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Abstract

Partial order time expresses issues central to many
problems in asynchronous distributed systems, but
su�ers from inherent security and privacy risks. Se-
cure partial order clocks provide a general method to
develop application protocols that transparently pro-
tect against these risks. Our previous Signed Vector
Timestamp [32] protocol provided a partial order time
service with some security: no one could forge depen-
dence on an honest process. However, that protocol
still permitted some forgery of dependence, permitted
all denial of precedence, and leaked private informa-
tion. This paper uses secure coprocessors to improve
the vector protocol: our new Sealed Vector Times-
tamp protocol detects both the presence and absence
of precedence even in the presence of malicious pro-
cesses, and protects against some privacy risks as well.
Our new protocol solves previously open security prob-
lems, and provides a foundation for incorporating se-
curity and privacy into distributed application proto-
cols based on partial order time.

Keywords: Distributed systems, privacy, security,
secure coprocessor.

1 Introduction

Motivation Partial order time [9, 17, 21, 24, 40]
is central to solving application problems in asyn-
chronous distributed systems. Explicitly providing a
partial order time service simpli�es and clari�es the
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task of protocol design for applications including snap-
shots and global states [5, 19, 22], deadlock detection
[16, 20, 34], immediate ordered service [15], and opti-
mistic rollback recovery [14, 23, 31, 33].

However, while real time can be determined from an
independent physical device, partial order time can-
not be determined in isolation. Tracking partial or-
der time requires collecting and sharing information.
Consequently, partial order time exposes protocols to
security risks. Is the information a process receives
correct? Can shared information be used for dishon-
est purposes?

Encapsulating a system's dealings with partial or-
der time into a single time service provides an arena to
examine and resolve security and temporal issues for
protocol design. (We develop this material in [30].)

This Paper In this paper, we use new develop-
ments in inexpensive tamper-proof hardware to build
the Sealed Vector Timestamp protocol, which provides
stronger security and privacy protection than any pre-
vious protocol. Sealed Vectors solve previously open
problems from [26] by preventing dishonest processes
from forging dependence on any events, and by pre-
venting dishonest processes from denying dependence
(if malicious processes cannot communicate covertly).
(Even with covert communication, Sealed Vectors pro-
vide some protection against denying dependence.)
Sealed Vectors also move beyond previous work by ad-
dressing privacy risks, and by providing secure clocks
for partial orders where information ow does not im-
ply precedence.

Section 2 reviews partial order time. Section 3 dis-
cusses the inherent security and privacy risks. Sec-
tion 4 surveys the defenses and presents our new pro-
tocol. Section 5 discusses our new protocol and con-
siders some directions for future research.
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2 Clocks for Partial Order Time

Partial order time (POT) is the major alternative
time model to global sequential time. Suppose our
asynchronous system consists of a collection of n pro-
cesses (each of which experiences a linear sequence of
events), real time clocks do not exist, and the dura-
tion between consecutive events at a process is unpre-
dictable. Processes communicate by passing messages
that arrive at most once after an unpredictable delay.

We represent the behavior of this system as the
POT directed graph. For each event, construct a
node; for each process, draw edges connecting consec-
utive events; for each received message, draw an edge
from the send event to the receive event. The transi-
tive closure POT determines a partial order on events.
We write A �!B to indicate that event A precedes
event B in this order; we write A �! B when A pre-
cedes B, or A and B are the same event; we write
A = !B to indicate that A and B are incomparable
under the order. Incomparable events are concurrent:
neither event could have inuenced the other.

We consider clocks for partial order time that al-
low processes to determine the precedence (or concur-
rency) of events during a computation. At some event
C, process p sends the query Precedes(A;B) to its
clock to learn whether or not event A precedes event B
in the partial order. A natural way to build clocks for
partial orders where precedence implies information
ow is to use timestamps. When an event A occurs, a
packet of data is generated comprising the timestamp
T (A) of event A. The timestamp is passed along with
the event name, and carries su�cient information to
sort the event relative to other events.

