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ABSTRACT
Machine learning has become a valuable tool for detecting
and preventing malicious activity. However, as more ap-
plications employ machine learning techniques in adversar-
ial decision-making situations, increasingly powerful attacks
become possible against machine learning systems. In this
paper, we present three broad research directions towards
the end of developing truly secure learning. First, we suggest
that finding bounds on adversarial influence is important to
understand the limits of what an attacker can and cannot
do to a learning system. Second, we investigate the value
of adversarial capabilities—the success of an attack depends
largely on what types of information and influence the at-
tacker has. Finally, we propose directions in technologies
for secure learning and suggest lines of investigation into
secure techniques for learning in adversarial environments.
We intend this paper to foster discussion about the security
of machine learning, and we believe that the research direc-
tions we propose represent the most important directions to
pursue in the quest for secure learning.

Categories and Subject Descriptors
D.4.6 [Security and Protection]; G.3 [Probability and
Statistics]: Robust Regression; H.1.1 [Systems and In-
formation Theory]: Value of Information; I.5.1 [Models]:
Statistical; I.5.2 [Design Methodology]

General Terms
Security, Theory

Keywords
Adversarial Learning, Computer Security, Machine Learn-
ing, Secure Learning, Security Metrics
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1. INTRODUCTION

1.1 Motivation
Current research in applications of machine learning lies

at the confluence of two growing trends. First, statistical
machine learning has entered the mainstream as a broadly
useful technique for building applications. In adaptive sys-
tems, machine learning enjoys several advantages over hand-
crafted rules and other approaches: it can infer hidden pat-
terns in data, it can adapt quickly to new signals and be-
haviors, and it can provide statistical soundness. Second,
the need to protect systems against malicious adversaries
continues to increase across computing applications. Rising
levels of hostile behavior have plagued application domains
such as email, web search, pay-per-click advertisements, file
sharing, instant messaging, mobile phone communications,
and others. As the motivation for attacks becomes increas-
ingly fiscal [8], attackers employ more sophisticated methods
and the computing landscape grows ever more treacherous.

One result of this meeting of trends is that machine learn-
ing techniques have become an invaluable tool in protecting
system security. From spam filtering to malware detection
to fast attack response to many other applications, machine
learning is now an essential component of computer security.

But the inclusion of machine learning in a system must
be done carefully to prevent the learning component itself
from succumbing to attack. A growing body of literature
shows that attackers can successfully attack machine learn-
ing systems, both in general [2, 6] and in specific application
domains such as automatic signature generation [4, 5, 22],
intrusion detection systems [7, 27], and email spam filter-
ing [16, 19, 30]. It is imperative to ensure that learning is
successful despite such attacks—in other words, to achieve
secure learning.

1.2 Contributions
In this paper, we suggest three broad research directions

leading towards the goal of secure learning:

1. Bounds on adversarial influence (Section 2)

A set of results proving tight bounds on errors and
adversarial effort would be extremely valuable for un-
derstanding the behavior of machine learning systems
under attack.

2. The value of adversarial capabilities (Section 3)

It is crucial to understand what capabilities an attacker
has and how they relate to the difficulty of perform-
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ing and preventing attacks. This direction focuses on
the quality of adversarial influence, while the previ-
ous direction considers the amount of influence on the
learner.

3. Technologies for secure learning (Section 4)

The final piece of the secure learning puzzle is to bring
defensive techniques to maturity to protect machine
learning systems against interference by attackers.

Each of these directions is fundamental to the end of learning
without disruptive influence from an adversary, and each
encompasses a variety of important questions. We present
several questions in each section along with discussion of the
challenges that make the research direction important and
difficult.

2. RESEARCH DIRECTION: BOUNDS ON
ADVERSARIAL INFLUENCE

A significant research challenge is the discovery of funda-
mental limits on the effectiveness of learning attacks. The
focus of this direction is on proving upper and lower bounds
on an adversary’s influence on a learner. In a learning at-
tack the adversary, assumed here to have full knowledge of
the learner’s algorithm and state, achieves influence by con-
taminating the learner’s training and/or test data. We con-
sider two basic varieties of influence: modification of the
learner’s state to the detriment of the learner’s statistical
performance, and the adversary’s discovery of the learner’s
state or the learner’s mechanism of adaptation.

2.1 Influence on Learner Performance
Question 1. Can we bound the minimum amount
of adversarial effort or the maximum number of mis-
takes the learner will make in real-world domains such
as anomaly detection, spam filtering, worm signature
generation, phishing detection, and click fraud detec-
tion? Are matching lower error bounds possible in
these cases?

