
 549

Near-Optimal Evasion of Convex-Inducing Classifiers

Blaine Nelson1 Benjamin I. P. Rubinstein1 Ling Huang2 Anthony D. Joseph1,2

Shing-hon Lau3 Steven J. Lee1 Satish Rao1 Anthony Tran1 J. D. Tygar1

1Computer Science Division, UC Berkeley 2Intel Labs Berkeley 3School of Computer Science, CMU

Abstract

Classifiers are often used to detect miscre-
ant activities. We study how an adversary
can efficiently query a classifier to elicit in-
formation that allows the adversary to evade
detection at near-minimal cost. We gener-
alize results of Lowd and Meek (2005) to
convex-inducing classifiers. We present al-
gorithms that construct undetected instances
of near-minimal cost using only polynomially
many queries in the dimension of the space
and without reverse engineering the decision
boundary.

1 INTRODUCTION

Machine learning is often used to filter or detect mis-
creant activities in a variety of applications; e.g., spam,
intrusion, virus, and fraud detection. All known detec-
tion techniques have blind spots; i.e., classes of mis-
creant activity that fail to be detected. While learning
allows the detection algorithm to adapt over time, con-
straints on the learning algorithm also may allow an
adversary to programmatically find these vulnerabili-
ties. We consider how an adversary can systematically
discover blind spots by querying the learner to find
a low cost instance that the detector does not filter.
Consider a spammer who wishes to minimally mod-
ify a spam message so it is not classified as a spam.
By observing the responses of the spam detector, the
spammer can search for a modification while using few
queries.

The problem of near optimal evasion (i.e., finding a
low cost negative instance with few queries) was first
posed by Lowd and Meek (2005). We continue this line

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

of research by generalizing it to the family of convex-
inducing classifiers—classifiers that partition their in-
stance space into two sets: one of which is convex.
Convex-inducing classifiers are a natural family to ex-
amine as they include linear classifiers, anomaly de-
tection classifiers using bounded PCA (Lakhina et al.,
2004), anomaly detection algorithms that use hyper-
sphere boundaries (Bishop, 2006), and other more
complicated bodies.

We also show that near-optimal evasion does not re-
quire reverse engineering the classifier. The algorithm
of Lowd and Meek (2005) for evading linear classi-
fiers reverse-engineers the decision boundary. Our
algorithms for evading convex-inducing classifiers do
not require fully estimating the classifier’s boundary
(which is hard in the general case; see Rademacher
and Goyal, 2009) or reverse-engineering the classi-
fier’s state. Instead, we directly search for a minimal
cost-evading instance. Our algorithms require only
polynomial-many queries, with one algorithm solving
the linear case with fewer queries than the previously-
published reverse-engineering technique.

Related Work. Dalvi et al. (2004) uses a cost-
sensitive game theoretic approach to patch a classi-
fier’s blind spots. They construct a modified classifier
designed to detect optimally modified instances. This
work is complementary to our own; we examine opti-
mal evasion strategies while they have studied mech-
anisms for adapting the classifier. In this work we
assume the classifier is not adapting during evasion.

A number of authors have studied evading intrusion
detector systems (IDSs) (Tan et al., 2002; Wagner and
Soto, 2002). In exploring mimicry attacks these au-
thors demonstrated that real IDSs could be fooled by
modifying exploits to mimic normal behaviors. These
authors used offline analysis of the IDSs to construct
their modifications; by contrast, our modifications are
optimized by querying the classifier.

The field of active learning also studies a form of query
based optimization (Schohn and Cohn, 2000). While
both active learning and near-optimal evasion explore

In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, May 2010, pp. 549-556

 550

Near-Optimal Evasion of Convex-Inducing Classifiers

optimal querying strategies, the objectives for these
two settings are quite different (see Section 2.3).

2 PROBLEM SETUP

We begin by introducing our notation and assump-
tions. First, we assume that instances are represented
in D-dimensional Euclidean space X = R

D. Each
component of an instance x ∈ X is a feature which
we denote as xd. We denote each coordinate vector of
the form (0, . . . , 1, . . . , 0) with a 1 only at the dth fea-
ture as δd. We assume that the feature space is known
to the adversary and any point in X can be queried.

We further assume the target classifier f belongs to a
family F . Any classifier f ∈ F is a mapping from X
to the labels '−' and '+'; i.e., f : X 7→ {'−', '+'}. We
assume the adversary’s attack will be against a fixed f
so the learning method and the training data used to
select f are irrelevant. We assume the adversary does
not know f but does know its family F .

We assume f ∈ F is deterministic and so partitions
X into a positive class X+

f = {x ∈ X | f (x) = '+'}
and a negative class X−

f = {x ∈ X | f (x) = '−'}.
We take the negative set to be normal instances. We
assume the adversary is aware of at least one instance
in each class, x− ∈ X−

f and xA ∈ X+
f , and can observe

f (x) for any x by issuing a membership query (this
last assumption does not always hold in practice, see
Section 4 for a more detailed discussion).