Vector Timestamps are a well-known method for
partial order clocks [8, 20, 33]. Each process maintains
a local event counter, and timestamps each event A
with a vector V(A). This vector contains one entry
for each process. The process q entry of V(A) is the
index of the maximal q event that precedes or equals
A. We adopt the convention that a global initial event
? precedes all other events.

The linear ordering of events at each process sug-
gests a natural ordering on vector timestamps: for vec-
tors V and W , we say that V precedes W (written
V � W ) if each entry of V precedes or equals the cor-
responding entry of W , but V 6=W .

It follows directly that vector timestamps function
as clocks.

Theorem 1 8A;B V(A) � V(B) () A�!B

Vector timestamps are easy to implement. Each
process p maintains a vector V for its most recent

event. When a new event occurs, the process incre-
ments the p entry of V . If this new event is a send,
process p appends the vector V to the message. If
this new event is a receive, process p reads the times-
tamp W from the message and replaces V with the
entry-wise maximum of V and W .

3 Security and Privacy Risks

Partial order time draws on data distributed
throughout the system. Consequently, building par-
tial order clocks requires that processes share private
information, and trust the private information shared
with them. This opens opportunities for Byzantine
(malicious) processes to manipulate the clock proto-
cols, and consequently to manipulate application pro-
tocols built on these clock protocols.

Nonsense Attacks Malicious processes can send
arbitrary vector entries. Since honest processes will
dutifully copy and pass on these values, a single act
by a single malicious process can destroy the valid-
ity of many vectors throughout the system. (Lamport
total order clocks [17] are particularly vulnerable to
these attacks.) Simple sanity checks fail to combat
this problem. Suppose vector entries are integers. If
honest processes refuse to accept vector entries that
have increased more than N , a dishonest process can
repeatedly increase an entry by N � 1. The next hon-
est process the victim talks to may then mistakenly
identify the honest victim as corrupt.

Malicious Backdating Malicious processes can se-
lectively reduce vector entries, and thus fool honest
processes into thinking events happened earlier than
they really did. Consider the application of trading
commodities options on a public network. Figure 1
shows how Malicious Backdating permits the crime of
options frontrunning , which can occur when brokers
may trade both for themselves and for their clients.
(One place where options frontrunning occurs is the
Chicago commodities exchange.) If a broker happens
to buy a small quantity of shares for himself before
his client requests a large number of shares, then the
broker will make a tidy sum. Consequently, on receiv-
ing a client request, a dishonest broker has incentive
to issue a request of his own that appears not to have
followed the client request. In an electronic exchange
using vector clocks, a malicious broker can do this by
re-using an old vector on his purchase request.1

1In the physical Chicago exchange, the only defense the FBI
has against options frontrunning is placing undercover agents in
the pit to look for unusually lucky brokers.



C does not precede B
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Figure 1: Malicious processes can selectively backdate
nodes. Here, Bob commits the crime of options fron-
trunning by making his own purchase appear not to
follow his client's request.
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Figure 2: Malicious processes can selectively postdate
nodes. Here, Bob leaks an advance copy of his public
announcement to Cathy in such a way that allows her
to act on the data �rst, without appearing to have had
a headstart.

Malicious Postdating Malicious processes can se-
lectively inate vector entries, and thus fool honest
processes into thinking events happened later than
they really did. Figure 2 shows how such Malicious
Postdating permits insider trading. A malicious pro-
cess can send a cohort an advance copy of an an-
nouncement along with an advanced vector. The co-
hort can act on this data, but use the advanced vector
to hide her headstart. (The cohort could even be un-
witting; the malicious process might frame her now,
in order to spread the blame should the ruse be dis-
covered later.)

Compromised Privacy Malicious processes can
correctly perform the vector clock protocol, but use
the vector entries to gain illicit knowledge. Figure 3
shows how this technique reveals anonymous whistle-
blowers. Changes in subsequent timestamp vectors
sent from Alice to Bob show the identities of processes

communicating with Alice.

4 Defenses

An ideal clock should report \A�!B" exactly
when A precedes B, even if processes perform mali-
cious actions. An ideal clock should also con�ne pri-
vate information. We can evaluate clock protocols by
this standard: against decreasing amounts of honesty,
how well do clocks perform?