A number of relevant results on adversarial influence of
learner performance have recently appeared. Nelson and
Joseph [20] bound the minimum number of examples an ad-
versary must submit to a hypersphere-based anomaly detec-
tor in order to shift the hypersphere’s center. The authors
establish this learner-specific lower bound on adversarial ef-
fort by proving an upper bound on an optimal adversary’s
effect on the learner’s state. Such learner-specific upper
bounds on error quantify a learner’s robustness to malicious
training data. Venkataraman et al. present lower bounds on
the number of mistakes any supervised classifier must make
when generating worm signatures in the presence of an ad-
versary with full information and control [29]. Such learner-
independent lower bounds demonstrate fundamental vulner-
abilities faced by all learners, reflecting the generalization-
vs-security trade-off inherent to adaptive approaches. New-
some et al. [22] describe attacks on the learning algorithms
in the Polygraph [21] and Hamsa [14] automatic worm signa-
ture generation systems and they consider naive Bayes spam
filtering. In addition to experimental validation, the authors
present theoretical bounds on their attacks’ influence.

While the bounds listed above explore theoretical anal-
yses of several attacks on practical learning systems, many

more attacks have enjoyed experimental validation. Lowd &
Meek [16] and Wittel & Wu [30] propose good word attacks
on statistical spam filters with the aim of putting spam into
user inboxes. Nelson et al. [19] develop attacks for caus-
ing false positives against the statistical spam filter, for-
malized by Robinson [24], which is used in the SpamBayes
(spambayes.sourceforge.net), BogoFilter (bogofilter.source-
forge.net), and SpamAssassin (spamassassin.apache.org) sys-
tems. Finally Rubinstein et al. [25] outline data poisoning
attacks for increasing false negatives in principal components
analysis (PCA), as used in network-wide volume anomaly
detection by Lakhina et al. [13]. Theoretical analysis of
these learning attacks, and attacks on learners used in other
security-sensitive domains, would provide valuable insight
into the fundamental limits of learner security.

2.2 Influence for Reverse Engineering State
The second form of adversarial influence on machine learn-

ers aims to reverse engineer the learner’s state or algorithm
by selecting data submitted to the learner.

Lowd and Meek have studied the problem of learner re-
verse engineering [15]. Given an attacker cost function, the
authors analyze the complexity of finding a minimum-cost
instance that is labeled negative by the learner. The no-
tion of ACRE-learnability characterizes learners that can
be reverse engineered with a polynomial number of queries.
The following question asks about generalizations of ACRE-
learnability results for linear classifiers on Boolean and real-
valued features, under linear adversarial cost.

Question 2. Can we quantify the complexity of at-
tacks on larger classes of classifiers or learners (e.g.
regressors), and adversarial cost functions?

Some types of classifiers may be naturally robust to re-
verse engineering.

Question 3. What classifiers, if any, are provably
hard to reverse engineer? Are there combinatorial pa-
rameters of the concept class that characterize ACRE-
learnability?

3. RESEARCH DIRECTION: THE VALUE
OF ADVERSARIAL CAPABILITIES

A crucial step in protecting against threats on machine
learning systems is to understand the threat model in ad-
versarial learning domains. The threat model can broadly
be described as the attacker’s goals and capabilities; capa-
bilities can be capabilities of information or capabilities of
control. This second general research direction proposes a
more fine grained adversarial error analysis by focusing on
the role of the adversary’s capabilities. Such analysis should
quantify the value of information and control available to
the adversary for attacks against learning systems.

Adversarial information is the adversary’s knowledge of
the learning system and environment, such as the learner’s
features, the learning algorithm, the current decision func-
tion, the policy for training and retraining, and the benign
data generation process. Similarly adversarial control is the
extent of the attacker’s control over the learning system’s
training and/or test data.
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Example. In email spam filtering, relevant adversar-
ial information may include the user’s language, com-
mon types of email the user receives, which spam filter
the user has, and the particular training corpus or dis-
tribution used to create the spam filter (or knowledge
of a similar distribution). Adversarial control may in-
clude choosing the bodies of a fraction of emails (per-
haps only spam), controlling email headers directly or
indirectly, and controlling how the user receives mes-
sages. This control could be exerted over messages
used for training or for run-time testing.

Example. In network-wide traffic anomaly detec-
tion [13], adversarial information may include the net-
work topology, routing tables, real-time traffic volumes
along one or more links, historical traffic along one or
more links, and the training policies of the anomaly de-
tection system. Adversarial control may include con-
trolling one or more links to give false traffic reports
or compromising one or more routers to inject chaff
into the network.

Example. In the domain of phishing webpage detec-
tion, adversarial information may include user lan-
guage and country, email client, web browser, finan-
cial institution, and employer. Adversarial control
may include choosing the content and/or headers of
the phishing emails and potentially influencing train-
ing datasets of known phishing sites, such as Phish-
Tank [23].