2.1 Adversarial Cost

We assume the adversary has a notion of utility repre-
sented by a cost function A : X 7→ R

0+. The adversary
wishes to minimize A over the negative class, X−

f ; e.g.,
a spammer wants to send spam that will be classified
as normal email ('−') rather than as spam ('+'). We
assume this cost function is a distance to a positive
target instance xA ∈ X+

f that is most desirable to the
adversary. As with Lowd and Meek, we focus on the
class of weighted ℓ1 cost functions

A (x) =

D
∑

d=1

cd|xd − xA
d | , (1)

where 0 < cd <∞ is the cost the adversary associates
with the dth feature. The ℓ1-norm is a natural measure
of edit distance for email spam, while larger weights
can model tokens that are more costly to remove (e.g.,
a payload URL). We use BC

(

xA
)

to denote the ball
centered at xA with cost no more than C. We use
BC

1 (x) to refer specifically to a weighted ℓ1 ball.

Lowd and Meek (2005) define minimal adversarial cost
(MAC) of a classifier f to be the value

MAC (f ,A) , inf
x∈X

−

f

[A (x)] .

They further define a data point to be an ǫ-
approximate instance of minimal adversarial cost (ǫ-
IMAC) if it is a negative instance with cost no more
than a factor (1 + ǫ) of the MAC ; i.e., every ǫ-IMAC
is a member of the set1

ǫ-IMAC (f ,A) , {x ∈ X−
f | A (x) ≤ (1+ǫ)·MAC(f ,A)}

(2)
The adversary’s goal is to find an ǫ-IMAC instance
efficiently, while issuing as few queries as possible.

2.2 Search Terminology

An ǫ-IMAC instance is multiplicatively optimal ; i.e.,
it is within a factor of (1 + ǫ) of the minimal cost. We
also consider additive optimality; i.e., requiring a η-
IMAC to be no more than η greater than the minimal
cost. The algorithms we present can achieve either
criterion given initial bounds C+ and C− such that
C+ ≤ MAC ≤ C−. If we can determine whether an in-
termediate cost establishes a new upper or lower bound
on MAC, then binary search strategies can iteratively
reduce the tth gap between C−

t and C+
t . We now pro-

vide common terminology for the binary search and in
Section 3 we use convexity to establish a new bound
at each iteration.

In the tth iteration of an additive binary search,

G
(+)
t = C−

t − C+
t is the additive gap between the

tth bounds. The search uses a proposal step of Ct =
C

−

t +C
+

t

2 , a stopping criterion of G
(+)
t ≤ η and termi-

nates in

L(+) =
⌈

log2

[

(C− − C+)/η
]⌉

(3)

steps. Binary search has the best worst-case query
complexity for achieving η-additive optimality.

Binary search can be adapted for multiplicative op-
timality: by writing C− = 2a and C+ = 2b, the
multiplicative condition becomes a − b ≤ log2(1 + ǫ),
an additive optimality condition. Thus, binary search
on the exponent best achieves multiplicative optimal-
ity. The multiplicative gap of the tth iteration is

G
(∗)
t = C−

t /C+
t . The tth query is Ct =

√

C−
t · C+

t ,

the stopping criterion is G
(∗)
t ≤ 1 + ǫ and it stops in

L(∗) =
⌈

log2

[

log2

(

C−/C+
)

/ log2(1 + ǫ)
]⌉

(4)

steps. Multiplicative optimality only makes sense
when both C− and C+ are strictly positive.

1We use the term ǫ-IMAC to refer both to this set and
members of it. The usage will be clear from the context.

 551

Nelson, Rubinstein, Huang, Joseph, Lau, Lee, Rao, Tran, Tygar

For this paper, we only address multiplicative optimal-

ity and define L = L(∗) and Gt = G
(∗)
t , but note that

our techniques also apply to additive optimality.

2.3 Near-Optimal Evasion

Lowd and Meek (2005) introduced the problem of ad-
versarial classifier reverse engineering (ACRE) where
a family of classifiers is called ACRE ǫ-learnable if
there is an efficient query-based algorithm for finding
an ǫ-IMAC. In generalizing their result, we slightly
alter their definition of query complexity. First, to
quantify query complexity we only use the dimension
D and the number of steps L required by a univariate
binary search. Second, we assume the adversary only
has two initial points x− ∈ X−

f and xA ∈ X+
f (the

original setting required a third x+ ∈ X+
f). Finally,

our algorithms do not reverse engineer so ACRE would
be a misnomer. Instead we call the overall problem
Near-Optimal Evasion and replace ACRE ǫ-learnable
with

A family of classifiers F is ǫ-IMAC searchable
under a family of cost functions A if for all
f ∈ F and A ∈ A, there is an algorithm that
finds x ∈ ǫ-IMAC (f ,A) using polynomially
many membership queries in D and L.