Many application protocols use forms of partial or-
der time and vector clocks. A clock protocol meeting
this ideal transparently protects higher-level applica-
tions against the security and privacy risks of Sec-
tion 3.

4.1 Previous Work

If all processes are honest, then the process p entries
in all vector timestamps originate at process p. The
Signed Vector Timestamp protocol [26, 32] builds on
this observation by requiring each process to digitally
sign its entries in outgoing timestamp vectors. This
scheme prevents malicious processes from advancing
vector entries belonging to honest processes. If an
event A occurs at an honest process and our time
model expresses all information ow paths, then pos-
session of a signed entry for A is proof of dependence
on A. With Signed Vectors, A�!B when an honest
clock reports \A �!B" (and A occurs at an honest
process). If all processes along a precedence path from
A to B are honest, the converse is also true: an honest
clock reports \A �!B" when A �!B.

However, Signed Vectors may fail if precedence
paths go through malicious processes. For example,

Secret tip
about Bob

"I caught you!"

"You're
fired!"

The Cathy entry
in Alice's vector
has changed!

Manager Alice

Bad
Bob

Honest
Cathy

Figure 3: Malicious processes can exploit vector data
for illicit purposes. Here, Bob uses the timestamp vec-
tors from Alice to learn the identity of whistleblower
Cathy .



a malicious process can use old values in the vector
entries for honest processes, as long as the malicious
process has retained the matching signatures. Signed
Vectors still permit the Malicious Backdating and Ma-
licious Postdating attacks. Signed Vectors do not even
attempt to address the Compromised Privacy attack.
These problems migrate to higher-level applications.
Inability to detect non-precedence reliably can result
in ine�ciency (in optimistic rollback recovery , pro-
cesses may mistakenly believe they depend on failed
states) or complete incorrectness (in global state proto-
cols, processes may make incorrect decisions regarding
\concurrent" events).

The security of the Signed Vector protocol depends
on the fact that precedence paths and information ow
paths coincide. If precedence and information ow do
not coincide, then Signed Vectors do not provide se-
cure clocks. For example, consider the partial order
describing the virtual computation arising after roll-
back with modi�ed replay.

Three additional protocols exist for the special case
of a process sorting the send events of two messages
it has received [26]. The Piggybacking protocol gener-
alizes the vector timestamp protocol by timestamp-
ing each event E with a signed record of all mes-
sages whose send events precede E. Piggybacking
(like Signed Vectors) ensures that if a clock reports
\A�!B" and A occurs at an honest process, then
A�!B; Piggybacking further limits the possible ac-
tions of a dishonest A process conspiring to make a
clock falsely report \A�!B." However, the Piggy-
backing protocol (also like Signed Vectors) cannot re-
liably detect precedence paths touching malicious pro-
cesses, and does not address the issue of privacy. The
other two protocols from [26] alter the order in which
messages are received. These protocols address the
problem of detecting the partial order by changing the
partial order; further, they do not accurately report
non-precedence. The Conservative protocol requires
that before sending a new message, a process wait for
acknowledgements of any previous messages it sent.
The Causality Server protocol assumes secure FIFO
channels, and relies on a trusted central intermediary
to impose a total order on all message tra�c.

4.2 The Sealed Vector Timestamp Proto-
col

The Sealed Vector Timestamp protocol has security
properties that solve previously open problems:

� Our protocol accurately reports \A�!B" or
\A =�!B," in the presence of arbitrary malicious

processes (including the A process).

� Our protocol does not leak private information.

The Sealed Vector Timestamp protocol satis�es the
ideal (assuming no covert channels), and protects pri-
vacy of vector entries as well. Further, this protocol
extends to time models where information ow does
not imply precedence. Figure 4 compares our new pro-
tocol to previous work.