3.1 Identifying Adversarial Capabilities

Question 4. What are natural threat models for
learners used in deployed systems? How secure are
such learners in relation to these threat models, and
in relation to adversarial information and control?

The theoretical framework of attacks on machine learn-
ing systems of Barreno et al. [1, 2] describes the threat
model in terms of a taxonomy of attacks. This taxonomy
describes attackers’ goals and whether the attacker can in-
fluence the learner’s training data or test data; beyond this
classification, the role of the adversary’s capabilities has
been relatively unexplored. Two of our previous experi-
mental studies have touched on the effects of adversarial
information and control: Nelson et al. [19] and Rubinstein
et al. [25] show that learning attacks on email spam filtering
and network-wide anomaly detection, respectively, are more
effective when additional information or control is available
to the adversary. Less progress has been made on under-
standing the fundamental roles of adversarial capabilities,
however. Kearns and Li extend the Probably Approximately
Correct (PAC) distribution-free learning framework to the
setting where an adversary has control over a limited frac-
tion of the training data [12]. They show that the largest
fraction tolerable is ε/(1 + ε), for PAC learning with error ε.

3.2 Characterizing Tolerable Capabilities

Question 5. Which forms of adversarial control can
a learner tolerate under full adversarial information?
More generally, how can we characterize tolerable ad-
versarial information and control?

Understanding threat models in real-world systems is com-
plemented by viewing the adversarial learning problem ab-
stractly. In some cases the arms race of improving the
learner with increasingly sophisticated defenses and launch-
ing ever more covert attacks can be bypassed by proving op-
timality. The above question aims to formalize our observa-
tion that assessing learner security across different domains
can be fruitfully organized around common adversarial ca-
pabilities. We now consider one natural approach to this
question, from the viewpoint of online learning [3].

In online learning, the learner and attacker take part in a
game: after the learner chooses a strategy, nature selects
the benign data and the adversary transforms this data,
each acting with knowledge of previous decisions made. The
learner repeatedly makes predictions and observes adversar-
ially transformed data, then updates its state. The learner
aims to minimize its cumulative loss.

The adversary’s control can be represented as the set of
transformations from which it can act. Adversarial informa-
tion can be modeled by forcing the attacker to decide on its
transformation based only on limited information about the
data. We envision characterizations of tolerable adversarial
information and control being expressed in terms of proper-
ties of these sets of transformations and information map-
pings. The following examples demonstrate these represen-
tations of information and control in the security-sensitive
learning problems of spam filtering and network-wide traffic
anomaly detection, respectively.

Example. In email spam filtering, the adversary
may not have access to the learner’s training corpus
but instead to a close surrogate. For example the ad-
versary may have access to corpora sampled from a
distribution close to the true distribution, as defined
by Kullback-Leibler divergence or total variation. Nel-
son et al. [19] propose attacks exploiting surrogate cor-
pora drawn from an English dictionary and an Internet
newsgroup. Regarding control, a spammer may trans-
form the training corpus by injecting a certain number
of arbitrarily constructed spam emails into the corpus.

Example. In network-wide traffic anomaly detec-
tion, the adversary may have access to measurements
of the source link or links incident to a compromised
node. This corresponds to information mappings that
project the link traffic matrix to a single column or
small bounded number of columns. Similarly the at-
tacker may inject chaff along a flow in the network,
corresponding to transformations that contaminate a
small bounded number of traffic volume features.

The final ingredient to Question 5 is the measure of success
of the learner. In online learning, regret (the learner’s cu-
mulative loss compared to the minimum achieved with hind-
sight by a set of simple experts) can in general be achieved

that is O(
√
T ) in the length T of the game. Thus for a

game-theoretic analysis“tolerable”adversarial settings could
correspond to the learner suffering only O(

√
T ) regret. A

related question is that of the trade-off between statistical
generalization and security.

Question 6. What are the quantitative trade-offs be-
tween the learner’s generalization performance on in-
nocuous data, the learner’s hypothesis class capacity,
and the adversary’s capabilities?
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In statistical learning theory, a learner’s ability to general-
ize on innocuous data is characterized by the chosen hypoth-
esis class’ expressiveness, or capacity, such as the Vapnik-
Chervonenkis dimension [28]. Over-fitting results from rep-
resentations with surplus capacity, while insufficient capac-
ity will lead to hypotheses that fail to capture the problem’s
underlying complexity. On the other hand, we speculate
that overly flexible learners may be easier to attack with
reduced adversarial capabilities.

For binary classification, a finer-grained analysis of Ques-
tion 6’s trade-off would consider the trade-off between false
negatives and false positives. In the intrusion detection and
spam filtering domains, for instance, a more robust learner
that suffers a greater rate of false positives would not be
acceptable to users. This trade-off can be quantified by con-
sidering an appropriate utility function for the learner.