Reverse engineering is an expensive approach for near-
optimal evasion in the general case. Efficient query-
based reverse engineering for f ∈ F is sufficient for
minimizing A over the estimated negative space. How-
ever, the requirements for finding an ǫ-IMAC differ
from the objectives of reverse engineering approaches
such as active learning. Both use queries to reduce
the size of version space F̂ ⊂ F . However reverse
engineering minimizes the expected number of dis-
agreements between members of F̂ . In contrast, to
find an ǫ-IMAC, we only need to provide a single in-
stance x† ∈ ǫ-IMAC (f ,A) for all f ∈ F̂ , while leav-
ing the classifier largely unspecified. We present algo-
rithms for ǫ-IMAC search on a family of classifiers that
generally cannot be efficiently reverse engineered—the
queries we construct necessarily elicit an ǫ-IMAC only.

3 EVASION OF CONVEX CLASSES

We generalize ǫ-IMAC searchability to the family of
convex-inducing classifiers Fconvex that partition fea-
ture space X into a positive and negative class, one
of which is convex. The convex-inducing classifiers in-
clude linear classifiers, one-class classifiers that pre-
dict anomalies by thresholding the log-likelihood of
a log-concave (or uni-modal) density function, and
quadratic classifiers of the form x⊤Ax+b⊤x+c ≥ 0 if

A is semidefinite. The convex-inducing classifiers also
include complicated families such as the set of all in-
tersections of a countable number of halfspaces, cones,
or balls.

We construct efficient algorithms for query-based opti-
mization of the (weighted) ℓ1 cost of Eq. (1) for convex-
inducing classifiers. There appears to be an asymme-
try depending on whether the positive or negative class
is convex. When the positive set is convex, determin-
ing whether BC

1

(

xA
)

⊂ X+
f only requires querying the

vertices of the ball. When the negative set is convex,
determining whether BC

1

(

xA
)

∩ X−
f = ∅ is difficult

since the intersection need not occur at a vertex. We
present an efficient algorithm for optimizing an ℓ1 cost
when X+

f is convex and a polynomial random algo-

rithm for optimizing any convex cost when X−
f is con-

vex.

The algorithms we present achieve multiplicative op-
timality via binary search; we use L as the number of
phases required by binary search, C− = A (x−) as an
initial upper bound on the MAC and assume there is
some C+ > 0 that lower bounds the MAC (i.e., xA is
in the interior of X+

f). This condition eliminates the

degenerate case for which xA is on the boundary of
X+

f where MAC (f ,A) = 0 and ǫ-IMAC (f ,A) = ∅.

3.1 ǫ-IMAC Search for a Convex X+
f

Solving the ǫ-IMAC search problem when X+
f is con-

vex is hard in the general case of convex cost A (·). We
demonstrate algorithms for the (weighted) ℓ1 cost that
solve the problem as a binary search. Namely, given
initial costs C+ and C− that bound the MAC, our al-
gorithm can efficiently determine whether BC

1

(

xA
)

⊂
X+

f for any intermediate cost C+ < C < C−. If

the ℓ1 ball is contained in X+
f , then C becomes the

new lower bound C+. Otherwise C becomes the
new upper bound C−. Since our objective Eq. (2)
is to obtain multiplicative optimality, our steps will be

Ct =
√

C+
t−1 · C−

t−1 (see Section 2.2). We now explain

how we exploit the properties of the (weighted) ℓ1 ball
and convexity of X+

f to efficiently determine whether

BC
1

(

xA
)

⊂ X+
f .

The existence of an efficient query algorithm relies on
three facts: (1) xA ∈ X+

f ; (2) every weighted ℓ1 cost

C-ball centered at xA intersects X−
f only if at least

one of its vertices is in X−
f ; and (3) C-balls only have

2 ·D vertices. We formalize the second fact as follows.

Lemma 3.1. For all C > 0, if there exists some x ∈
X−

f that achieves a cost of C = A (x), then there is

 552

Near-Optimal Evasion of Convex-Inducing Classifiers

some feature d such that a vertex of the form

xA ± C
cd

δd (5)

is in X−
f (and also achieves cost C by Eq. 1).

