
Wireless Networks 8, 521–534, 2002

 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

SPINS: Security Protocols for Sensor Networks

ADRIAN PERRIG, ROBERT SZEWCZYK, J.D. TYGAR, VICTOR WEN and DAVID E. CULLER
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720, USA

Abstract. Wireless sensor networks will be widely deployed in the near future. While much research has focused on making these networks

feasible and useful, security has received little attention. We present a suite of security protocols optimized for sensor networks: SPINS.

SPINS has two secure building blocks: SNEP and µTESLA. SNEP includes: data confidentiality, two-party data authentication, and

evidence of data freshness. µTESLA provides authenticated broadcast for severely resource-constrained environments. We implemented

the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the

data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

Keywords: secure communication protocols, sensor networks, mobile ad hoc networks, MANET, authentication of wireless communica-

tion, secrecy and confidentiality, cryptography

1. Introduction

We envision a future where thousands to millions of small

sensors form self-organizing wireless networks. How can we

provide security for these sensor networks? Security is not

easy; compared with conventional desktop computers, severe

challenges exist – these sensors will have limited processing

power, storage, bandwidth, and energy.

We need to surmount these challenges, because security is

so important. Sensor networks will expand to fill all aspects

of our lives. Here are some typical applications:

• Emergency response information: sensor networks will

collect information about the status of buildings, people,

and transportation pathways. Sensor information must be

collected and passed on in meaningful, secure ways to

emergency response personnel.

• Energy management: in 2001 power blackouts plagued

California. Energy distribution will be better managed

when we begin to use remote sensors. For example, the

power load that can be carried on an electrical line depends

on ambient temperature and the immediate temperature

on the wire. If these were monitored by remote sensors

and the remote sensors received information about desired

load and current load, it would be possible to distribute

load better. This would avoid circumstances where Cali-

fornians cannot receive electricity while surplus electricity

exists in other parts of the country.

• Medical monitoring: we envision a future where individu-

als with some types of medical conditions receive constant

monitoring through sensors that monitor health conditions.

For some types of medical conditions, remote sensors may

apply remedies (such as instant release of emergency med-

ication to the bloodstream).

• Logistics and inventory management: commerce in Amer-

ica is based on moving goods, including commodities

from locations where surpluses exist to locations where

needs exist. Using remote sensors can substantially im-

prove these mechanisms. These mechanisms will vary

in scale – ranging from worldwide distribution of goods

through transportation and pipeline networks to inventory

management within a single retail store.

• Battlefield management: remote sensors can help elimi-

nate some of the confusion associated with combat. They

can allow accurate collection of information about current

battlefield conditions as well as giving appropriate infor-

mation to soldiers, weapons, and vehicles in the battlefield.

At UC Berkeley, we think these systems are important, and

we are starting a major initiative to explore the use of wireless

sensor networks. (More information on this new initiative,

CITRIS, can be found at www.citris.berkeley.edu.)

Serious security and privacy questions arise if third parties

can read or tamper with sensor data. We envision wireless

sensor networks being widely used – including for emergency

and life-critical systems – and here the questions of security

are foremost.

This article presents a set of Security Protocols for Sensor

Networks, SPINS. The chief contributions of this article are:

• Exploring the challenges for security in sensor networks.

• Designing and developing µTESLA (the “micro” version

of TESLA), providing authenticated streaming broadcast.

• Designing and developing SNEP (Secure Network En-

cryption Protocol) providing data confidentiality, two-

party data authentication, and data freshness, with low

overhead.

• Designing and developing an authenticated routing proto-

col using our building blocks.

1.1. Sensor hardware

At UC Berkeley, we are building prototype networks of small

sensor devices under the SmartDust program [45], one of the

components of CITRIS. We have deployed these in one of

In [ACM Journal of] Wireless Networks, 8:5, September 2002, pp. 521-534

522 PERRIG ET AL.

Table 1

Characteristics of prototype SmartDust nodes.

CPU 8-bit, 4 MHz

Storage 8 Kbytes instruction flash

512 bytes RAM

512 bytes EEPROM

Communication 916 MHz radio

Bandwidth 10 Kbps

Operating system TinyOS

OS code space 3500 bytes

Available code space 4500 bytes

our EECS buildings, Cory Hall. We are currently using these

for a very simple application – heating and air-conditioning

control in the building. However, the same mechanisms that

we describe in this paper can be modified to support sensor

that handle emergency system such as fire, earthquake, and

hazardous material response.

By design, these sensors are inexpensive, low-power de-

vices. As a result, they have limited computational and com-

munication resources. The sensors form a self-organizing

wireless network and form a multihop routing topology. Typi-

cal applications may periodically transmit sensor readings for

processing.

Our current prototype consists of nodes, small battery

powered devices, that communicate with a more powerful

base station, which in turn is connected to an outside net-

work. Table 1 summarizes the performance characteristics of

these devices. At 4 MHz, they are slow and underpowered

(the CPU has good support for bit and byte level I/O opera-

tions, but lacks support for many arithmetic and some logic

operations). They are only 8-bit processors (note that accord-

ing to [53], 80% of all microprocessors shipped in 2000 were

4 bit or 8 bit devices). Communication is slow at 10 Kbps.

The operating system is particularly interesting for these

devices. We use TinyOS [23]. This small, event-driven oper-

ating system consumes almost half of 8 Kbytes of instruction

flash memory, leaving just 4500 bytes for security and the ap-

plication.

It is hard to imagine how significantly more powerful de-

vices could be used without consuming large amounts of

power. The energy source on our devices is a small battery,

so we are stuck with relatively limited computational devices.

Wireless communication is the most energy-consuming func-

tion performed by these devices, so we need to minimize com-

munications overhead. The limited energy supplies create

tensions for security: on the one hand, security needs to limit

its consumption of processor power; on the other hand, lim-

ited power supply limits the lifetime of keys (battery replace-

ment is designed to reinitialize devices and zero out keys).1

1.2. Is security on sensors possible?

These constraints make it impractical to use most current

secure algorithms, since they were designed for powerful

processors. For example, the working memory of a sensor

1 Base stations differ from nodes in having longer-lived energy supplies and

additional communications connections to outside networks.

node is not sufficient to even hold the variables for asymmet-

ric cryptographic algorithms (e.g., RSA [48] with 1024 bits),

let alone perform operations with them.

A particular challenge is broadcasting authenticated data

to the entire sensor network. Current proposals for au-

thenticated broadcast are impractical for sensor networks.

Most proposals rely on asymmetric digital signatures for the

authentication, which are impractical for multiple reasons

(e.g., long signatures with high communication overhead of

50–1000 bytes per packet, very high overhead to create

and verify the signature). Furthermore, previously proposed

purely symmetric solutions for broadcast authentication are

impractical: Gennaro and Rohatgi’s initial work required over

1 Kbyte of authentication information per packet [17], and

Rohatgi’s improved k-time signature scheme requires over

300 bytes per packet [49]. Some of the authors of this arti-

cle have also proposed the authenticated streaming broadcast

TESLA protocol [43]. TESLA works well on regular desktop

workstations, but uses too much communication and memory

on our resource-starved sensor nodes. This article extends and

adapts TESLA to make it practical for broadcast authentica-

tion for sensor networks. We call our new protocol µTESLA.

We have implemented all of these primitives. Our mea-

surements show that adding security to a highly resource-

constrained sensor network is feasible.

Given the severe hardware and energy constraints, we must

be careful in the choice of cryptographic primitives and the

security protocols in the sensor networks.

2. System assumptions

Before we outline the security requirements and present our

security infrastructure, we need to define the system architec-

ture and the trust requirements. The goal of this work is to

propose a general security infrastructure that is applicable to

a variety of sensor networks.

2.1. Communication architecture

Generally, the sensor nodes communicate over a wireless net-

work, so broadcast is the fundamental communication primi-

tive. The baseline protocols account for this property: on one

hand they affect the trust assumptions, and on the other they

minimize energy usage.

A typical SmartDust sensor network forms around one or

more base stations, which interface the sensor network to the

outside network. The sensor nodes establish a routing forest,

with a base station at the root of every tree. Periodic trans-

mission of beacons allows nodes to create a routing topol-

ogy. Each node can forward a message towards a base sta-

tion, recognize packets addressed to it, and handle message

broadcasts. The base station accesses individual nodes using

source routing. We assume that the base station has capabili-

ties similar to the network nodes, except that it has sufficient

battery power to surpass the lifetime of all sensor nodes, suf-

ficient memory to store cryptographic keys, and means for

communicating with outside networks.