4.2.1 Overview

Our new protocol rests on the the technology of se-
cure coprocessors [35, 41]: inexpensive physically se-
cure devices with a CPU, ROM, and non-volatile
RAM. A host processor interacts with its secure
coprocessor through formal I/O channels. Any
other method of determining the internal state of
the coprocessor|including physically penetrating the
hardware|results in the erasing of RAM and CPU
registers. Secure coprocessors are being deployed
rapidly; commercial secure coprocessor products are
available from IBM (�ABYSS [37], Citadel [39]), and
have been announced by other vendors including Na-
tional Semiconductor [36], Semaphore, Telequip, and
Wave Systems. Various protection technologies exist.
IBM wraps circuit boards in nichrome wire and then
seals them with an epoxy mixture chemically stronger
than the wire. A detection circuit monitors the re-
sistance of this wire wrapping; penetration attempts
will disrupt the wire wrapping and alter the resistance
(e.g., by shorting the wire or by cutting it).

Secure coprocessors only possess limited amounts of
power. We cannot secure an entire workstation|even
if we could, we could not secure the user. Bootstrap-

“A→B ” ⇒
A→B

“A→B ” ⇐
A→B

“A→B ” ⇔
A→B privacy?

who’s
honest?

Signed, PB,
 Sealed

Signed, PB,
 Sealed

Signed, PB,
 Sealed Sealed

path from
A  to B

Signed, PB,
 Sealed Sealed Sealed Sealedonly A

Sealed Sealed Sealed Sealed
no one

(but you)

Figure 4: This table compares how, against decreasing
amounts of honesty, partial order clock protocols meet
the clock ideal: reporting \A�!B" () A�!B
while protecting the privacy of vector entries. Signed
denotes the Signed Vector Timestamp protocol; Sealed
denotes the Sealed Vector Timestamp protocol; PB
denotes the Piggybacking protocol.



ping from this small amount of physical security into
full protocol security raises subtle issues. For example,
malicious processes might attempt to bypass coproces-
sors, or to attack communication lines. (Recent work
[35, 41] shows how to protect against these attacks.)

In the Sealed Vector Timestamp protocol, each pro-
cess runs on a host processor with a secure coprocessor.
The secure coprocessor creates timestamp vectors and
seals them so that processes cannot read them. Al-
though processes can store and exchange timestamps,
they need to query a secure coprocessor in order to
compare them.

The security of Sealed Vectors follows from a num-
ber of properties. First, no party (except a secure
coprocessor) can obtain information about the con-
tents of any vector entry from a sealed timestamp,
even if the party knows the other entries. Second,
all processes must route incoming and outgoing mes-
sages through secure coprocessors. Third, a secure
coprocessor must be able to verify that a timestamp
was properly sealed by another secure coprocessor. Fi-
nally, given a sealed timestamp and an event, a secure
coprocessor must be able to verify that they match.

Cryptographic Tools We use digital signatures
and bit-secure public key cryptography [7, 27]. A dig-
ital signature is a function S from a value space to a
signature space such that:

� Given a value v and a signature s, any party
can determine whether s is a valid signature of
v: whether S(v) = s.

� However, it is intractable for any party (except
the privileged signing party) to take a set of value-
signature pairs and produce a pair not in this set.

Public key cryptography consists of a function E
(from the plaintext space to the cipherspace) and a
function D (from the cipherspace to the plaintext
space) such that:

� For any plaintext value v, any party can calculate
E(v).

� For any plaintext value v, D(E(v)) = v.

� It is intractable for any party (except for the privi-
leged decrypting party) to take a set of plaintext-
ciphertext pairs and produce a pair not in this
set.

Standard public key cryptography requires only
that inverting E is di�cult (without the privilege of
knowing D). Bit-secure public key cryptography re-
quires an additional level of security. Roughly speak-
ing, from a given ciphertext, a malicious process

should gain no information about the plaintext that
it did not know a priori. (See [10] for formal de�-
nitions.) Some popular cryptosystems (like [25] and
[27]) are known to leak number-theoretic properties
of the plaintexts and thus fail to meet this condition
[2, 18]. For the Sealed Vector protocol to attain its
full security potential, it should be implemented using
strong cryptosystems such as [4] or [11].

4.2.2 Operation

We use cryptography and signatures both on messages
(Emsg; Dmsg and Smsg) and on timestamps (Etst;Dtst

and Stst).2 Each process p has a name, which we de-
note as p. Each process p runs on a host processor with
a secure coprocessor, which we denote as pSC. Each
secure coprocessor knows that name of its process.