Proof. Suppose not; then there is some x ∈ X−
f such

that A (x) = C and x has M ≥ 2 features that differ
from xA. Let {d1, . . . , dM} be the differing features
and let bdi

= sign
(

xdi
− xA

di

)

be the sign of the differ-

ence between x and xA along the di-th feature. Let
edi

= xA + C
cdi

· bdi
· δdi

be a vertex of the form of

Eq. (5) which has cost C (from Eq. 1). The M ver-
tices edi

form a simplex of cost C on which x lies. If
all edi

∈ X+
f , then the convexity of X+

f implies that

x ∈ X+
f which violates our premise. Thus, if any in-

stance in X−
f achieves cost C, there is always a vertex

of the form Eq. (5) in X−
f that also achieves cost C.

As a consequence, if all vertices of any C ball BC
1

(

xA
)

are positive, then all x with A (x) ≤ C are positive
thus establishing C as a lower bound on the MAC.
Conversely, if any of the vertices of BC

1

(

xA
)

are nega-
tive, then C is an upper bound. Thus, by querying all
2·D vertices of BC

1

(

xA
)

, we either establish C as a new
lower or upper bound on the MAC. By performing a
binary search on C we iteratively halve the multiplica-
tive gap between our bounds until it is within a factor
of 1+ ǫ. This yields an ǫ-IMAC of the form of Eq. (5).

A general form of this multiline search procedure
is presented as Algorithm 3.2 which simultaneously
searches along all unit-cost directions in the set W .
At each step, MultiLineSearch issues at most |W|
queries to determine whether BC

1

(

xA
)

⊂ X+
f . Once

a negative instance is found at cost C, we cease fur-
ther queries at cost C since a single negative instance
is sufficient to establish a lower bound. We call this
policy lazy querying. Further, when an upper bound
is established for a cost C, our algorithm also prunes
all directions that were positive at cost C. This prun-
ing is sound; by the convexity assumption we know
that the pruned direction is positive for all costs less
than our new upper bound C. Applying MultiLine-

Search to the 2 · D axis-aligned directions yields an
ǫ-IMAC for any (weighted) ℓ1 cost with no more than
2 · DL queries but at least D + L queries. Thus the
algorithm is O (DL).

3.1.1 K-step Multi-Line Search

The MultiLineSearch algorithm is 2 ·D simultane-
ous binary searches (breadth-first). Instead we could
search sequentially (depth-first) and obtain a best case

Algorithm 3.2. Multi-line Search
MLS

`

W,xA,x−, C+, C−, ǫ
´

x∗ ← x−

while C−/C+ > 1 + ǫ do begin

C ←
√

C+ · C−

for all e ∈ W do begin
Query classifier: fC

e ← f
`

xA + Ce
´

if fC
e = '−' then begin

x∗ ← xA + Ce
Prune i from W if fC

i = '+'
break for-loop

end if
end for
if ∀e ∈ W fC

e = '+' then C+ ← C
else C− ← C

end while
return: x∗

of O (D + L) and worst case of O (D · L) but for ex-
actly the opposite convex bodies. We therefore pro-
pose an algorithm that mixes these strategies. At
each phase, the K-step MultiLineSearch (Algo-
rithm 3.3) chooses a single direction e and queries it for
K steps to generate candidate bounds B− and B+ on
the MAC. The algorithm makes substantial progress
without querying other directions. It then iteratively
queries all remaining directions at the candidate lower
bound B+. Again we use lazy querying and stop as
soon as a negative instance is found. We show that
for K = ⌈

√
L⌉, the algorithm achieves a delicate bal-

ance between breadth-first and depth-first approaches
to attain a better worst-case complexity.

To analyze the worst case of K-step MultiLine-

Search, we consider a defender that maximizes the
number of queries. We refer to the querier as the ad-
versary.

Theorem 3.4. Algorithm 3.3 will find an ǫ-IMAC

with at most O
(

L +
√

L|W|
)

queries for K = ⌈
√

L⌉.

Proof. During the K steps of binary search, regardless
of how the defender responds, the candidate gap along
e will shrink by an exponent of 2−K ; i.e.,

B−/B+ =
(

C−/C+
)2−K

. (6)

The primary decision for the defender occurs when the
adversary begins querying other directions than e. At
iteration t, it has 2 options:

Case 1 (t ∈ C1): Respond with '+' for all re-
maining directions. Here the bounds B+

and B− are verified and thus the gap is
reduced by an exponent of 2−K .

Case 2 (t ∈ C2): Choose at least 1 direction
to respond with '−'. Here the defender

 553

Nelson, Rubinstein, Huang, Joseph, Lau, Lee, Rao, Tran, Tygar

Algorithm 3.3. K-Step Multi-line Search
KMLS

`

W,xA,x−, C+, C−, ǫ, K
´

x∗ ← x−

while C−/C+ > 1 + ǫ do begin
Choose a direction e ∈ W
B+ ← C+

B− ← C−

for K steps do begin

B ←
√

B+ · B−

Query classifier: fe ← f
`

xA + Be
´

if fe = '+' then B+ ← B
else B− ← B and x∗ ← xA + Be

end for
for all i 6= e ∈ W do begin

Query classifier: fi ← f
`

xA + (B+)i
´

if fi = '−' then begin
x∗ ← xA + (B+)i
Prune k from W if fk = '+'
break for-loop

end if
end for
C− ← B−

if ∀i ∈ W fi = '+' then C+ ← B+

else C− ← B+

end while
return: x∗

can make the gap decrease negligible but
also must choose some number Et ≥ 1 of
eliminated directions.