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 523

We do have an advantage with sensor networks, because

most communication involves the base station and is not be-

tween two local nodes. The communication patterns within

our network fall into three categories:

• Node to base station communication, e.g., sensor readings.

• Base station to node communication, e.g., specific re-

quests.

• Base station to all nodes, e.g., routing beacons, queries or

reprogramming of the entire network.

Our security goal is to address these communication pat-

terns, though we also show how to adapt our baseline pro-

tocols to other communication patterns, i.e. node to node or

node broadcast.

2.2. Trust requirements

Generally, the sensor networks may be deployed in untrusted

locations. While it may be possible to guarantee the integrity

of the each node through dedicated secure microcontrollers

(e.g., [1] or [13]), we feel that such an architecture is too

restrictive and does not generalize to the majority of sensor

networks. Instead, we assume that individual sensors are un-

trusted. Our goal is to design the SPINS key setup so a com-

promise of a node does not spread to other nodes.

Basic wireless communication is not secure. Because it

is broadcast, any adversary can eavesdrop on traffic, inject

new messages, and replay old messages. Hence, our proto-

cols do not place any trust assumptions on the communica-

tion infrastructure, except that messages are delivered to the

destination with non-zero probability.

Since the base station is the gateway for the nodes to com-

municate with the outside world, compromising the base sta-

tion can render the entire sensor network useless. Thus the

base stations are a necessary part of our trusted computing

base. Our trust setup reflects this and so all sensor nodes inti-

mately trust the base station: at creation time, each node gets

a master secret key X which it shares with the base station.

All other keys are derived from this key, as we show in sec-

tion 6.

Finally, each node trusts itself. This assumption seems

necessary to make any forward progress. In particular, we

trust the local clock to be accurate, i.e. to have small drift.

This is necessary for the authenticated broadcast protocol we

describe in section 5.

2.3. Design guidelines

With the limited computation resources available on our plat-

form, we cannot afford to use asymmetric cryptography and

so we use symmetric cryptographic primitives to construct the

SPINS protocols. Due to the limited program store, we con-

struct all cryptographic primitives (i.e. encryption, message

authentication code (MAC), hash, random number generator)

out of a single block cipher for code reuse. To reduce com-

munication overhead we exploit common state between the

communicating parties.

3. Requirements for sensor network security

This section formalizes the security properties required by

sensor networks, and shows how they are directly applicable

in a typical sensor network.

3.1. Data confidentiality

A sensor network should not leak sensor readings to neigh-

boring networks. In many applications (e.g., key distribution)

nodes communicate highly sensitive data. The standard ap-

proach for keeping sensitive data secret is to encrypt the data

with a secret key that only intended receivers possess, hence

achieving confidentiality. Given the observed communication

patterns, we set up secure channels between nodes and base

stations and later bootstrap other secure channels as neces-

sary.

3.2. Data authentication

Message authentication is important for many applications in

sensor networks (including administrative tasks such as net-

work reprogramming or controlling sensor node duty cycle).

Since an adversary can easily inject messages, the receiver

needs to ensure that data used in any decision-making process

originates from a trusted source. Informally, data authentica-

tion allows a receiver to verify that the data really was sent by

the claimed sender. Informally, data authentication allows a

receiver to verify that the data really was sent by the claimed

sender.

In the two-party communication case, data authentication

can be achieved through a purely symmetric mechanism: The

sender and the receiver share a secret key to compute a mes-

sage authentication code (MAC) of all communicated data.

When a message with a correct MAC arrives, the receiver

knows that it must have been sent by the sender.

This style of authentication cannot be applied to a broad-

cast setting, without placing much stronger trust assumptions

on the network nodes. If one sender wants to send authentic

data to mutually untrusted receivers, using a symmetric MAC

is insecure: any one of the receivers knows the MAC key, and

hence, could impersonate the sender and forge messages to

other receivers. Hence, we need an asymmetric mechanism

to achieve authenticated broadcast. One of our contributions

is to construct authenticated broadcast from symmetric primi-

tives only, and introduce asymmetry with delayed key disclo-

sure and one-way function key chains.

3.3. Data integrity

In communication, data integrity ensures the receiver that the

received data is not altered in transit by an adversary. In

SPINS, we achieve data integrity through data authentication,

which is a stronger property.

3.4. Data freshness

Sensor networks send measurements over time, so it is not

enough to guarantee confidentiality and authentication; we

524 PERRIG ET AL.

also must ensure each message is fresh. Informally, data fresh-

ness implies that the data is recent, and it ensures that no

adversary replayed old messages. We identify two types of

freshness: weak freshness, which provides partial message

ordering, but carries no delay information, and strong fresh-

ness, which provides a total order on a request–response pair,

and allows for delay estimation. Weak freshness is useful

for sensor measurements, while strong freshness is useful for

time synchronization within the network.

4. Notation

We use the following notation to describe security protocols

and cryptographic operations in this article:

• A,B are principals, such as communicating nodes.

• NA is a nonce generated by A (a nonce is an unpredictable

bit string, usually used to achieve freshness).

• XAB denotes the master secret (symmetric) key which

is shared between A and B. No direction information is

stored in this key, so we have XAB = XBA.

• KAB and KBA denote the secret encryption keys shared

between A and B. A and B derive the encryption key from

the master secret key XAB based on the direction of the

communication: KAB = FXAB
(1) and KBA = FXAB

(3),

where F is a Pseudo-Random Function (PRF) [18].2

We describe the details of key derivation in further detail

in section 6.

• K ′
AB and K ′

BA denote the secret MAC keys shared be-

tween A and B. A and B derive the encryption key from

the master secret key XAB based on the direction of the

communication: K ′
AB = FXAB

(2) and K ′
BA = FXAB

(4),

where F is a pseudo-random function.

• {M}KAB is the encryption of message M with the encryp-

tion key KAB .

• {M}〈KAB ,IV 〉 denotes the encryption of message M , with

key KAB , and the initialization vector IV which is used in

encryption modes such as cipher-block chaining (CBC),

output feedback mode (OFB), or counter mode (CTR) [3,

14,29].

• MAC(K ′
AB,M) denotes the computation of the message

authentication code (MAC) of message M , with MAC

key K ′
AB .

By a secure channel, we mean a channel that offers confi-

dentiality, data authentication, integrity, and freshness.

5. SPINS security building blocks

To achieve the security requirements we established in sec-

tion 3 we design two security building blocks: SNEP and

µTESLA. SNEP provides data confidentiality, two-party data

2 To uniquely define KAB and KBA, the identifiers A and B of XAB are

lexicographically sorted.

authentication, integrity, and freshness. µTESLA provides

authentication for data broadcast. We bootstrap the security

for both mechanisms with a shared secret key between each

node and the base station (see section 2). We demonstrate in

section 8 how we can extend the trust to node-to-node inter-

actions from the node-to-base-station trust.

5.1. SNEP: Data confidentiality, authentication, integrity,

and freshness

SNEP provides a number of unique advantages. First, it has

low communication overhead; it only adds 8 bytes per mes-

sage. Second, like many cryptographic protocols it uses a

counter, but we avoid transmitting the counter value by keep-

ing state at both end points. Third, SNEP achieves semantic

security, a strong security property which prevents eavesdrop-

pers from inferring the message content from the encrypted

message (see discussion below). Finally, the same simple and

efficient protocol also gives us data authentication, replay pro-

tection, and weak message freshness.

Data confidentiality is one of the most basic security prim-

itives and it is used in almost every security protocol. A sim-

ple form of confidentiality can be achieved through encryp-

tion, but pure encryption is not sufficient. Another important

security property is semantic security, which ensures that an

eavesdropper has no information about the plaintext, even if

it sees multiple encryptions of the same plaintext [19]. For

example, even if an attacker has an encryption of a 0 bit and

an encryption of a 1 bit, it will not help it distinguish whether

a new encryption is an encryption of 0 or 1. A basic tech-

nique to achieve this is randomization: Before encrypting the

message with a chaining encryption function (i.e. DES-CBC),

the sender precedes the message with a random bit string.

