de-
sign an I/O card that simply watches the system bus for
the key to be transferred to main memory.

7.2 Proxy attacks: an economic argument
As we have seen, by design the authority has no particu-
lar computational advantage over a client or anyone else
when it comes to computing correct checksums. Cou-
ple this with the fact that key recovery is easy in the
presence of even slightly specialized hardware or mul-
tiprocessors, and it becomes clear that large-scale abuse
is possible. Let us take the example of the game con-
sole service provider, which we may fairly say is a best
case for Genuinity—the hardware and software are both
controlled by the authority and users do not have as easy
access to the hardware. In order to prevent cheating, the
authority must ensure that only authorized binaries are
executed. The authority must make a considerable in-
vestment in hardware to compute checksums from mil-
lions of users. However, this investment must cost suf-
ficiently little that profit margins on a $50 or $60 game
are not eroded; let us say conservatively that it costs no
more than $0.50 per user per month. Now there is the op-
portunity for an adversary, say in a country without strict
enforcement of cyberlaws, to set up a “cheating service.”
For $2 per month, a user can receive a CD with a cheat-
enabled version of any game and a software update that,
when a Genuinity test is invoked, redirects the messages
to a special cheat server. The cheat server can either use
specialized hardware to do fast emulation, or can run the
software on the actual hardware with a small hack for
key recovery. It then forwards back all the correct mes-
sages and, ultimately, the session key. The authority will

be fooled, since network latency is explicitly considered
to be unimportant on the time scale of the test.

8 Conclusion
Genuinity is a system for verifying hardware and soft-
ware of a remote desktop client without trusted hard-
ware. More recently, the SWATT system [SPvDK04] of
Seshadri et al. has attempted to perform a Genuinity-
like software-only attestation on embedded devices with
limited architectures. It relies on hardware-specific ap-
proaches for each platform and requires physical con-
tact with the device. Security, particularly in the face of
radio-based proxy attacks, has not yet been established
in practice even for this limited case.

We presented an attack that breaks the Genuinity sys-
tem using only software techniques. We could not obtain
the original Genuinity code, so we made a best effort
approximation of Genuinity in our attacks. Our substi-
tution attacks and DoS attacks defeat Genuinity in its
current form. Genuinity could deter the attacks with
countermeasures, but this suggests an arms race. There
is no reason to assume Genuinity can win it. Kennell
and Jamieson have failed to demonstrate that their sys-
tem is practical, even for the applications in the origi-
nal paper. These criticisms are not specific to Genuinity
but apply to any system that uses side effect information
to authenticate software. Therefore, we strongly believe
that trusted hardware is necessary for practical, secure
remote client authentication.

Acknowledgements
We thank Rob Johnson for feedback and suggestions on
the substitution attack. We also thank Naveen Sastry and
David Wagner for many invaluable comments and in-
sights. David Wagner also suggested the set-top game
box application. Finally, we would like to thank the
anonymous referees for several useful suggestions and
corrections.

A Addendum
Shortly before the conference at which this paper was presented, Kennell and Jamieson published a rebuttal to the
attacks described in this paper [KJ04]. This addendum is our response to their rebuttal. In the rebuttal, Kennell and
Jamieson claim that our attacks are invalid or broken and that Genuinity is indeed practical for real-world applications.
Unfortunately, many of their criticisms are based on pure speculation and hypothesized, unpublished extensions to
their original system. Text from Kennell and Jamieson is indented below.

Section 3
[Shankar, Chew, and Tygar] neglected to follow development guidelines in construction of a genuinity test.

The “development guidelines” of the genuinity test are underspecified in the original paper; also, the algorithm
itself, independent of the development process, is underspecified. We asked for source code three times to clear
up ambiguities with no results, but did not receive it. As we state in the main paper, we have made reasonable
assumptions.

[Shankar, Chew, and Tygar] attempted to apply specific nuances of an example testcase that was generated
for a specific microprocessor [the Pentium] to a general class of microprocessors.