By conservatively assuming the gap only decreases in
case 1, the total number of queries is bounded re-
gardless of the order in which the cases are applied.

Thus if t ∈ C1 we have Gt = G2−K

t−1 ; otherwise we have
Gt = Gt−1. Thus

|C1| ≤
⌈

L
K

⌉

, (7)

since we need a total of L binary search steps and each
case 1 iteration does K of them.

Every case 1 iteration makes exactly K + |Wt| − 1
queries. The size of Wt is controlled by the defender,
but we can bound it by |W|. This and Eq. (7) bound
the number of queries used in case 1 (Q1) by

Q1 =
∑

t∈C1

(K + |Wt| − 1) ≤ L + K +
⌈

L
K

⌉

· (|W| − 1)

Each case 2 iteration uses exactly K + Et queries and
eliminates Et ≥ 1 directions. Since a case 2 iteration
eliminates at least 1 direction, |C2| ≤ |W| − 1 and
moreover,

∑

t∈C2
Et ≤ |W| − 1 since each direction

can only be eliminated once. Thus

Q2 =
∑

i∈C2

(K + Et) ≤ (|W| − 1) (K + 1) ,

and so the total queries used by Algorithm 3.3 is

Q = Q1 + Q2 < L +
(⌈

L
K

⌉

+ K + 1
)

|W| ,

which is minimized by K = ⌈
√

L⌉. Substituting this
for K and using L/⌈

√
L⌉ ≤

√
L we have

Q < L + (2⌈
√

L⌉+ 1)|W| .

As a consequence of Theorem 3.4, finding an ǫ-IMAC
with Algorithm 3.3 for a (weighted) ℓ1 cost requires

O
(

L +
√

LD
)

queries. Moreover, linear classifiers

are a special case of convex-inducing classifiers for
our K-step MultiLineSearch algorithm. Thus K-

step MultiLineSearch improves on the reverse-
engineering technique’s O (LD) queries and applies to
a broader family.

3.1.2 Lower Bound

Here we find lower bounds on the number of queries
required by any algorithm to find an ǫ-IMAC when
X+

f is convex. Notably, since an ǫ-IMAC uses mul-
tiplicative optimality, we incorporate a lower bound
r > 0 on the MAC into our statement.

Theorem 3.5. Consider any D > 0, xA ∈ R
D,

x− ∈ R
D, 0 < r < R = A (x−) and ǫ ∈

(

0, R
r
− 1

)

.

For all query algorithms submitting N < max{D, L(∗)}
queries, there exist two classifiers inducing convex pos-
itive classes in R

D such that

1. Both positive classes properly contain Br
(

xA
)

;

2. Neither positive class contains x−;

3. The classifiers return the same responses on the
algorithm’s N queries; and

4. The classifiers have no common ǫ-IMAC.

That is, in the worst-case all query algorithms for con-
vex positive classes must submit at least max{D, L(∗)}
membership queries in order to be multiplicative ǫ-
optimal.

Proof. Suppose some query-based algorithm submits
N membership queries x1, . . . ,xN to the classifier. For
the algorithm to be ǫ-optimal, these queries must con-
strain all consistent positive convex sets to have a com-
mon point among their ǫ-IMAC sets.

First we consider the case that N ≥ L. Then by as-
sumption N < D. Suppose classifier f responds as

f (x) =

{

+1 , if A (x) < R

−1 , otherwise
.

For this classifier, X+
f is convex, Br

(

xA
)

⊂ X+
f , and

x− /∈ X+
f . Moreover, since X+

f is the open ball of cost
R, MAC (f ,A) = R.

 554

Near-Optimal Evasion of Convex-Inducing Classifiers

Consider an alternative classifier g that responds iden-
tically to f for x1, . . . ,xN but has a different convex
positive set X+

g . Without loss of generality, suppose
the first M ≤ N queries are positive and the remain-
ing are negative. Let G = conv

(

x1, . . . ,xM
)

; that is,
the convex hull of the M positive queries. Now let X+

g

be the convex hull of the union of G and the r-ball
around xA: X+

g = conv
(

G ∪ Br
(

xA
))

. Since G con-
tains all positive queries and r < R, the convex set X+

g

is consistent with the responses from f , Br
(

xA
)

⊂ X+
f ,

and x− /∈ X+
f . Further, since M ≤ N < D, G is con-

tained in a proper subspace of R
D whereas Br

(

xA
)

is not. Hence, MAC (g,A) = r. Since the accuracy ǫ
is less than R

r
− 1, any ǫ-IMAC of g must have cost

less than R whereas any ǫ-IMAC of f must have cost
greater than or equal to R. Thus we have constructed
two convex-inducing classifiers f and g with consistent
query responses but with no common ǫ-IMAC.