This prevents the attacker from inferring the plaintext of en-

crypted messages if it knows plaintext–ciphertext pairs en-

crypted with the same key.

Sending the randomized data over a wireless channel,

however, requires more energy. So we construct another cryp-

tographic mechanism that achieves semantic security with no

additional transmission overhead. We use two counters shared

by the parties (one for each direction of communication) for

the block cipher in counter mode (CTR) (as we discuss in

section 6). A traditional approach to manage the counters

is to send the counter along with each message. But since

we are using sensors and the communicating parties share the

counter and increment it after each block, the sender can save

energy by sending the message without the counter. At the

end of this section we describe a counter exchange protocol,

which the communicating parties use to synchronize (or re-

synchronize) their counter values. To achieve two-party au-

thentication and data integrity, we use a message authentica-

tion code (MAC).

A good security design practice is not to reuse the same

cryptographic key for different cryptographic primitives; this

prevents any potential interaction between the primitives that

might introduce a weakness. Therefore we derive indepen-

dent keys for our encryption and MAC operations. The two

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 525

communicating parties A and B share a master secret key

XAB , and they derive independent keys using the pseudo-

random function F : encryption keys KAB = FX (1) and

KBA = FX (3) for each direction of communication, and

MAC keys K ′
AB = FX (2) and K ′

BA = FX (4) for each di-

rection of communication. Section 6 gives more details on

key derivation.

The combination of these mechanisms form our Sensor

Network Encryption Protocol SNEP. The encrypted data has

the following format: E = {D}〈K,C〉, where D is the data,

the encryption key is K , and the counter is C. The MAC is

M = MAC(K ′, C||E). The complete message that A sends to

B is

A → B: {D}〈KAB ,CA〉, MAC
(

K ′
ABCA || {D}〈KAB ,CA〉

)

. (1)

SNEP offers the following nice properties:

• Semantic security. Since the counter value is incremented

after each message, the same message is encrypted dif-

ferently each time. The counter value is sufficiently long

enough to never repeat within the lifetime of the node.

• Data authentication. If the MAC verifies correctly, a re-

ceiver knows that the message originated from the claimed

sender.

• Replay protection. The counter value in the MAC prevents

replay of old messages. Note that if the counter were not

present in the MAC, an adversary could easily replay mes-

sages.

• Weak freshness. If the message verifies correctly, a re-

ceiver knows that the message must have been sent af-

ter the previous message it received correctly (that had a

lower counter value). This enforces a message ordering

and yields weak freshness.

• Low communication overhead. The counter state is kept

at each end point and does not need to be sent in each

message.3

Plain SNEP provides weak data freshness only, because it

only enforces a sending order on the messages within node B,

but no absolute assurance to node A that a message was cre-

ated by B in response to an event in node A.

Node A achieves strong data freshness for a response from

node B through a nonce NA (which is a random number so

long that exhaustive search of all possible nonces is not fea-

sible). Node A generates NA randomly and sends it along

with a request message RA to node B. The simplest way to

achieve strong freshness is for B to return the nonce with the

response message RB in an authenticated protocol. However,

instead of returning the nonce to the sender, we can optimize

the process by using the nonce implicitly in the MAC compu-

tation. The entire SNEP protocol providing strong freshness

for B’s response is

3 If the MAC does not match, the receiver can try a fixed, small number of

counter increments to recover from message loss. If this still fails, the two

parties engage in the counter exchange protocol we describe below.

A → B: NA, RA, (2)

B → A:

{RB}〈KBA,CB 〉, MAC
(

K ′
BA, NA || CB || {RB}〈KBA,CB 〉

)

.

If the MAC verifies correctly, node A knows that node B

generated the response after it sent the request. The first mes-

sage can also use plain SNEP (as described in equation (1)) if

confidentiality and data authentication are needed.

5.2. Counter exchange protocol

To achieve small SNEP messages, we assume that the com-

municating parties A and B know each other’s counter values

CA and CB and so the counter does not need to be added

to each encrypted message. In practice, however, messages

might get lost and the shared counter state can become incon-

sistent. We now present protocols to synchronize the counter

state. To bootstrap the counter values initially, we use the fol-

lowing protocol:

A → B: CA,

B → A: CB, MAC
(

K ′
BACA || CB

)

,

A → B: MAC
(

K ′
AB , CA || CB

)

.

Note that the counter values are not secret, so we do not

need encryption. However, this protocol needs strong fresh-

ness, so both parties use their counters as a nonce (assuming

that the protocol never runs twice with the same counter val-

ues, hence incrementing the counters if necessary). Also note

that the MAC does not need to include the names of A or B,

since the MAC keys K ′
AB and K ′

BA implicitly bind the mes-

sage to the parties, and ensure the direction of the message.

If party A realizes that the counter CB of party B is not

synchronized any more, A can request the current counter of

B using a nonce NA to ensure strong freshness of the reply:

A → B: NA,

B → A: CB , MAC(K ′
BA, NA || CB).

To prevent a potential denial-of-service (DoS) attack,

where an attacker keeps sending bogus messages to lure the

nodes into performing counter synchronization, the nodes can

switch to sending the counter with each encrypted message

they send. Another approach to detect such a DoS attack is to

attach another short MAC to the message that does not depend

on the counter.

5.3. µTESLA: Authenticated broadcast

Previous proposals for authenticated broadcast are impracti-

cal for sensor networks. First, most proposals rely on asym-

metric digital signatures for authentication, which are imprac-

tical for multiple reasons, which we describe in section 1.

The recently proposed TESLA protocol provides efficient

authenticated broadcast [42,43]. However, TESLA is not de-

signed for the limited computing environments we encounter

in sensor networks for the following three reasons:

526 PERRIG ET AL.

TESLA authenticates the initial packet with a digital sig-

nature. Clearly, digital signatures are too expensive to com-

pute on our sensor nodes, since even fitting the code into the

memory is a major challenge. For the same reason as we men-

tion above, one-time signatures are a challenge to use on our

nodes.

Standard TESLA has an overhead of approximately

24 bytes per packet. For networks connecting workstations

this is usually not significant. Sensor nodes, however, send

very small messages that are around 30 bytes long. It is sim-

ply impractical to disclose the TESLA key for the previous

intervals with every packet: with 64 bit keys and MACs, the

TESLA-related part of the packet would be constitute over

50% of the packet.

Finally, the one-way key chain does not fit into the memory

of our sensor node. So, pure TESLA is not practical for a node

to broadcast authenticated data.

We design µTESLA to solve the following inadequacies

of TESLA in sensor networks:

• TESLA authenticates the initial packet with a digital sig-

nature, which is too expensive for our sensor nodes.

µTESLA uses only symmetric mechanisms.

• Disclosing a key in each packet requires too much en-

ergy for sending and receiving. µTESLA discloses the

key once per epoch.

• It is expensive to store a one-way key chain in a sen-

sor node. µTESLA restricts the number of authenticated

senders.

5.4. µTESLA overview

We give a brief overview of µTESLA, followed by a detailed

description.

Authenticated broadcast requires an asymmetric mecha-

nism, otherwise any compromised receiver could forge mes-

sages from the sender. Unfortunately, asymmetric cryp-

tographic mechanisms have high computation, communica-

tion, and storage overhead, making their usage on resource-

constrained devices impractical. µTESLA overcomes this

problem by introducing asymmetry through a delayed disclo-

sure of symmetric keys, which results in an efficient broadcast

authentication scheme.

We first explain µTESLA for the case where the base sta-

tion broadcasts authenticated information to the nodes. Later

we discuss the case where the nodes are the sender.

µTESLA requires that the base station and nodes be

loosely time synchronized, and each node knows an upper

bound on the maximum synchronization error. To send an au-

thenticated packet, the base station computes a MAC on the

packet with a key that is secret at that point in time. When a

node gets a packet, it can verify that the corresponding MAC

key was not yet disclosed by the base station (based on its

loosely synchronized clock, its maximum synchronization er-

ror, and the time schedule at which keys are disclosed). Since

a receiving node is assured that the MAC key is known only

by the base station, the receiving node is assured that no ad-

versary could have altered the packet in transit. The node

stores the packet in a buffer. At the time of key disclosure,

the base station broadcasts the verification key to all receivers.

When a node receives the disclosed key, it can verify the cor-

rectness of the key (which we explain below). If the key is

correct, the node can now use it to authenticate the packet

stored in its buffer.