Let P be the set of process names, E be the set of
event names, V be the set of possible timestamp vec-
tors, andM be the set of possible message texts. Let
Gmsg and Gtst be the signatures spaces for messages
and timestamps, respectively; let Cmsg and Ctst be the
cipherspaces for messages and timestamps. Our sig-
nature and encryption functions act as follows:

Stst : E � V 7! Gtst

Etst : E � V � Gtst 7! Ctst

Smsg : P � P �M� Ctst 7! Gmsg

Emsg : P � P �M� Ctst � Gmsg 7! Cmsg

The functions Emsg and Etst are public. Each secure
coprocessor pSC has the ability to calculateDmsg,Dtst,
Smsg, and Stst; the coprocessor pSC also maintains the
current process p timestamp vector, which we denote
as Vp.

Obtaining Timestamps Suppose process p wants
to obtain a timestamp for its current event A. Process
p submits the request to pSC, which obtains V(A) by
incrementing the p entry of Vp. The coprocessor pSC
then returns the sealed timestamp

T (A) = Etst (A;V(A); Stst(A;V(A)))

(See Figure 5.)
The signature plays two roles here. First, it proves

that this vector belongs to this event. Secondly, its
presence inside the plaintext protects against a ma-
licious process guessing the value of the vector, and
verifying this guess using Etst.

2This presentation assumes global schemes for all processes.
In practice, giving each process its own key scheme adds exi-
bility and another level of security; Section 5.2 discusses these
issues.



Comparing Timestamps When process p wants
to compare events A and B, it sends T (A) and T (B) to
pSC. The coprocessor applies Dtst to extract the event
names, vectors and signatures. If the signatures are
valid, the coprocessor then compares V(A) and V(B),
and reports the result: either \A�!B," \B �!A"
or \A = !B."

Sending Messages Suppose process p wants to ex-
ecute a send event S, sending a message with text M
to process q. Process p submits M and q to the se-
cure coprocessor pSC, which calculates the timestamp3

T (S), and returns the ciphertext

M 0 = Emsg (p; q;M; T (S); Smsg(p; q;M; T (S)))

(See Figure 6.) Process p then transmits the message.
A malicious process might still be able to suppress

this message M . (For example, in Figure 1, Bad Bob
could have his purchase order sealed, but only intro-
duce it into the network if he receives an order from
his client.) The secure coprocessor pSC can protect
against loss by requiring a signed acknowledgement
from qSC. If the acknowledgement does not arrive,
pSC can retransmit the message|perhaps incremen-
tally, as part of other sealed packets. A malicious
process can successfully suppress a message only by
permanently partitioning itself from the network.

Receiving Messages Suppose a process p receives
a ciphertext messageM 0. To readM 0, process p needs
to send it to the secure coprocessor pSC. The coproces-
sor applies Dmsg to obtain the source and destination
process, the plaintext M , the timestamp T (S) of the
send event, and the Smsg signature of this data. The
coprocessor veri�es that the Smsg signature is valid
and that p is the intended destination process. The co-
processor then applies Dtst to the timestamp, checks

3Since messages are tagged with a signature before encrypt-
ing, using the unsealed timestampV(S) would su�ce here.

vectorname of event

Stst

Etst

signature of timestamp

Figure 5: A sealed timestamp consists of the encryp-
tion of three items: the name of an event, its times-
tamp vector, and a signature on this pair. The sig-
nature certi�es that this vector belongs to this event,
and also protects against guessing the plaintext: ver-
ifying a guessed vector requires guessing the correct
signature.

its signature, and obtains the vector V(S). The co-
processor then performs the vector timestamp proto-
col: replacing its current vector Vp with the entry-wise
maximum of Vp and V(S). Finally, pSC returns to p
the name of the source process, the plaintext M , and
(optionally) the timestamp T (S).

5 Discussion

5.1 Results

We make some preliminary observations.

The coprocessors carry out the vector times-

tamp protocol. This follows directly from the de-
scription.