There was only one example testcase in the original paper, so we concentrated on analyzing that. The important thing
is that because the test is somewhat particular to each CPU, we cannot assume even that the same approach will work
without proving it for each case. If we rely on techniques such as access to particular LRU bits, we need a different
test for each CPU variant. One CPU variant for which there is not an unbreakable test would compromise the system.

The authors acknowledge that our described example was generated for a non-MMX Pentium processor.
However, since they did not have ready access to such a system on which to evaluate their attacks, they used
a Pentium-4 a very different type of microprocessor to evaluate such a test. In so doing, they discounted the
architectural artifacts that were different without taking advantage of the newer features that would have
made the test more resilient to attack.

Without specific implementations or descriptions of genuinity on other processors, using ”newer features that would
have made the test more resilient to attack” is only speculation. We analyzed their scheme as described in the
published paper without source and without the full specification. Furthermore, we used the Pentium 4 as a faster
version of the Pentium. If the scheme worked on the Pentium, it should work on the Pentium 4.

Section 3.1
Although the quoted time expansion, alone, may still fall within the Authority’s deadline, it does not include
the time necessary to extract the testcase from the network, analyze the testcase, find the appropriate place(s)
to insert the attack code, repackage the testcase in such a manner so as to forge the Authority s signature
(discussed previously in Section 2), and re-send the test to the Entity. Even if the attack was performed
in situ on the target Entity, the analysis required to determine the multiple points to re-instrument the code
would require a long period of time. Because every genuinity test consists of a unique arrangement of code,
these steps are always necessary to initiate a substitution test. These delays were not considered by the
authors.

This section assumes a man-in-the-middle attack against the Entity, which we never claimed. In fact, we say in our
paper that using the public key in the challenge prevents this.
A clock speed increase might give, say, 50% more time on the entire test with no effort. The claim that instrumenting
the checksum code “would likely take a long period of time” is speculation, not analysis at this point. To prove this
the authors could release the original Genuinity code and allow other people try to instrument it. We believe that
based on success of dynamic instrumentation tools such as Pin and Dtrace, it is possible to instrument quickly; 50%
of the test time is several seconds, which on a modern CPU is ample time.

The fact that the genuinity test illustrated in our example had only 22 nodes, only one of which interrogated
the caches, was simply an artifact of the random generation process of the Authority. Testcases are readily
generated with fewer or many more nodes. A test may also have multiple cache interrogation nodes. Gen-
erally, it is desirable to generate tests in such a manner that they completely fill the pages that they reside in.

Doing so complicates the necessary analysis to find insertion points for the imposter code. It also makes it
more difficult for an attacker to determine how the imposter code can repair the damage created by its own
presence.

The number of nodes is not mentioned in the original paper as a security parameter. We went by the published
description. Further, this is an “arms race” situation: we can add more nodes and make it more difficult, but it is not
a fundamental improvement. There is no doubt that the Genuinity test could be made more complex, but until it is
published, its merits cannot be judged.

Both the signed copy of the test sent over the network and the in-kernel public key can be exposed to the
memory checksum, resulting in a further broadening of necessary attack code exclusions. For this reason
alone, it is doubtful that a remote substitution attack is possible due to the limited memory constraints of
the test environment.

This is incorrect. Keeping more data in the kernel memory to be checksummed does not make the attack harder. We
would not modify the original data. We simply would not necessarily use the signed copy of the code.

The ability for an attacker to augment or diminish the core genuinity test would violate our stated principle
that there must be some evidence that the code being tested was actually being run. Because this attack was
implemented on a Pentium-4, the appropriate meta-information would have been different than the ones
described in our example. However, the authors chose to limit the utilized metainformation sources to only
the ITLB miss count and branch count, thereby allowing an imposter to be inserted and run anywhere on the
memory page used for the test. The code that the authors attacked did not constitute a complete genuinity
test.

This point begs the question: apparently Genuinity pre-supposes that the code being tested is actually being run, but
that is also what Genuinity is trying to prove.