Each MAC key is a key of a key chain, generated by

a public one-way function F . To generate the one-way key

chain, the sender chooses the last key Kn of the chain ran-

domly, and repeatedly applies F to compute all other keys:

Ki = F(Ki+1). Each node can easily perform time synchro-

nization and retrieve an authenticated key of the key chain for

the commitment in a secure and authenticated manner, using

the SNEP building block. (We explain more details in the next

subsection.)

Example. Figure 1 shows the µTESLA one-way key chain

derivation, the time intervals, and some sample packets that

the sender broadcasts. Each key of the key chain corresponds

to a time interval and all packets sent within one time inter-

val are authenticated with the same key. In this example, the

sender discloses keys two time intervals after it uses them to

compute MACs. We assume that the receiver node is loosely

time synchronized and knows K0 (a commitment to the key

chain). Packets P1 and P2 sent in interval 1 contain a MAC

with key K1. Packet P3 has a MAC using key K2. So far,

the receiver cannot authenticate any packets yet. Assume that

packets P4, P5, and P6 are all lost, as well as the packet that

discloses key K1, so the receiver can still not authenticate P1,

P2, or P3. In interval 4 the base station broadcasts key K2,

which the node authenticates by verifying K0 = F(F(K2)).

The node derives K1 = F(K2), so it can authenticate packets

P1, P2 with K1, and P3 with K2.

Key disclosure is independent from the packets broadcast,

and is tied to time intervals. In µTESLA, the sender broad-

casts the current key periodically in a special packet.

5.5. µTESLA detailed description

µTESLA has multiple phases: sender setup, sending authen-

ticated packets, bootstrapping new receivers, and authenticat-

ing packets. We first explain how µTESLA allows the base

station to broadcast authenticated information to the nodes,

Figure 1. The µTESLA one-way key chain. The sender generates the one-

way key chain right-to-left by repeatedly applying the one-way function F .

The sender associates each key of the one-way key chain with a time interval.

Time runs left-to-right, so the sender uses the keys of the key chain in reverse

order, and computes the MAC of the packets of a time interval with the key

of that time interval.

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 527

and we then explain how TESLA allows nodes to broadcast

authenticated messages.

Sender setup. The sender first generates a sequence of secret

keys (a one-way key chain). To generate a one-way key chain

of length n, the sender chooses the last key Kn randomly,

and generates the remaining values by successively apply-

ing a one-way function F (e.g., a cryptographic hash function

such as MD5 [46]): Kj = F(Kj+1). Because F is a one-

way function, anybody can compute forward, e.g., compute

K0, . . . ,Kj given Kj+1. On the other hand, nobody can com-

pute backward, e.g., compute Kj+1 given only K0, . . . ,Kj ,

because the generator function is one-way. The S/Key one-

time password system uses a similar approach [21].

Broadcasting authenticated packets. Time is divided into

uniform time intervals, and the sender associates each key of

the one-way key chain with one time interval. In time inter-

val i, the sender uses the key of the current interval, Ki , to

compute the message authentication code (MAC) of packets

in that interval. In time interval (i + δ), the sender reveals

key Ki . The key disclosure time delay is on the order of a

few time intervals, as long as it is greater than any reasonable

round trip time between the sender and the receivers.

Bootstrapping a new receiver. In a one-way key chain, keys

are self-authenticating. The receiver can easily and efficiently

authenticate subsequent keys of the one-way key chain us-

ing one authenticated key. For example, if a receiver has

an authenticated value Ki of the key chain, it can easily au-

thenticate Ki+1, by verifying Ki = F(Ki+1). To bootstrap

µTESLA, each receiver needs to have one authentic key of

the one-way key chain as a commitment to the entire chain.

Other requirements are that the sender and receiver be loosely

time synchronized, and that the receiver knows the key disclo-

sure schedule of the keys of the one-way key chain. Both the

loose time synchronization and the authenticated key chain

commitment can be established with a mechanism provid-

ing strong freshness and point-to-point authentication. A re-

ceiver R sends a nonce NR in the request message to the

sender S. The sender S replies with a message containing

its current time TS , a key Ki of the one-way key chain used in

a past interval i (the commitment to the key chain), the start-

ing time Ti of interval i, the duration Tint of a time interval,

and the disclosure delay δ (the last three values describe the

key disclosure schedule):

M → S: NM

S → M: TS | Ki | Ti | Tint | δ

MAC(KMS, NM | TS | Ki | Ti | Tint | δ).

Since we do not need confidentiality, the sender does not

need to encrypt the data. The MAC uses the secret key shared

by the node and base station to authenticate the data, the

nonce NM allows the node to verify freshness. Instead of us-

ing a digital signature scheme as in TESLA, we use the node-

to-base-station authenticated channel to bootstrap the authen-

ticated broadcast.

Authenticating broadcast packets. When a receiver receives

the packets with the MAC, it needs to ensure that the packet is

not a spoof from an adversary. The adversary already knows

the disclosed key of a time interval, so it could forge the

packet since it knows the key used to compute the MAC. We

say that the receiver needs to be sure that the packet is safe –

i.e. that the sender did not yet disclose the key that was used

to compute the MAC of an incoming packet. As stated above,

the sender and receivers need to be loosely time synchronized

and the receivers need to know the key disclosure schedule.

If the incoming packet is safe, the receiver stores the packet

(it can verify it only once the corresponding key is disclosed).

If the incoming packet is not safe (the packet had an unusu-

ally long delay), the receiver needs to drop the packet, since

an adversary might have altered it.

As soon as the node receives a new key Ki , it authenticates

the key by checking that it matches the last authentic key it

knows Kv , using a small number of applications of the one-

way function F : Kv = F i−v(Ki). If the check is successful,

the new key Ki is authentic and the receiver can authenticate

all packets that were sent within the time intervals v to i. The

receiver also replaces the stored Kv with Ki .

Nodes broadcasting authenticated data. New challenges

arise if a node broadcasts authenticated data. Since the node

is memory limited, it cannot store the keys of a one-way key

chain. Moreover, re-computing each key from the initial gen-

erating key Kn is computationally expensive. Also, the node

might not share a key with each receiver, so sending out the

authenticated commitment to the key chain would involve an

expensive node-to-node key agreement. Finally, broadcasting

the disclosed keys to all receivers is expensive for the node

and drains precious battery energy.

Here are two solutions to the problem:

• The node broadcasts the data through the base station. It

uses SNEP to send the data in an authenticated way to the

base station, which subsequently broadcasts it.

• The node broadcasts the data. However, the base station

keeps the one-way key chain and sends keys to the broad-

casting node as needed. To conserve energy for the broad-

casting node, the base station can also broadcast the dis-

closed keys, and/or perform the initial bootstrapping pro-

cedure for new receivers.

6. Implementation

Because of stringent resource constraints on the sensor nodes,

implementation of the cryptographic primitives is a major

challenge. We can sacrifice some security to achieve feasi-

bility and efficiency, but we still need a core level of strong

cryptography. Below we discuss how we provide strong cryp-

tography despite restricted resources.

Memory size is a constraint: our sensor nodes have

8 Kbytes of read-only program memory, and 512 bytes of

RAM. The program memory is used for TinyOS, our security

infrastructure, and the actual sensor net application. To save

528 PERRIG ET AL.

program memory we implement all cryptographic primitives

from one single block cipher [29,50].

Block cipher. We evaluated several algorithms for use as a

block cipher. An initial choice was the AES algorithm Rijn-

dael [12]; however, after further inspection, we sought alter-

natives with smaller code size and higher speed. The base-

line version of Rijndael uses over 800 bytes of lookup tables

which is too large for our memory-deprived nodes. An op-

timized version of that algorithm (about a 100 times faster)

uses over 10 Kbytes of lookup tables. Similarly, we rejected

the DES block cipher which requires a 512-entry SBox table

and a 256-entry table for various permutations [32]. A small

encryption algorithm such as TEA [54] is a possibility, but is

has not yet been subject to cryptanalytic scrutiny.4 We use

RC5 [47] because of its small code size and high efficiency.

RC5 does not rely on multiplication and does not require large

tables. However, RC5 does use 32-bit data-dependent rotates,

which are expensive on our Atmel processor (it only supports

an 8-bit single bit rotate operation).