Only secure coprocessors can unseal messages

and timestamps. A process may be able to guess
some or all of the entries of a given timestamp vec-
tor. If timestamps were merely vectors encrypted with
a public key, then a process could guess a possible
vector, encrypt the guess, and compare the result to
the ciphertext. However, in our scheme, timestamps
are the encryption of a vector along with a signature
of that vector. Without knowing the signature func-
tion, a process cannot verify that V is the vector in
the timestamp Etst(A; V;Stst(A; V )). Timestamps are
truly sealed.

Similarly, with high probability a process cannot
decrypt an encrypted message by making some lucky
guesses, since that would require breaking the message
signature Smsg.

Only the secure coprocessor at the source pro-

cess may seal messages. Messages arriving at an
honest process will be routed to the secure coproces-
sor, which will ignore messages that do not include
both a valid timestamp and a valid signature on the
message and the timestamp together.

Emsg

Smsg

source message
textdestination timestamp

of send event
signature

of message

Figure 6: The message ciphertext encrypts the mes-
sage information (source and destination processes,
message text), along with the sealed timestamp of the
send and a signature of these values.



Only the secure coprocessor at the intended

destination process may unseal a message.

Sealed messages must be decrypted to be intelligi-
ble. The receiving process must consult its secure co-
processor, since the encrypted message includes the
name of the intended destination process. (However,
a malicious process can receive and discard an en-
crypted message without consulting its coprocessor.
Section 5.2 considers this.)

Together, these assertions imply the following re-
sult. (The proof can be found in [30].)

Theorem 2 Sealed Vector clocks guarantee:

� If a clock reports \A �!B" then A �!B.

� If A �!B along a path where each message edge
touches an honest process, then clocks will report
\A �!B."

� If A �!B along any path and there are no covert
channels (i.e., malicious processes cannot com-
municate without using the sealed message pro-
tocol), then clocks will report \A �!B."

This protocol o�ers security advantages over prior
work.

� Complete Results If a clock reports \A�!B,"
then A�!B. If a clock reports \A = !B" (and
malicious processes cannot communicate using
covert channels) then A = !B.

� No Spoo�ng Even with covert channels, a mali-
cious process cannot deny having received a mes-
sage from an honest process.

� Privacy The private information shared in times-
tamps is con�ned to the secure coprocessors.

� Wider Application The Sealed Vector Times-
tamp protocol does not require that the partial
order directly arise from information ow.

In particular, Sealed Vectors protect against all the
attacks catalogued in Section 3, and provide secure
clocks for scenarios such as the partial order arising
after rollback with modi�ed replay. (See [30] for an
example.)

Sealed Vectors also improve on Signed Vectors in
terms of scalability: the number of decryptions re-
quired on incoming messages decreases from linear to
constant.

5.2 Assumptions

This paper has made several implicit assumptions
open to challenge. We discuss these challenges.

No Covert Channels Precedence corresponds to
paths through the POT graph. The Sealed Vector pro-
tocol prevents a single malicious process frommasking
its presence in such paths. However, if malicious pro-
cesses can communicate without using o�cial (that is,
coprocessor-sealed) messages, then they can cooper-
atively hide their presence in paths|since communi-
cation outside of the coprocessors is invisible to the
clocks.

One approach to this problem is to make such com-
munication very di�cult: for example, by having the
secure coprocessors handle net tra�c (and perhaps
snoop on Ethernet packets), malicious processes would
be forced to communicate outside the network.

Covert communication is also possible using in-band
signaling, since it may be possible to extract informa-
tion from sealed messages without consulting secure
coprocessors. For example, a malicious process might
draw conclusions from the existence of the message,
the length of the message (real encryption usually
breaks long text into blocks and encrypts each block
separately) or the frequency of multiple messages.

Security of Coprocessors The protocol depends
on the physical security of the coprocessors. In prac-
tice, secure coprocessors are extremely di�cult to pen-
etrate. However, as with any security mechanism
(physical or computational), it may be possible to
compromise the system if the attacker is willing to
pay tremendous amounts of money. (For a detailed
analysis of the cost, see [38].) What do we do if
the exception case occurs|if a coprocessor is com-
promised? One way to limit the damage is to use
separate Smsg, Stst and Emsg functions for each pro-
cess. This technique prevents a compromised copro-
cessor from impersonating someone else or performing
message decryption for someone else. Using separate
Etst functions prevents the compromised coprocessor
from doing comparisons for someone else, but requires
re-encrypting forwarded timestamps. (Section 5.3 con-
siders some further defenses.)