Had this Pentium-specific example been run and attacked on a Pentium, the instruction cache, by virtue
of the fact that it is a complex indicator of what is being run, would have still exposed the presence of
introduced attack code.

The tech report does not specify what data is used in computing the checksum. The exact text from the original
paper is that “one node accessed the tag and replacement information for the data cache and instruction cache cells.”
Nowhere does it mention LRU bits. (Later CPUs do not have the ability to interrogate this bit, by the way, so Genuinity
as an approach certainly cannot rest its practicality on those bits.) In the absence of more details, we preserved the
entire cache contents.
The testability register argument is an artifact of the Pentium and is not relevant to later CPUs. The Genuinity
developers would need to demonstrate its usefulness on subsequent models for any practical deployment. In addition,
it is neither a mistake nor misinterpretation on our part. We went by the published description of the system, not the
set of possible extensions or modifications.

Section 3.1.1
The authors incorrectly state that the Pentium has a 48-entry, fully-associative ITLB. We are not aware of
any x86 microprocessor with such an ITLB con- figuration. The Pentium has a 32-entry, 4-way setassocia-
tive ITLB [1].

Yes, this was an error on our part, but does not alter the fundamental nature of our attack. In addition, many CPUs,
such as the MIPS series, have fully software-managed TLBs.

The authors assume that it will be possible to run the test in advance to determine how and when its ITLB
miss count will stabilize. This assumes that 22- nodes of a genuinity test (plus 22 imposter nodes) will
be used with a 48-entry ITLB. This implies that, in addition to all of the delays involved with analyzing
and modifying the uniquely-generated test, this attack also requires a first run to characterize the ITLB fill
pattern. Even using a much faster execution host, this will certainly miss the Authority s deadline. In reality
a 22-node testcase would not be appropriate for a 48-entry, fully-associative ITLB. There must always be

more nodes in the genuinity test than the associativity of the ITLB in order to avoid reaching a steady-state
condition. If not, the miss count is worthless as an execution metainformation source. Simulation of the
ITLB (including full 4-way pseudo-LRU evaluation) is necessary for a two-page substitution attack.

Note that in the two-page attack (Section 4.4), if we change the page table to point to the attack code page instead of
the real code page the virtual-instruction-page access pattern of the attack code is identical to the original (of course
there is some extra code in some of the nodes). So the only real issue is substitution for the page table data itself.
That is handled using the regular substitution technique. We did not use this approach in our paper because it is more
complex, but in light of these concerns, we offer it now.

The authors assume that the testability registers can be used to insert values into the icache in order to
mimic the natural effects. Artificial insertion of values into the icache of a running system would be likely
to eventually replace a line that was currently being executed. This could cause the flow of execution to be
changed in a manner that would undo the imposter s intent. It might also cause the processor to halt because
of illegal instructions if it fetched a new cache line while that line was being updated. Furthermore, this
approach also does not obviate the need for the same icache replacement simulation as would be required
for the single-page version. There must be some stored state to indicate what configuration the icache
should be in under natural circumstances.

Upon further reflection, we do not actually need to stuff the cache with the “correct” entries – we can incorporate
saved data directly as in the one-page attack.

As the complexity of a proposed substitution attack increases, so does the need for simulation. Although
the problem of simulation latency may be mitigated by using a faster processor implementation, it does not
address how or where to store the additional simulated state. For instance, full simulation of a single
Pentium cache set requires the storage of two valid bits, one LRU bit and two 20-bit address tags. Although
the additional required state could be reduced by symbolically encoding all possible line states for the set, it
would still require storage and manipulation of a few bits. Even more bits would be required for simulation
of a mechanism such as a TLB set because of the higher associativity.

Storage of the values in memory would lead to either corruption of (or full simulation of) the DTLB
which has already been identified as a difficult problem. The x86 architecture has a very constrained register
set, so finding space to store and manipulate values there requires a careful, efficient encoding. Even for
an architecture with more registers, a mechanism to detect such an attack would be easily incorporated into
a genuinity test by simply initializing all extra registers, using them for temporary storage of intermediate
values, and occasionally incorporating them into the memory checksum.