Even though the RC5 algorithm can be expressed suc-

cinctly, the common RC5 libraries are too large to fit on our

platform. With a judicious selection of functionality, we use a

subset of RC5 from OpenSSL, and after further tuning of the

code we achieve an additional 40% reduction in code size.

Encryption function. To save code space, we use the same

function for both encryption and decryption. The counter

(CTR) mode of block ciphers (figure 2) has this property.

CTR mode is a stream cipher. Therefore, the size of the ci-

phertext is exactly the size of the plaintext and not a mul-

tiple of the block size.5 This property is particularly desir-

able in our environment. Message sending and receiving con-

sume a lot of energy. Also, longer messages have a higher

probability of data corruption. Therefore, block cipher mes-

sage expansion is undesirable. CTR mode requires a counter

for proper operation. Reusing a counter value severely de-

grades security. In addition, CTR-mode offers semantic se-

curity: the same plaintext sent at different times is encrypted

into different ciphertext since the encryption pads are gener-

ated from different counters. To an adversary who does not

know the key, these messages will appear as two unrelated

random strings. Since the sender and the receiver share the

counter, we do not need to include it in the message. If the

two nodes lose the synchronization of the counter, they can

simply transmit the counter explicitly to resynchronize using

SNEP with strong freshness.

Freshness. Weak freshness is automatically provided by the

CTR encryption. Since the sender increments the counter af-

ter each message, the receiver verifies weak freshness by ver-

ifying that received messages have a monotonically increas-

ing counter. For applications requiring strong freshness, the

4 TREYFER [56] by Yuval is a small and efficient cipher, but Biryukov and

Wagner describe an attack on it [7].
5 The same property can be achieved with a block cipher and the ciphertext-

stealing method described by Schneier [50]. The downside is that

Schneier’s approach requires both encryption and decryption functions.

Figure 2. Counter mode encryption and decryption. The encryption func-

tion is applied to a monotonically increasing counter to generate a one time

pad. This pad is then XORed with the plaintext. The decryption operation is

identical.

sender creates a random nonce NM (an unpredictable 64-bit

value) and includes it in the request message to the receiver.

The receiver generates the response message and includes the

nonce in the MAC computation (see section 5). If the MAC

of the response verifies successfully, the node knows that the

response was generated after it sent the request message and

hence achieves strong freshness.

Random-number generation. The node has its own sensors,

wireless receiver, and scheduling process, from which we

could derive random digits. But to minimize power require-

ments, we use a MAC function as our pseudo-random num-

ber generator (PRG), with the secret pseudo-random number

generator key Xrand. We also keep a counter C that we incre-

ment after each pseudo-random block we generate. We com-

pute the C-th pseudo-random output block as MAC(Xrand, C).

If C wraps around (which should never happen because the

node will run out of energy first), we can derive a new PRG

key from the master secret key and the current PRG key us-

ing our MAC as a pseudo-random function (PRF): Xrand =

MAC(X ,Xrand).

Message authentication. We also need a secure message au-

thentication code. Because we intend to reuse our block ci-

pher, we use the well-known CBC-MAC [33]. A block dia-

gram for computing CBC MAC is shown in figure 3.

To achieve authentication and message integrity we use the

following standard approach. Assuming a message M , an en-

cryption key K, and a MAC key K′, we use the following

construction: {M}K, MAC(K′, {M}K). This construction pre-

vents the nodes from decrypting erroneous ciphertext, which

is a potential security risk.

In our implementation, we decided to compute a MAC per

packet. This approach fits well with the lossy nature of com-

munications within this environment. Furthermore, at this

granularity, the MAC is used to check both authentication and

integrity of messages, eliminating the need for mechanisms

such as CRC.

Key setup. Recall that our key setup depends on a secret

master key, initially shared by the base station and the node.

We call that shared key XAS for node A and base station S.

All other keys are bootstrapped from the initial master secret

key. Figure 4 shows our key derivation procedure. We use the

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 529

Figure 3. CBC MAC. The output of the last stage serves as the authentication

code.

Figure 4. Deriving internal keys from the master secret key.

pseudo-random function (PRF) F to derive the keys, which

we implement as FK (x) = MAC(K, x). Again, this allows

for more code reuse. Because of cryptographic properties of

the MAC, it must also be a good pseudo-random function.

All keys derived in this manner are computationally indepen-

dent. Even if the attacker could break one of the keys, the

knowledge of that key would not help it find the master se-

cret or any other key. Additionally, if we detect that a key has

been compromised, both parties can derive a new key without

transmitting any confidential information.

7. Evaluation

We evaluate the implementation of our protocols by code size,

RAM size, and processor and communication overhead.

Code size. Table 2 shows the code size of three implemen-

tations of crypto routines in TinyOS. The smallest version of

the crypto routines occupies about 20% of the available code

space. The difference between the fastest and the smallest im-

plementation stems from two different implementations of the

variable rotate function. The µTESLA protocol uses another

574 bytes. Together, the crypto library and the protocol im-

plementation consume about 2 Kbytes of program memory,

which is acceptable in most applications.

It is important to identify reusable routines to minimize

call setup costs. For example, OpenSSL implements RC5 en-

cryption as a function. On our sensor hardware, the code size

of call setup and return outweigh the code size of the body of

the RC5 function. We implement RC5 as a macro and only

expose interfaces to the MAC and CTR-ENCRYPT functions.

Table 2

Code size breakdown (in bytes) for the security modules.

Version Total size MAC Encrypt Key setup

Smallest 1580 580 402 598

Fastest 1844 728 518 598

Original 2674 1210 802 686

Table 3

Performance of security primitives in TinyOS.

Operation Time in ms Time in ms

Fast implementation Small implementation

Encrypt (16 bytes) 1.10 1.69

MAC (16 bytes) 1.28 1.63

Key setup 3.92 3.92

Performance. The performance of the cryptographic primi-

tives is adequate for the bandwidth supported by the current

generation of network sensors. Key setup is relatively expen-

sive (4 ms). In contrast, the fast version of the code uses less

than 2.5 ms to encrypt a 16 byte message and to compute the

MAC (the smaller but slower version takes less than 3.5 ms).

Let us compare these time figures against the speed of our net-

work. Our radio operates at 10 kbps at the physical layer. If

we assume that we communicate at this rate, we can perform

a key setup, an encryption, and a MAC for every message we

send out.6

In our implementation, µTESLA discloses the key after

two intervals (δ = 2). The stringent buffering requirements

also dictate that we cannot drop more than one key disclosure

beacon. We require a maximum of two key setup operations

and two CTR encryptions to check the validity of a disclosed

TESLA key. Additionally, we perform up to two key setup

operations, two CTR encryptions, and up to four MAC op-

eration to check the integrity of a TESLA message.7 That

gives an upper bound of 17.8 ms for checking the buffered

messages. This amount of work is easily performed on our

processor. In fact, the limiting factor on the bandwidth of au-

thenticated broadcast traffic is the amount of buffering we can

dedicate on individual sensor nodes. Table 4 shows the mem-

ory size required by the security modules. We configure the

µTESLA protocol with four messages: the disclosure interval

dictates a buffer space of three messages just for key disclo-

sure, and we need an additional buffer to use this primitive in

a more flexible way. Despite allocating minimal amounts of

memory to µTESLA, the protocols we implement consume

half of the available memory, and we cannot afford any more

memory.

Energy costs. We examine the energy costs of security

mechanisms. Most energy costs will come from extra trans-

missions required by the protocols.

6 The data rate available to the application is significantly smaller, due to

physical layer encoding, forward error correction, media access protocols,

and packet format overheads.
7 Key setup operations are dependent on the minimal and maximal disclosure

interval, but the number of MAC operations depends on the number of

buffered messages.

530 PERRIG ET AL.

Table 4

RAM requirements of the security modules.

Module RAM size (bytes)

RC5 80

TESLA 120

Encrypt/MAC 20

Table 5

Energy costs of adding security protocols to the

sensor network. Most of the overhead arises

from the transmission of extra data rather than

from any computational costs.