Second, we consider the case that N < L. First, recall
our definitions: C−

0 = R is the initial upper bound
on the MAC, C+

0 = r is the initial lower bound on

the MAC, and G
(∗)
t = C−

t /C+
t is the gap between the

upper bound and lower bound at iteration t. Here the
defender f responds with

f
(

xt
)

=

{

+1 , if A (xt) ≤
√

C−
t−1 · C+

t−1

−1 , otherwise
.

This strategy ensures that at each iteration Gt ≥
√

Gt−1 and since the algorithm can not terminate un-

til GN ≤ 1 + ǫ, we have N ≥ L(∗) from Eq. (4). As
in the N ≥ L case we have constructed two convex-
inducing classifiers with consistent query responses but
with no common ǫ-IMAC. The first classifier’s posi-
tive set is the smallest cost-ball enclosing all positive
queries, while the second classifier’s positive set is the
largest cost-ball enclosing all positive queries but no
negatives. The MAC values of these sets differ by
more than a factor of (1 + ǫ) if N < L(∗) so they have
no common ǫ-IMAC.

This theorem shows that ǫ-multiplicative optimality
requires Ω (D + L) queries. Hence K-step MultiLi-

neSearch (Algorithm 3.3) has close to the optimal
query complexity.

3.2 ǫ-IMAC Learning for a Convex X−
f

In this section we consider minimizing a convex cost
function A (we focus on weighted ℓ1 costs in Eq. 1)
when the feasible set X−

f is convex. Any convex func-
tion can be efficiently minimized within a known con-
vex set e.g., using the Ellipsoid or Interior Point meth-
ods (Boyd and Vandenberghe, 2004). However, in

our problem the convex set is only accessible through
queries. We use a randomized polynomial algorithm
of Bertsimas and Vempala (2004) to minimize the cost
given an initial x− ∈ X−

f . For any fixed cost Ct we use
their algorithm to determine (with high probability)

whether X−
f intersects with BCt (

xA
)

; i.e., whether or

not Ct is a new lower or upper bound on the MAC.
With high probability, we find an ǫ-IMAC in no more
than L repetitions using binary search.

3.2.1 Intersection of Convex Sets

We now outline Bertsimas and Vempala’s query-based
algorithm for determining whether two convex sets
intersect using a randomized Ellipsoid method. In
particular P is only accessible through membership
queries and B provides a separating hyperplane for
any point outside it. They use efficient query-based
approaches to uniformly sample from P to produce
sufficiently many samples such that cutting P through
the centroid of these samples with a separating hy-
perplane from B significantly reduces the volume of
P with high probability. Their algorithm thus con-
structs a sequence of progressively smaller feasible sets
Ps ⊂ Ps−1 until either the algorithm finds a point in
P ∩Q or it is highly unlikely that the sets intersect.

Our problem reduces to finding the intersection be-
tween X−

f and BCt

1

(

xA
)

. Though X−
f may be un-

bounded, we can instead use P0 = X−
f ∩ B2R

1 (x−)

(where R = 2A (x−)) is a subset of X−
f that envelops

all of BCt

1

(

xA
)

since Ct < A (x−). We also assume
there is some r > 0 such that an r-ball centered at x−

is contained in X−
f . We now detail this Intersect-

Search procedure (Algorithm 3.6).

The backbone of the algorithm is uniform sampling
from a bounded convex body by means of the hit-

and-run random walk technique introduced by Smith
(1996) (Algorithm 3.7). Given an instance xj ∈ Ps−1,
hit-and-run selects a random direction v through
xj (we return to the selection of v in Section 3.2.2).
Since Ps−1 is a bounded convex set, the set Ω =
{ω | xj + ωv ∈ Ps−1} is a bounded interval repre-
senting all points in Ps−1 along direction v. Sam-
pling ω uniformly from Ω yields the next step of the
walk; xj + ωv. Under the appropriate conditions
(see Section 3.2.2), hit-and-run generates a sam-
ple uniformly from the convex body after O∗

(

D3
)

steps2 (Lovász and Vempala, 2004).

Using hit-and-run we obtain 2N samples {xj} from
Ps−1 and check if any satisfy A

(

xj
)

≤ Ct. If so, xj is

in the intersection of X−
f and BCt

1

(

xA
)

. Otherwise, we

want to significantly reduce the size of Ps−1 without

2O∗ (·) denotes O (·) without logarithmic terms.