We note that even normal genuinity tests use a hidden bit of storage (for instance, in one of the x86
debug registers) to indicate whether the running test should be used only to generate results for a test
without subsequently jumping into secure operation. It is possible to preserve some such storage without
allowing its illicit use to proliferate.

The authors claim that the problem of augmenting their attacks to be able to work against additional
measures such as self-modifying code and dynamicallyvarying performance counters does not seem insur-
mountable. However, these attacks would also require additional state, much more aggressive analysis, and
further instrumentation of code unrelated to the imposter. Simulation becomes the only mechanism likely
to succeed.

Finally, although the authors show how to cleverly implement imposter code that avoids the use of
memory accesses, additional branches are introduced into the flow of execution. Such branches will have
an impact on the branch predictor and this will have a subsequent impact on other processor subsystems
due to the entanglement of meta-information discussed in the next section.

Again, some of the objections are Pentium-specific, and it is not clear that they would apply in the absence of good
meta-information (which we discuss later). There is nothing about a “hidden bit of storage” in the original paper.
There is no justification for the ensuing claim that ”it is possible to preserve some such storage without allowing its
illicit use to proliferate”. There is also the problem of additional memory on video cards, sound cards, network cards,
etc. being used to store data, making substitution easy. By using uncached reads and writes (generally supported
for I/O devices), one can avoid changing the meta-info. Unless the Authority is willing to precompute test results
for every possible client hardware configuration—and perform hardware-specific reads and writes—this out-of-band
attack is unpreventable.

A.1 Obtaining meta-information is possible
The authors of the attacks make several claims that the meta-information sources found on the Pen-

tium, as well as other processors, do not produce deterministic values and are therefore unacceptable for
incorporation into a genuinity test. Intuitively, this is a difficult notion to accept since the internal state of a
microprocessor is finite. At some level, its entire operation must be deterministic. While we readily grant
that certain operations of the processor may vary according to unpredictable delays in execution (e.g. dy-
namic memory refresh contention), as long as processor decisions are not based on these values, operation
will remain predictable. A case in point is our use of a timestamp counter to generate a random, or at least
unpredictable, value due to timing variations introduced by the memory subsystem. As long as no decisions
are made based on this value, it should not affect the operation of the processor.

Ostensibly, internal race-conditions that exist within a complex speculative processor are similarly de-
terministic. Given two identical processors with equivalent state, running the same code, with the same
memory contents, one would have every expectation that they will produce the same values. Often there
is some difficulty in forcing a particular processor into a deterministic state. This situation requires some
investigation in order to find the correct manner of doing so. For instance, for the Pentium, simply invali-
dating the caches and TLBs does not necessarily force all of their LRU information into the same state each
time. However, some post-processing instruction sequences can be executed reasonably quickly that will
produce a definite start state.

Another difficulty in using these meta-information sources lies in the possibility of predicting their
values using a simulator. Certainly, the simulator must match the full functionality of the processor, but this
is tedious, time consuming, and, very often, difficult because of undocumented corner cases and processor
implementation bugs. Because some subsystems affect others, the necessary complexity of the simulator
often grows to an unmanageable level. For instance, the branch predictor of a processor indirectly affects the
ITLB since mispredicted branches cause the wrong line (from the wrong page of memory) to be fetched.
Even though the ITLB miss count may be preserved, low-level access to the ITLB may still show the
effects. In the case of the Pentium, it is easy to initialize the branch predictor to a certain state. However,
incorporating branch prediction functionality into a simulator proved to be harder than it was worth. In order
to be able to legitimately compare an example of such a test to a simulator, we instead used a genuinity test
for which branch prediction was disabled. For most purposes, in order to avoid the need to create precise,
high-performance simulators, we advocate using native calculation of the testcase results.