71% Data transmission

20% MAC transmission

7% Nonce transmission (for freshness)

2% MAC and encryption computation

Table 5 lists the energy costs of computation and commu-

nication for the SNEP protocol. The energy costs are com-

puted for 30 byte packets. The energy overhead for the trans-

mission dominates energy overhead for computation. Since

we use a stream cipher for encryption, the size of encrypted

message is the same as the size of the plaintext. The MAC

adds 8 bytes to a message. But, because the MAC gives us

integrity guarantees, we do not need an extra 2 bytes of CRC,

so the net overhead is only 6 bytes. The transmission of these

6 bytes requires 20% of the total energy for a 30 byte packet,

as table 5 shows.

Messages broadcast using µTESLA have the same costs of

authentication per message. Additionally, µTESLA requires

a periodic key disclosure, but these messages are combined

with routing updates. We can take two views regarding the

costs of these messages. If we accept that the routing bea-

cons are necessary, then µTESLA key disclosure is nearly

free, because energy of transmitting or receiving dominate the

computational costs of our protocols. On the other hand, one

might claim that the routing beacons are not necessary and

that it is possible to construct an ad hoc multihop network im-

plicitly. In that case the overhead of key disclosure would be

one message per time interval, regardless of the traffic pattern

within the network. We believe that the benefits of authenti-

cated routing justify the costs of explicit beacons.

Remaining security issues. Although this protocol suite ad-

dresses many security related problems, there remain many

additional issues. First, we do not address the problem of in-

formation leakage through covert channels. Second, we do

not deal completely with compromised sensors, we merely

ensure that compromising a single sensor does not reveal the

keys of all the sensors in the network. Third, we do not deal

with denial-of-service (DoS) attacks in this work. Since we

operate on a wireless network, an adversary can always per-

form a DoS attack by jamming the wireless channel with a

strong signal. Finally, due to our hardware limitations, we

cannot provide Diffie-Hellman style key agreement or use

digital signatures to achieve non-repudiation. For the majority

of sensor network applications, authentication is sufficient.

8. Applications

In this section we demonstrate how we can build secure proto-

cols out of the SPINS secure building blocks. First, we build

an authenticated routing application, and second, a two-party

key agreement protocol.

8.1. Authenticated routing

Using the µTESLA protocol, we developed a lightweight, au-

thenticated ad hoc routing protocol that builds an authenti-

cated routing topology. Ad hoc routing has been an active

area of research [11,20,25,26,38,40,41]. Marti et al. discuss

a mechanism to protect an ad hoc network against misbehav-

ing nodes that fail to forward packets correctly [28]. They

describe two mechanisms: a watchdog to detect misbehav-

ing neighboring nodes, and a pathrater to keep state about the

goodness of other nodes. They propose running these mecha-

nisms on each node. However, we are not aware of a routing

protocol that uses authenticated routing messages. It is possi-

ble for a malicious user to take over the network by injecting

erroneous, replaying old, or advertise incorrect routing infor-

mation. The authenticated routing scheme we developed mit-

igates these problems.

The routing scheme within our prototype network assumes

bidirectional communication channels, i.e. if node A hears

node B, then node B hears node A. The route discovery de-

pends on periodic broadcast of beacons. Every node, upon

reception of a beacon packet, checks whether it has already

received a beacon (which is a normal packet with a globally

unique sender ID and current time at base station, protected

by a MAC to ensure integrity and that the data is authentic)

in the current epoch.8 If a node hears the beacon within the

epoch, it does not take any further action. Otherwise, the node

accepts the sender of the beacon as its parent to route towards

the base station. Additionally, the node would repeat the bea-

con with the sender ID changed to itself. This route discovery

resembles a distributed, breadth first search algorithm, and

produces a routing topology (see [23] for details).

However, in the above algorithm, route discovery depends

only on the receipt of route packet, not on its contents.

It is easy for any node to claim to be a valid base station.

In contrast, we note that the µTESLA key disclosure packets

can easily function as routing beacons. We accept only the

sources of authenticated beacons as valid parents. Reception

of a µTESLA packet guarantees that that packet originated at

the base station, and that it is fresh. For each time interval, we

accept as the parent the first node sending a successfully au-

thenticated packet. Combining µTESLA key disclosure with

distribution of routing beacons allows us to combine trans-

mission of the keys with network maintenance.

We have outlined a scheme leading to a lightweight au-

thenticated routing protocol for sensor networks. Since each

node accepts only the first authenticated packet as the one to

use in routing, it is impossible for an attacker to reroute arbi-

trary links within the sensor network. Each node verifies the

8 Epoch means the interval between routing updates.

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 531

behavior of the parent by implementing functionality similar

to watchdogs described in [28].

The authenticated routing scheme above is just one way to

build authenticated ad hoc routing protocol using µTESLA.

In protocols where base stations are not involved in route con-

struction, µTESLA can still be used for security. In these

cases, the initiating node will temporarily act as base station

and beacons authenticated route updates.9

8.2. Node-to-node key agreement

A convenient technology for bootstrapping secure connec-

tions is to use public key cryptography protocols for symmet-

ric key setup [5,22]. Unfortunately, our resource constrained

sensor nodes prevent us from using computationally expen-

sive public key cryptography. We need to construct our proto-

cols solely from symmetric key algorithms. We design a sym-

metric protocol that uses the base station as a trusted agent for

key setup.

Assume that the node A wants to establish a shared secret

session key SKAB with node B. Since A and B do not share

any secrets, they need to use a trusted third party S, which is

the base station in our case. In our trust setup, both A and

B share a master secret key with the base station, XAS and

XBS , respectively. The following protocol achieves secure

key agreement as well as strong key freshness:

A → B: NA, A,

B → S: NA, NB , A,B, MAC
(

K ′
BS , NA|NB |A|B

)

,

S → A: {SKAB}KSA, MAC
(

K ′
SA, NA|B|{SKAB}KSA

)

,

S → B: {SKAB}KSB , MAC
(

K ′
SB, NA|B|{SKAB}KSB

)

.

The protocol uses our SNEP protocol with strong fresh-

ness. The nonces NA and NB ensure strong key freshness

to both A and B. The SNEP protocol ensures confidentiality

(through encryption with the keys KAS and KBS) of the estab-

lished session key SKAB , as well as message authentication

(through the MAC using keys K ′
AS and K ′

BS), so we are sure

that the key was really generated by the base station. Note

that the MAC in the second protocol message helps defend

the base station from denial-of-service attacks, and the base

station only sends two messages to A and B if it received a

legitimate request from one of the nodes.

A nice feature of the above protocol is that the base station

performs most of the transmission work. Many other proto-

cols involve a ticket that the server sends to one of the parties

which forwards it to the other node, which requires more en-

ergy for the nodes to forward the message.

The Kerberos key agreement protocol achieves similar

properties, but it does not provide strong key freshness

[27,30]. If Kerberos used SNEP with strong freshness, then

Kerberos would have greater security.

9 The node needs significantly more memory resources than our current sen-

sor nodes to store the key chain.

9. Related work

Tatebayashi et al. consider key distribution for resource-

starved devices in a mobile environment [52]. Park et al. [37]

point out weaknesses and improvements. Beller and Yacobi

further develop key agreement and authentication protocols

[4]. Boyd and Mathuria survey the previous work on key dis-

tribution and authentication for resource-starved devices in

mobile environments [8]. The majority of these approaches

rely on asymmetric cryptography. Bergstrom et al. consider

the problem of secure remote control of resource-starved de-

vices in a home [6].

Fox and Gribble present a security protocol providing se-

cure access to application level proxy services [16]. Their

protocol is designed to interact with a proxy to Kerberos and

to facilitate porting services relying on Kerberos to wireless

devices.

The work of Patel and Crowcroft focuses on security solu-

tions for mobile user devices [39]. Unfortunately, their work

uses asymmetric cryptography and is, hence, too expensive

for the environments we envision.

The work of Czerwinski et al. also relies on asymmetric

cryptography for authentication [10].

Stajano and Anderson discuss the issues of bootstrapping

security devices [51]. Their solution requires physical contact

of the new device with a master device to imprint the trusted

and secret information.

Zhou and Haas propose to secure ad hoc networks us-

ing asymmetric cryptography [57]. Recently, Basagni et al.

proposed to use a network-wide symmetric key to secure an

ad hoc routing protocol [2]. While this approach is efficient,

it does not resist compromise of a single node.

Carman et al. analyze a wide variety of approaches for

key agreement and key distribution in sensor networks [9].

They analyze the overhead of these protocols on a variety of

hardware platforms.