 555

Nelson, Rubinstein, Huang, Joseph, Lau, Lee, Rao, Tran, Tygar

Algorithm 3.6. Intersect Search
IntersectSearch

`

P0,Q = {xj ∈ P0}, C
´

for all s = 1 . . . T do begin
(1) Generate 2N samples {xj}2N

j=1

Choose x from Q
xj ← HitRun

`

Ps−1,Q,xj
´

(2) If any xj , A
`

xj
´

≤ C terminate the for-loop
(3) Put samples into 2 sets of size N
R ← {xj}Nj=1 and S ← {xj}2N

j=2N+1

(4) zs ← 1

N

P

xj∈R
xj

(5) Compute Hzs using Eq. (9)
(6) Ps ← Ps−1 ∩ Hzs

(7) Keep samples in Ps

Q ← {x ∈ S ∧ x ∈ Ps}
end for
Return: the found [xj ,Ps,Q]; or No Intersect

Algorithm 3.7. Hit-and-Run Sampling
HitRun

`

P , {yj}, x0
´

for all i = 1 . . . K do begin
Pick a random direction:

νj ∼ N(0, 1)
v←P

j
νjy

j

Find ω1 and ω2 s.t.
xi−1 − ω1v /∈ P and xi−1 + ω2v /∈ P

repeat
ω ∼ Unif (−ω1, ω2)
xi ← xi−1 + ωv
if ω < 0 then ω1 ← −ω
else ω2 ← ω

until xi ∈ P
end for
Return: xK

excluding any of BCt

1

(

xA
)

so that sampling concen-
trates towards the intersection (if it exists)—for this

we need a separating hyperplane of BCt

1

(

xA
)

. For any

y /∈ BCt

1

(

xA
)

, the (sub)gradient of the weighted ℓ1

cost given by

h
y

f = cf sign
(

yf − xA
f

)

(8)

separates y and BCt

1

(

xA
)

.

To achieve efficiency, we choose a point z ∈ Ps−1 so
that cutting Ps−1 through z with the hyperplane hz

eliminates a significant fraction of Ps−1. To do so, z

must be centrally located within Ps−1. We use the em-
pirical centroid of half of the samples z = 1

N

∑

x∈R x

(the other half will be used in Section 3.2.2). We
cut Ps−1 with the hyperplane hz through z; i.e.,
Ps = Ps−1 ∩Hz where Hz is the halfspace

Hz = {x | x⊤hz ≤ z⊤hz} . (9)

As shown by Bertsimas and Vempala, this cut achieves
vol (Ps) ≤ 2

3vol
(

Ps−1
)

with high probability if N =
O∗ (D) and Ps−1 is near-isotropic (see Section 3.2.2).
Since the ratio of volumes between the initial circum-
scribing and inscribing balls of the feasible set is

(

R
r

)D
,

the algorithm can terminate after T = O
(

D log R
r

)

un-
successful iterations with a high probability that the
intersection is empty.

Because every iteration in Algorithm 3.6 requires N =
O∗ (D) samples, each of which need K = O∗

(

D3
)

random walk steps, and there are O∗ (D) iterations,
Algorithm 3.6 requires O∗

(

D5
)

queries.

3.2.2 Sampling from a Convex Body

Until this point, we assumed the hit-and-run random
walk efficiently produces uniformly random samples
from any bounded convex body P accessible through
membership queries. However, if the body is severely
elongated, randomly selected directions will rarely

align with the long axis of the body and our random
walk will take small steps (relative to the long axis)
and mix slowly. For the sampler to mix effectively,
we need the convex body P to be near-isotropic; i.e.,

for any unit vector v, Ex∼P

[

(

v⊤ (x− Ex∼P [x])
)2

]

is

bounded between 1/2 and 3/2 of vol (P).

If the body is not near-isotropic, we can rescale X with
an appropriate affine transformation T. With suffi-
ciently many samples from P we can estimate T as
their empirical covariance matrix. Instead, we rescale
X implicitly using a technique described by Bertsimas
and Vempala (2004). We maintain a set Q of suffi-
ciently many uniform samples from the body Ps and
in hit-and-run we sample directions based on this
set. Because the samples are distributed uniformly in
Ps, the directions we sample based on the points in Q
implicitly reflect the covariance structure of Ps.

We must ensure Q is a set of sufficiently many samples
from Ps after each cut: Ps ← Ps−1∩Hzs . To do so, we
resample 2N points from Ps−1 using hit-and-run—
half of these, R, are used to estimate the centroid zs

for the cut and the other half, S, are used to repopu-
late Q after the cut. Because S contains independent
uniform samples from Ps−1, those in Ps after the cut
constitute independent uniform samples from Ps (re-
jection sampling). By choosing N sufficiently large,
we will have sufficiently many points to repopulate Q.