Finally, we must also consider trends in future microprocessors in order to anticipate different sources
of meta-information. Although it is possible to envision a microprocessor for which no execution meta-
information is made available, in reality it will always be obtainable. For instance, a mispredicted branch
will always take longer than a correctly predicted branch. Furthermore, as architectural complexity in-
creases, there is a growing need to use internal information sources simply as an indication of whether
or not a processor is functioning correctly. This was the case even with the Pentium and was the moti-
vation for creation of the testability registers. There are many undisclosed and undocumented sources of
meta-information hidden in other microprocessors as well.

There is no evidence that modern processors have enough predictable counters or test registers to make Genuinity
more secure. In fact, when writing our simulation, we did everything we could think of to clear the CPU state and
still could not get repeatable results, on something as straightforwards as instruction count. Kennell and Jamieson
concede that Authority would need the real hardware to get the test results, which presents problems (see below).
Moreover, meta-information will always be available, but maybe not precise, repeatable meta-information. In fact,
many performance counters in later Pentiums are specifically described as not repeatable. There is an ad hoc argument
for the determinism of CPUs, but if they were fully deterministic, how do we account for the variation in cycle
count? CPUs are trending towards decoupling parts of the chip, which makes central gathering of statistics difficult.
Collecting intermediate values in a synchronous fashion is likely to be prohibitively expensive, and manufacturers
have no incentive to do so.

Section 3.3.1
The proposed DoS attack against the Entity involves an attacker that waits for an Entity to request a chal-
lenge from an Authority. While the Entity computes the result, the attacker sends invalid responses to the
Authority disguised to look as though they were sent by the Entity. The goal is to get the Authority to send

refusals to the real Entity in order to prevent it from making forward progress in establishing a relationship
with the Authority. However, such an attack is easily detected by the Authority since multiple responses
from the same Entity indicate the presence of an adversary. The Authority must record the time that each
response packet is received. However, it can accumulate the responses and simply defer evaluation until
some reasonable time has elapsed. Each response can be evaluated to determine if any one of them is cor-
rect and received before the appropriate deadline. The Authority sends a qualification packet to the Entity
(and, likely, the adversary as well) that carries no information other than an indication that the Authority is
ready to negotiate a key exchange. Only the Entity that has passed the genuinity test will be able to respond
to the Authority correctly. Subsequent attempts by the attacker to send invalid data for the key exchange
will also be detected.

In attempting to fix the DoS attack we proposed, Kennell and Jamieson have introduced another one. Now the
Authority must maintain an arbitrary amount of state for at least the length of time needed to compute a checksum,
on the order of tens of seconds. This problem could be solved with cryptography to bind a given challenge to its
response.

A.2 DoS attacks against the Authority are hard
The proposed DoS attack against the Authority rests on the assumption that computation of the correct

checksum value for a particular uniquely-generated genuinity test must always be performed by the Au-
thority using a simulator. However, we did describe (in Section 5.2 of [3]) a way of precomputing testcase
results natively using systems under the direction of the Authority that are already known to be genuine.
Without the availability of a simulator there is naturally some challenge in getting the Authority s testcase
generator bootstrapped for each of the supported architectures. We can accomplish this by forcing the Au-
thority to trust a known-good system that is physically secure in order to generate initial testcase results.
Once other Entities are known by the Authority to be genuine, they can each be instructed not only to
compute testcase results but to generate the testcases as well, allowing the Authority to off-load much of its
work. While testcases can be constructed during regular operation of the Entity, the evaluation of that test-
case must be done with interrupts temporarily turned off. From the perspective of a user, this would appear
to be a short pause. It is best to avoid doing this to non-idle Entities with interactive users. Evaluation of
testcases on either idle Entities or non-idle Entities with non-interactive use would not cause a perceptible
problem. Groups of known-genuine Entities can thereby generate new testcases much faster than a single
Entity can use them.