Marti et al. discuss a mechanism to protect an ad hoc net-

work against misbehaving nodes that fail to forward packets

correctly [28]. They propose that each node runs a watchdog

(to detect misbehaving neighboring nodes) and a pathrater (to

keep state about the goodness of other nodes); their solution,

however, is better suited for traditional networks, with empha-

sis on reliable point-to-point communication, than to sensor

networks.

Hubaux et al. present a system for ad hoc peer-to-peer au-

thentication based on public key certificates [24]. They con-

sider an ad hoc network with nodes powerful enough for per-

forming asymmetric cryptographic operations.

A number of researchers investigate the problem to pro-

vide cryptographic services in low-end devices. We first dis-

cuss the hardware efforts, followed by the algorithmic work

on cryptography. Several systems integrate cryptographic

primitives with low cost microcontrollers. Examples of such

systems are secure AVR controllers [1], the Fortezza govern-

ment standard [15], the Dallas iButton [13], and the Dyad

system [55]. These systems support primitives for cryptogra-

phy, and attempt to zeroize their memory if tampering is de-

532 PERRIG ET AL.

tected (as per the FIPS 140 standard [34,35]). However, these

devices were designed for different applications, and are not

meant as low-power devices.

Modadugu et al. describe an asymmetric crypto system for

low-end devices, which offloads the heavy computation for

finding an RSA key pair to untrusted servers [31].

Symmetric encryption algorithms seem to be inherently

well suited to low-end devices, because they have relatively

low overhead. In practice, however, many low-end micro-

processors are only 4-bit or 8-bit, and do not provide (ef-

ficient) multiplication or variable rotate/shift instructions.

Hence many symmetric ciphers are too expensive to imple-

ment on our target platform. The Advanced Encryption Stan-

dard (AES) [36] Rijndael block cipher [12] is too expensive

for our platform. Depending on the implementation, AES

was either too big or too slow for our application. Due to

our severe limitation on our maximum code size, we chose

to use RC5 by Ron Rivest [47]. Algorithms such as TEA

by Wheeler and Needham [54] or TREYFER by Yuval [56]

would be smaller alternatives, but those other ciphers have not

yet been thoroughly analyzed.

10. Conclusion

We designed and built a security subsystem for an extremely

limited sensor network platform. We have identified and im-

plemented useful security protocols for sensor networks: au-

thenticated and confidential communication, and authenti-

cated broadcast. We have implemented applications including

an authenticated routing scheme and a secure node-to-node

key agreement protocol.

Most of our design is universal and applicable to other net-

works of low-end devices. Our primitives only depend on fast

symmetric cryptography, and apply to a wide variety of de-

vice configurations. On our limited platform energy spent

for security is negligible compared with to energy spent on

sending or receiving messages. It is possible to encrypt and

authenticate all sensor readings.

The communication costs are also small. Data authenti-

cation, freshness, and confidentiality properties use up a net

6 bytes out of 30 byte packets. So, it is feasible to guarantee

these properties on a per packet basis. It is difficult to im-

prove on this scheme, as transmitting a MAC is fundamental

to guaranteeing data authentication.

Certain elements of the design were influenced by the

available experimental platform. If we had a more power-

ful platform, we could have used block ciphers other than

RC5. The emphasis on code reuse is another property forced

by our platform. A more powerful device would allow more

modes of authentication. In particular, memory restrictions

on buffering limit the effective bandwidth of authenticated

broadcast.

Despite the shortcomings of our target platform, we built a

system that is secure and works. With our techniques, we be-

lieve security systems can become an integral part of practical

sensor networks.

Acknowledgements

We gratefully acknowledge funding support for this re-

search. This research was sponsored in part by the United

States Postal Service (contract USPS 102592-01-Z-0236),

by the United States Defense Advanced Research Projects

Agency (contracts DABT63-98-C-0038, “Ninja”, N66001-

99-2-8913, “Endeavour”, and F33615-01-C-1895, “NEST”),

by the United States National Science Foundation (grants

FD99-79852 and RI EIA-9802069) and from gifts and grants

from the California MICRO program, Intel Corporation,

IBM, Sun Microsystems, and Philips Electronics. DARPA

Contract N66001-99-2-8913 is under the supervision of the

Space and Naval Warfare Systems Center, San Diego. This

paper represents the opinions of the authors and do not nec-

essarily represent the opinions or policies, either expressed or

implied, of the United States government, of DARPA, NSF,

USPS, or any other of its agencies, or any of the other fund-

ing sponsors.

We thank Jean-Pierre Hubaux, Dawn Song and David

Wagner for helpful discussions and comments. An earlier ver-

sion of this work appeared as [44].

References

[1] Atmel, Secure Microcontrollers for SmartCards, http://www.

atmel.com/atmel/acrobat/1065s.pdf

[2] S. Basagni, K. Herrin, E. Rosti and D. Bruschi, Secure Pebblenets,

in: ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc 2001) (2001) pp. 156–163.

[3] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A concrete security

treatment of symmetric encryption: Analysis of the DES modes of op-

eration, in: Symposium on Foundations of Computer Science (FOCS)

(1997).

[4] M. Beller and Y. Yacobi, Fully-fledged two-way public key authenti-

cation and key agreement for low-cost terminals, Electronics Letters

29(11) (1993) 999–1001.

[5] S. Bellovin and M. Merrit, Augmented encrypted key exchange:

a password-based protocol secure against dictionary attacks and pass-

word file compromise, in: ACM Conference on Computer and Commu-

nications Security CCS-1 (1993) pp. 244–250.

[6] P. Bergstrom, K. Driscoll and J. Kimball, Making home automation

communications secure, IEEE Computer 34(10) (2001) 50–56.

[7] A. Biryukov and D. Wagner, Slide attacks, in: International Workshop

on Fast Software Encryption (1999).

[8] C. Boyd and A. Mathuria, Key establishment protocols for secure mo-

bile communications: A selective survey, in: Australasian Conference

on Information Security and Privacy (1998) pp. 344–355.

[9] D.W. Carman, P.S. Kruus and B.J. Matt, Constraints and approaches for

distributed sensor network security, NAI Labs Technical Report No. 00-

010 (2002).

[10] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph and R.H. Katz,

An architecture for a secure service discovery service, in: ACM In-

ternational Conference on Mobile Computing and Networking (Mobi-

Com’99) (1999) pp. 24–35.

[11] D. Johnson, D.A. Maltz and J. Broch, The dynamic source routing pro-

tocol for mobile ad hoc networks, Internet draft, Mobile Ad-Hoc Net-

work (MANET) Working Group, IETF (1999).

[12] J. Daemen and V. Rijmen, AES proposal: Rijndael (1999).

[13] Dallas, iButton: A Java-powered cryptographic iButton, http://

www.ibutton.com/ibuttons/java.html

[14] W. Diffie and M.E. Hellman, Privacy and authentication: An introduc-

tion to cryptography, Proceedings of the IEEE 67(3) (1979) 397–427.

[15] Fortezza, Fortezza: Application implementers guide (1995).

SPINS: SECURITY PROTOCOLS FOR SENSOR NETWORKS 533

[16] A. Fox and S.D. Gribble, Security on the move: Indirect authentica-

tion using Kerberos, in: International Conference on Mobile Comput-

ing and Networking (MobiCom’96) (1996) pp. 155–164.

[17] R. Gennaro and P. Rohatgi, How to sign digital streams, in: Advances

in Cryptology – Crypto’97, Lecture Notes in Computer Science, Vol.

1294 (1997) pp. 180–197.

[18] O. Goldreich, S. Goldwasser and S. Micali, How to construct random

functions, Journal of the ACM 33(4) (1986) 792–807.

[19] S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Com-

puter Security 28 (1984) 270–299.

[20] Z. Haas and M. Perlman, The Zone Routing Protocol (ZRP) for ad hoc

networks, Internet draft, Mobile Ad-Hoc Network (MANET) Working

Group, IETF (1998).

[21] N.M. Haller, The S/KEY one-time password system, in: Symposium on

Network and Distributed Systems Security (1994).

[22] D. Harkins and D. Carrel, The Internet key exchange (IKE), RFC

2409, Information Sciences Institute, University of Southern Califor-

nia (1998).

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K. Pister, System

architecture directions for networked sensors, in: International Confer-

ence on Architectural Support for Programming Languages and Oper-

ating Systems.