Validity of Keys Giving each coprocessor its own
keys raises the issue of key management: a new co-
processor must somehow announce its public keys. A
straightforward technique to prevent dishonest pro-
cesses from impersonating a \new coprocessor" is to
have new coprocessors obtain certi�cates, signed by
a universally trusted agent, listing their identity and
public keys.



5.3 Future Work

Limiting Penetration Damage What can we do
if the integrity of a coprocessor is compromised? Pene-
tration exposes any data that a coprocessor has saved.
However, an uncompromised coprocessor can securely
forget data. This observation suggests an alternative
Give-and-Forget timestamping scheme. Suppose pro-
cess p at event S sends a message to process q, who
receives it at event R. Process p generates a key pair
K1;S , K2;S . Process p signs a certi�cate asserting that
K2;S is its public key for event S, and sends this cer-
ti�cate along with the private key K1;S to process q
with the message. Process q uses the private key K1;S

to encrypt an identi�er for R and then erases the key.
Process q then has a universally veri�able certi�cate
that it knew about S when R occurred. However, ex-
amining this certi�cate allows no one|not even pro-
cess q|to forge a new certi�cate of knowledge of S
without the cooperation of process p.

This technique allows a secure coprocessor to gen-
erate proof-of-timestamp certi�cates showing the last
message received from each uncompromised process.
Should the coprocessor later be compromised, it can-
not produce new certi�cates for these messages. To
prevent a compromised coprocessor from rolling back
timestamp entries, we can require all coprocessors to
use these proof-of-timestamp certi�cates to prove the
validity of each entry in their timestamp vectors.

Other approaches for pre-compromised coproces-
sors to limit the forging power of their compromised
versions include the Distributed Trust and Digital
Timestamping techniques of [3, 13], as well using data
on acknowledgement packets.

Improving Performance A performance problem
with vector clocks results from size: timestamps have
n entries; comparing timestamps requires n compar-
isons. Charron-Bost's result [6] that partial order
timestamps must be linear suggests two approaches
to improving performance: implementing vector clocks
more carefully (to reduce the actual data transmitted),
and trading timestamp size for comparison time.

Singhal and Kshemkalyani [28] present a vector
clock implementation where processes refrain from
transmitting redundant data in vectors. Integrating
this technique with Sealed Vectors would yield in-
creased e�ciency.

Another interesting approach would be to give pro-
cesses more latitude in choosing which entries to trans-
mit and which to withhold. Some entries in times-
tamp vectors might be marked with ags indicating
that that value is merely a lower bound. This lower

bound may su�ce for many comparisons; if it doesn't,
a secure coprocessor would need to consult other se-
cure coprocessors to obtain the missing data. It would
be interesting to develop good heuristics for deciding
which entries to withhold and for determining when
the expense of a \miss" outweighs the bene�ts of with-
holding.

Yet another technique (e.g., [1]) is to use vector
clocks to track a coarser partial order|thus trading
timestamp size for false positives in precedence de-
tection. However, adapting these techniques (or the
linear timestamping techniques of [3, 13]) creates the
problem of proving the absence of a precedence path.
Developing a hierarchical approach|to indicate the
most \likely" precedence path, and then verify its
correctness|is one path of future research.

General Con�nement Models Another area for
exploration is the use of more general con�nement
models. Coprocessor sealing provides control over
the information a timestamp provides to a process.
This control may provide more bene�ts than just sup-
pressing vector entries|in particular, it may allow for
anonymous or hidden causality [12].

Secure Distributed Applications We have used
secure clocks for partial order time (and for more gen-
eral temporal structures) to develop secure protocols
for problems such as immediate ordered service, dis-
tributed snapshots, and optimistic rollback recovery.
([30, 31] contain more details.) We are continuing to
explore new applications using our secure time frame-
work.
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