A number of policies can be constructed to prevent the Authority from depleting its supply of testcases
for a particular architecture. First, it is reasonable to expect that an Entity that fails a genuinity test be denied
additional attempts for a progressively longer period of time. Indeed, at some point, multiple failures from
a given IP address (or group of IP addresses) are more likely an indicator of either an attempted attack or a
general failure of the system. Second, it would be reasonable for an Authority to maintain jurisdiction over
zones of IP addresses from which it might expect requests for genuinity test challenges rather than serving
as a global Authority.

The tech report says the Authority will use other systems to compute the test. In effect, then, those other systems are
part of the Authority. They cannot do useful work while computing a test result. The next paragraph is just a weak set
of suggestions for preventing general DoS attacks, which is still very much considered an open problem. In fact, with
network address translation (NAT), one malicious user could block a number of other users on the same small set of
IPs. That is denial of service. Even worse, a malicious user behind a router with no egress filtering enabled (which is
most routers) could simply spoof arbitrary IP addresses. Furthermore, separating legitimate from illegitimate requests
is an open problem.
There are therefore two cases: a large-area Authority, which is subject to DoS; and a small-area one, for which having
many machines generate4 test results is unreasonably expensive.

A.3 Genuine entities can act as reliable NFS clients
Our example involves Alice, a scrupulous system administrator, who tends to the needs of a number of

adversarial client users. Among them are Bob, a hard-working NFS user, and Mallory, a thief. Bob would
like to use a collection of remote computer systems (which Alice does not maintain) for the purpose of
performing a large, distributed computation. Bob requires that these systems have access to Alice s NFS

server. Mallory would like to subvert one or more of the NFS clients in order to gain access to Bob s data.
For the sake of example, we might even assume that the machines are physically accessible to Mallory.

Alice begins by setting up an Authority system that will create and dispense genuinity tests. The remote
Entities, running without the use of their local disks (as we describe in Section 5 of [3]), will not be subject
to either the configuration of their local administrator, nor are they expected to be modifiable by Mallory.
Each Entity requests, evaluates and passes a genuinity test. They remain under the administrative control of
the Authority (and, transitively, Alice). Thereafter, each Entity negotiates with the Authority to perform a
key exchange after which they can communicate securely with each other. In particular, they also negotiate
IPsec keys for transparent encrypted and authenticated encapsulation of network packets. If we assume
the Authority is the NFSv3 server, the Entities can then be trusted to mount its NFS exports. The Entities
are known to be trustworthy, the server is assumed to be trustworthy, and the network transport is secure.
Some additional negotiations are required to allow the Authority to enable a peer NFS server to use IPsec
encapsulation between itself and the Entities which the Authority has found to be genuine.

Bob is allowed to remotely log in to the systems which are running under the administrative control
of Alice s Authority. This may be done by either manually creating local accounts or using a network
authentication mechanism such as LDAP. Mallory might even be allowed to log in as well, either remotely
or on the console. The usual Unix file permission mechanism applies to the gen- uine Entities as well as
it does for any known physicallysecure system. In order for Mallory to subvert a knowngenuine Entity, it
would be necessary to physically attack the system via its memory bus. We discuss weaknesses such as this
in Section 4.3 of [3].

To further clarify the situation, we correct some of the authors misunderstandings. First, neither Bob
nor Mallory act as administrators of the remote Entities and cannot misconfigure the systems. They are all
under the administrative control of Alice s Authority. This means that the Authority will instruct the Entity
as to what filesystems to mount at boot, what peripherals it should use and what daemons it will run. We
also reasonably assume that Alice knows what she s doing. Second, using NFSv4 instead of NFSv3 does
nothing to augment (or diminish) the security of the system. The negotiated IPsec encapsulation ensures
that the file system transport is secure as well as any distributed user authentication system that Alice puts
in place.

The authors correctly point out that our system was not designed to address user authentication. Gen-
uinity of computer systems is an orthogonal issue with respect to authentication in the same sense that
secure network routing is orthogonal to user authentication. However, it is possible for one to leverage the
other to provide augmented services.