Finally, we also need an initial set Q of uniform sam-
ples from P0 but we only have a single point x− ∈ X−

f .
The RoundingBody algorithm described by Lovász
and Vempala (2003) uses O∗

(

D4
)

membership queries
to make the convex body near-isotropic. We use this as
a preprocessing step; that is, given X−

f and x− ∈ X−
f

we make P0 = X−
f ∩ B2R

1 (x−) and use the Round-

ingBody algorithm to produce Q = {xj ∈ P0} for
Algorithm 3.6.

 556

Near-Optimal Evasion of Convex-Inducing Classifiers

Algorithm 3.8. Convex X−
f Set Search

SetSearch
`

P ,Q = {xj ∈ P}, C−, C+, ǫ
´

while C−/C+ > 1 + ǫ do begin

C ←
√

C− · C+

[x∗,P ′,Q′]← IntersectSearch (P ,Q, C)
if intersection found then begin

Let C− ← A (x∗)
P ← P ′ and Q ← Q′

else
C+ ← C

end if
end while
Return: x∗

3.2.3 Optimization over ℓ1 Balls

Here we suggest improvements for ℓ1 minimization us-
ing iterative IntersectSearch and present them as
SetSearch in Algorithm 3.8.

First, since xA, x− and Q are the same for every
iteration of the optimization procedure, we only run
the RoundingBody procedure once as a preprocess-
ing step. The set of samples {xj ∈ P0} it produces
are sufficient to initialize IntersectSearch at each
stage of the binary search. Second, the separating hy-
perplane h

y

f for point y given by Eq. (8) is valid for
all weighted ℓ1-balls of cost C < A (y). Thus, the final
state from a successful call to IntersectSearch can
be used as the starting state for the subsequent call to
IntersectSearch.

4 CONCLUSIONS & FUTURE

WORK

The analysis of our algorithms shows that Fconvex is
ǫ-IMAC searchable for weighted ℓ1 costs. When the
positive class is convex we give efficient techniques that
outperform previous reverse-engineering approaches
for linear classifiers. When the negative class is convex,
we apply a randomized Ellipsoid method to achieve ef-
ficient ǫ-IMAC search. If the adversary is unaware
of which set is convex, they can trivially run both
searches to discover an ǫ-IMAC with a combined poly-
nomial query complexity.

Exploring near-optimal evasion is important for under-
standing how an adversary may circumvent learners
in security-sensitive settings. As described here, our
algorithms may not always directly apply in practice
since various real-world obstacles persist. Queries may
be only partially observable or noisy and the feature
set may be only partially known. Moreover, an ad-
versary may not be able to query all x ∈ X . Queries
must be objects (such as email) that are mapped into
X . A real-world adversary must invert the feature-
mapping—a generally difficult task. These limitations

necessitate further research on the impact of partial
observability and approximate querying on ǫ-IMAC
search, and to design more secure filters. Broader open
problems include: is ǫ-IMAC search possible on other
classes of learners such as SVMs (linear in a large pos-
sibly infinite feature space)? Is ǫ-IMAC search feasible
against an online learner that adapts as it is queried?
Can learners be made resilient to these threats and
how does this impact learning performance?

References

Dimitris Bertsimas and Santosh Vempala. Solving convex
programs by random walks. J. ACM, 51(4):540–556,
2004.

Christopher M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai,
and Deepak Verma. Adversarial classification. In Proc.
KDD’04, pages 99–108, 2004.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Di-
agnosing network-wide traffic anomalies. In Proc. SIG-
COMM’04, pages 219–230, 2004.

László Lovász and Santosh Vempala. Hit-and-run from a
corner. In Proc. STOC’04, pages 310–314, 2004.

László Lovász and Santosh Vempala. Simulated annealing
in convex bodies and an O∗(n4) volume algorithm. In
Proc. FOCS’03, 2003.

Daniel Lowd and Christopher Meek. Adversarial learning.
In Proc. KDD’05, pages 641–647, 2005.

Luis Rademacher and Navin Goyal. Learning convex bod-
ies is hard. In Proc. COLT’09, pages 303–308, 2009.

Greg Schohn and David Cohn. Less is more: Active learn-
ing with support vector machines. In Proc. ICML’00,
2000.

Robert L. Smith. The hit-and-run sampler: a globally
reaching Markov chain sampler for generating arbitrary
multivariate distributions. In Proc. WSC’96, pages 260–
264, 1996.

Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion.
Undermining an anomaly-based intrusion detection sys-
tem using common exploits. In Proc. RAID’02, pages
54–73, 2002.

David Wagner and Paolo Soto. Mimicry attacks on host-
based intrusion detection systems. In Proc. CCS’02,
pages 255–264, 2002.