[24] J.-P. Hubaux, L. Buttyán and S. Čapkun, The quest for security in mo-

bile ad hoc networks, in: ACM Symposium on Mobile Ad Hoc Network-

ing and Computing (2001).

[25] D.B. Johnson and D.A. Maltz, Dynamic source routing in ad hoc wire-

less networks, in: Mobile Computing (Kluwer Academic, 1996) chap-

ter 5, pp. 153–181.

[26] Y.-B. Ko and N. Vaidya, Location-Aided Routing (LAR) in mobile ad

hoc networks, in: International Conference on Mobile Computing and

Networking (MobiCom’98) (1998).

[27] J. Kohl and C. Neuman, The Kerberos network authentication service

(V5), RFC 1510 (1993).

[28] S. Marti, T. Giuli, K. Lai and M. Baker, Mitigating routing misbehav-

iour in mobile ad hoc networks, in: International Conference on Mobile

Computing and Networking (MobiCom 2000) (2000) pp. 255–265.

[29] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Ap-

plied Cryptography (CRC Press, 1997).

[30] S.P. Miller, C. Neuman, J.I. Schiller and J.H. Saltzer, Kerberos authenti-

cation and authorization system, Project Athena Technical Plan (1987).

[31] N. Modadugu, D. Boneh and M. Kim, Generating RSA keys on a hand-

held using an untrusted server, RSA 2000 (2000).

[32] National Bureau of Standards (NBS), Specification for the data encryp-

tion standard, Federal Information Processing Standards (FIPS) Publi-

cation 46 (1977).

[33] National Institute of Standards and Technology (NIST), DES model

of operation, Federal Information Processing Standards Publication 81

(FIPS PUB 81) (1981).

[34] National Institute of Standards and Technology (NIST), Security re-

quirements for cryptographic modules, Federal Information Processing

Standards (FIPS) Publication 140-1 (1994).

[35] National Institute of Standards and Technology (NIST), Security re-

quirements for cryptographic modules, Federal Information Processing

Standards (FIPS) Publication 140-2 (1999).

[36] National Institute of Standards and Technology (NIST), Advanced

encryption standard (AES) development effort (2000) http://

csrc.nist.gov/encryption/aes/

[37] C. Park, K. Kurosawa, T. Okamoto and S. Tsujii, On key distribution

and authentication in mobile radio networks, in: Advances in Cryp-

tology – EuroCrypt’93, Lecture Notes in Computer Science, Vol. 765

(1993) pp. 461–465.

[38] V. Park and M. Corson, A highly adaptable distributed routing algo-

rithm for mobile wireless networks, in: IEEE INFOCOMM’97 (1997).

[39] B. Patel and J. Crowcroft, Ticket based service access for the mobile

user, in: International Conference on Mobile Computing and Network-

ing (MobiCom’97) (1997) pp. 223–233.

[40] C. Perkins and P. Bhagwat, Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers, in: ACM SIG-

COMM Symposium on Communication, Architectures and Applications

(1994).

[41] C. Perkins and E. Royer, Ad hoc on-demand distance vector routing,

in: IEEE WMCSA’99 (1999).

[42] A. Perrig, R. Canetti, D. Song and J.D. Tygar, Efficient and secure

source authentication for multicast, in: Network and Distributed Sys-

tem Security Symposium, NDSS’01 (2001).

[43] A. Perrig, R. Canetti, J. Tygar and D. Song, Efficient authentication and

signing of multicast streams over lossy channels, in: IEEE Symposium

on Security and Privacy (2000).

[44] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D. Tygar, SPINS:

Security protocols for sensor networks, in: International Conference

on Mobile Computing and Networking (MobiCom 2001), Rome, Italy

(2001).

[45] K.S.J. Pister, J.M. Kahn and B.E. Boser, Smart dust: Wireless networks

of millimeter-scale sensor nodes (1999).

[46] R. Rivest, The MD5 message-digest algorithm. RFC 1321, Internet En-

gineering Task Force (1992).

[47] R.L. Rivest, The RC5 encryption algorithm, in: Workshop on Fast Soft-

ware Encryption (1995) pp. 86–96.

[48] R.L. Rivest, A. Shamir and L.M. Adleman, A method for obtaining

digital signatures and public-key cryptosystems, Communications of

the ACM 21(2) (1978) 120–126.

[49] P. Rohatgi, A compact and fast hybrid signature scheme for multicast

packet authentication, in: ACM Conference on Computer and Commu-

nications Security (1999).

[50] B. Schneier, Applied Cryptography, 2nd ed. (Wiley, 1996).

[51] F. Stajano and R. Anderson, The resurrecting duckling: Security issues

for ad-hoc wireless networks, in: International Workshop on Security

Protocols (1999).

[52] M. Tatebayashi, N. Matsuzaki and D.B.J. Newman, Key distribution

protocol for digital mobile communication systems, in: Advances in

Cryptology – Crypto’89, Lecture Notes in Computer Science, Vol. 435

(1989) pp. 324–334.

[53] D. Tennenhouse, Embedding the Internet: Proactive computing, Com-

munications of the ACM 43(5) (2000) 43.

[54] D. Wheeler and R. Needham, TEA, a Tiny Encryption Algorithm

(1994) http://www.ftp.cl.cam.ac.uk/ftp/papers/

djw-rmn/djw-rmn-tea.html

[55] B. Yee and J.D. Tygar, Secure coprocessors in electronic commerce ap-

plications, in: USENIX Workshop on Electronic Commerce, New York

(1995).

[56] G. Yuval, Reinventing the Travois: Encryption/MAC in 30 ROM bytes,

in: Workshop on Fast Software Encryption (1997).

[57] L. Zhou and Z. Haas, Securing ad hoc networks, IEEE Network Maga-

zine 13(6) (1999).

Adrian Perrig received his Bachelors degree in computer science from the

Swiss Federal Institute of Technology in Lausanne (EPFL) in 1997. He is

now a graduate student at Carnegie Mellon University, and is currently com-

pleting his degree with his advisor Doug Tygar at the University of California,

Berkeley. His research interests include cryptography, and designing security

protocols for wireless and broadcast networks.

E-mail: perrig@cs.berkeley.edu

Robert Szewczyk received the B.S. magna cum laude from Cornell Univer-

sity in 1997. He is currently pursuing a Ph.D. at University of California,

Berkeley, under the supervision of David Culler. His research interests in-

clude sensor networks and their applications.

E-mail: szewczyk@cs.berkeley.edu

J.D. Tygar is a Professor of Computer Science and Information Management

at the University of California, Berkeley. He has worked widely in the fields

of computer security and electronic commerce. He has received numerous

awards and was selected as an NSF Presidential Young Investigator. He has

designed and built systems for electronic commerce, mobile security, tamper-

resistant systems, and electronic postage. He has co-written two books.

E-mail: tygar@cs.berkeley.edu

534 PERRIG ET AL.

Victor Wen received a B.S. degree in electrical engineering and computer

science from the University of California, Berkeley in 1999. He is currently

a Ph.D. student at the University of California, Berkeley. His research in-

terests include coding techniques for power reduction on chip, and wireless

networking applications.

E-mail: vwen@cs.berkeley.edu

David E. Culler is a Professor of Computer Science at the University of Cal-

ifornia. He has been on the faculty at Berkeley since 1989 and has served

as a Vice Chair for Computing and Networking. He received his Ph.D. from

MIT in 1989. He was awarded the NSF Presidential Young Investigator in

1990 and the Presidential Faculty Fellowship in 1992. His research addresses

parallel computer architecture, parallel programming languages, and high

performance communication structures. He is well known for his work on

Networks of Workstations (NOW), Active Messages, Split-C, the Threaded

Abstract Machine (TAM), and dataflow systems. He has published widely

in leading conferences and journals, obtained three patents, and recently

completed a graduate text called Parallel Computer Architecture: A Hard-

ware/Software Approach (Morgan-Kaufmann, publisher). He has served as a

General Chair and Program Chair for Hot Interconnects, Program Chair for

the ACM Symposium on Parallel Algorithms and Architectures and Operat-

ing Systems Design and Implementation, Technical Papers Chair for SC2001

and Co-Editor for special issues of IEEE Transactions on Parallel and Dis-

tributed Computing and IEEE Micro.

E-mail: culler@cs.berkeley.edu