The authors also astutely note that our system does not ensure globally-unique identification of systems.
Generally, this is unnecessary, so long as the Authority has some reliable means of interacting with a known-
genuine Entity. For instance, a genuinity test and its subsequent negotiations should be capable of transiting
a firewall.

Finally, we note that NFSv4, although it is a desirable extension to the NFS suite, would not serve
as a singular solution to the particular problem we posed. If Alice exported an NFSv4 share to a remote
system for which Bob had remote access and for which Mallory had root access, all that Mallory would
be required to do is wait for Bob to log in, change user to Bob, and read and modify anything. Even for
modern credential systems that we are aware of, user processes are generally equivalent in capability in
order to allow systems like cron to function without requiring a password for filesystem access. In any
case, if Mallory is able to gain root access, the system s credential policies could be easily modified as well.

While legitimate clients might not have disks, certainly an attacker would. Genuinity could not tell remotely if that
were the case. It is also unreasonable to say that Mallory might have physical access but not root access. If Mallory
does not have root access, what is the threat model? If there is a machine configured by Alice talking to a server
configured by Alice with no physical attacks possible, why even run the Genuinity test?
The NFSv4 criticism is a red herring, and the details of NFSv4 are not important; what is important is that it is best
to use a legitimate authenticating file system. The point is that NFS is secure here if and only if Genuinity is secure
and the client machines can not be controlled by an attacker. That is trivially true, but not particularly helpful in the
real world.

A.4 Other network applications are possible

One application that we did not suggest that the authors of the attacks did was the situation of a set-top
box used for brokered or distributed gaming. Since we show that substitution attacks and several other
forms of attack are unlikely to be achievable, this scenario presents an ideal opportunity for the use of a
genuinity test. The reasons for this are as follows: ”

The full specifications of the hardware are known in detail, thereby allowing the development of a
genuinity test that uses as many execution metainformation sources as possible. ”

The owner of such a system could select which Authority would be of greatest use, enabling the de-
velopment of a market structure whereby game providers (or other service providers) could compete for
clients. ”

Because the system would not rely on internal hardware-based trusted secrets, it could still be used
for general purpose tasks when the original service provider eventually drops support. Meanwhile, other
systems that rely on an internal hardwareenforced trusted computing base (such as the Xbox) are doomed
to extinction once their support ends since there will be no one to sign software that will run on them.

The authors propose various attacks against such hardware involving several forms of direct interroga-
tion of hardware to discover a negotiated key. We also mentioned this in our description of attacks as being
the most likely means of breaking in to a known-genuine Entity. The authors suggest that an attack of this
nature would be easily mounted by use of an ordinary bus-mastering I/O card. However, it is unlikely that a
secret would be stored in a location mapped into available I/O space. A memory bus attack is a more viable
approach. Nevertheless, such an attack would be complicated because the hardware needed to snoop the
memory bus is not readily available, hard to build, and difficult to use. Furthermore, the location of the key
could be obfuscated by the system, and active techniques could be employed to avoid leaking secret cache
values to the external memory bus.

One illustrated attack on a memory bus [Hua02] involved a system that used trusted hardware to hold
a secret key. Once the complexity of building the memory snooping system was overcome, this attack was
somewhat simpler than an attack on a general purpose system because the bus transactions involving the
key were easily identified. After the secret key was discovered by snooping the memory bus on one system,
it (and all other systems like it) could be modified and exploited relatively easily since they all used the
same secret key.

By contrast, since our method does not involve static keys in hardware, compromise of one system
does not imply a compromise of all systems. Furthermore, the only way to leverage one compromised
system to exploit others would be to set up an infrastructure as the authors suggest with their economic
attack. A primary recommendation of the work presented in [2] was that all chip-to-chip busses of the
system should be dynamically encrypted. In a set-top box scenario, such a mechanism could actually be
implemented without risk of backwards-incompatibility with other systems, and this threat, as well as the
remaining possible hardware attacks we illustrated in Section 4.3 of [3], are eliminated. Note that memory
bus encryption can and should be done without the need for static stored secrets in the hardware in order to
avoid the problems of vendor lock-in and obsolescence pointed out above.

If Genuinity will not work economically for game machines, it is unlikely to do so for other apps. The answer is that
if you did that, you could do this right. Genuinity is a terribly complicated solution if we consider trusted hardware.
The IBM trusted platform module (TPM) now costs $1, probably less than the monthly cost of running all those
(real-hardware) Genuinity tests. We know how to bootstrap from it to a secure kernel in a lightweight fashion already
(see Sailer et al. [SZJvD04]).

A.5 Software-only systems are not the subject of genuinity tests

The authors claim that we described our system to fill a need in authenticating software systems. Indeed,
the title of their paper seems to promulgate this misunderstanding. In particular, they claim that we proposed
our system to be used for authenticating AOL Instant Messenger (AIM) clients. We did refer to AIM as
an example of a failed form of software-only attestation. We did not and do not claim that a genuinity test
can serve as a discriminator of software alone. Although a known-genuine system (hardware and software)
could be used to ensure that an arbitrary user did not invoke an illegitimate form of software, this is not the
type of problem we are attempting to solve.

We thought that the point of using Genuinity is to verify software, which happens to be impossible without using
hardware. Substitute the word “kernel” for “AIM” and our argument still holds (or, say AIM is built-in to the kernel)
– any user of a wireless network has experienced multi-second glitches in the network, which would cause a Genuinity
retest. The point is that network service interruptions are on the scale of the time it takes to suspend a computer and
steal the key. This in itself is a DoS attack. If an attacker can saturate a router for several seconds, he could cause the
reboot of a large number of machines.

References
[DoD85] DoD. Standard department of defense trusted computer system evaluation criteria, December 1985.
[DS01] Drew Dean and Adam Stubblefield. Using client puzzles to protect TLS. In 10th USENIX Security

Symposium. USENIX Association, 2001.
[Gro01] Trusted Computing Group. Trusted computing group main specification, v1.1. Technical report, Trusted

Computing Group, 2001.
[Hua02] Andrew Huang. Keeping secrets in hardware: The microsoft xbox case study. In CHES2002, 2002.
[Hua03] Andrew Huang. Hacking the Xbox: an introduction to reverse engineering. No Starch Press, July 2003.
[Int] Intertrust. Digital rights management overview. http://www.intertrust.com.
[Int03] Intel. Model specific registers and functions. http://www.intel.com/ de-

sign/intarch/techinfo/Pentium/mdelregs.htm, 2003.
[KJ03] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote computer systems. In 12th

USENIX Security Symposium, pages 295–310. USENIX Association, 2003.
[KJ04] Rick Kennell and Leah H. Jamieson. An analysis of proposed attacks against genuinity tests. Technical

Report 2004-27, Center for Education and Research in Information Assurance and Security, 2004.
[LTWW93] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On the self-similar nature

of Ethernet traffic. In Deepinder P. Sidhu, editor, ACM SIGCOMM, pages 183–193, San Francisco,
California, 1993.

[Mic] Microsoft. Next generation secure computing base. http://www.microsoft.com/resources.
[Nec97] George C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 106–119, Paris, France, jan 1997.
[NIS04] NIST. The common criteria and evaluation scheme. http://niap.nist.gov/cc-scheme/, 2004.
[SPvDK04] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla. Swatt: Software-based

attestation for embedded devices. In IEEE Symposium on Security and Privacy, 2004.
[SPWA99] S. Smith, R. Perez, S. Weingart, and V. Austel. Validating a high-performance, programmable secure

coprocessor. In 22nd National Information Systems Security Conference, October 1999.
[SZJvD04] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and implementation of

tcg-based integrity measurement architecture. In 13th USENIX Security Symposium, 2004.
[YT95] Bennett Yee and J. D. Tygar. Secure coprocessors in electronic commerce applications. In First USENIX

Workshop on Electronic Commerce, pages 155–170, 1995.