3.3 Defender Information

Question 7. Are there attacks that can significantly
affect the behavior of a learning system without being
apparent to the defender? How can we judge whether
an attack is apparent to the defender? Are some at-
tacks provably covert? If so, can we bound their influ-
ence on statistical performance?

In many security problems, attackers attempt to evade de-
tection. An attacker has at least two good reasons for want-
ing to hide attack information from the defender. First, the
attacker may want to prevent the defender from discover-
ing that an attack is in progress because the attacker often
gains benefit in proportion to the time before the defender
notices and reacts to the attack. Second, the attacker may
want to avoid traces that might reveal the source of the at-
tack, either to avoid accountability or to make anticipating
the next attack difficult. In the case of a learning system,
this interaction is of greater importance as the adversary’s
goal is often to change the behavior of the learner, but that
change is likely to be visible to the defender.

4. RESEARCH DIRECTION: TECHNOLO-
GIES FOR SECURE LEARNING

To provide a reliable and trustworthy system in a secu-
rity sensitive environment, one can explicitly design that
system with relevant security threats in mind—this prac-
tice should be applied to designing learners for use in such
environments. Broadly, this entails the design of learning
agents for a security sensitive environment that are resilient
to adversarial contamination in the data.

Question 8. Is there a secure learning procedure that
is resilient to attacks under a realistic threat model?
How can we construct this procedure?

One must first explicitly identify the anticipated threats
against the learning system by constructing a threat model
as discussed in Section 3. Then an algorithm is chosen to be
robust against these threats by considering the adversary’s
possible actions, the learner’s counter-actions, and the final
outcomes for both the adversary and the learner. This inter-
action can be cast as a game between the adversary and the
learner [1]. By solving such a game, one can design an algo-
rithm to be robust against the anticipated security threats,

although solutions to such games are not necessarily feasi-
ble. Finally, after choosing the learner, one must assess its
limitations and vulnerabilities under the threat model.

In the remainder of this section, we identify promising di-
rections for the design of adversarially resilient learners. We
have identified three general techniques: detecting and re-
moving malicious data in a training set, constructing learn-
ers robust to malicious data, and designing several learners
to be difficult to attack as a group. We discuss the strengths
and weaknesses of these techniques and suggest key open
problems for each.

4.1 Detecting malicious training instances
A simple way to reduce the impact of contaminated data

on a learning algorithm is to detect and remove the malicious
instances. This technique allows one to make any learner
more secure by simply filtering the data before training the
learner. The primary challenge is to be able to accurately
identify malicious data that could affect the learner in ad-
verse ways.

One method for detecting abnormal data is the general
technique of outlier detection (refer to, for example, Markou
and Singh for a survey of the field [17]). Generally an out-
lier detection algorithm identifies characteristics of normal
data by training solely on normal data. Any subsequent
data that deviates too far from the identified characteristics
is considered abnormal and is discarded. Using an outlier
detector for identifying malicious data has the advantage of
not requiring malicious samples during the training phase.
However, it may be difficult to obtain a clean dataset for the
initial training of the detector itself; it depends on whether
the adversary’s capabilities allow them to influence the nor-
mal data.

The technique of dataset scrubbing as a preprocessing step
before training suggests a follow-up question to Question 6:

Question 9. What is the trade-off between the in-
crease to security and decrease to learning rate re-
sulting from removing outlier instances? Which data
scrubbing techniques achieve a good trade-off?

If we aggressively remove suspect data, there will be less
data to train on, so the learner will require more input before
it can adequately learn the target function. However, if we
take a conservative approach to removing suspect data, it
will be easier for an attacker to create malicious data that
avoids removal.

4.2 Designing Security Sensitive Learners
A second method to defend against malicious data is to

use learning algorithms designed to be robust against an
adversarial threat.

Example. In their paper entitled Adversarial Clas-
sification, Dalvi et al. describe a spam classifier de-
signed to be robust against spam emails designed to fool
a naive Bayes classifier [6]. To do so, they construct a
threat model in which the adversary modifies the email
by changing individual features (words) in the message
and incurs a cost for doing so. The authors use game
theory to augment the original classifier so it can bet-
ter detect emails that are modified optimally against
the original learner.

In general, solving games against an adversary is a difficult
problem and can be computationally intractable. However,
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the framework of robust statistics addresses the problem of
outliers in data. This framework provides a number of tools
and techniques to construct learners robust against security
threats from adversarial contamination in training data. In
the following, we provide a brief description of the robust
statistics framework and motivate its use in secure learn-
ing. (Several books provide additional reading about robust
statistics [10, 11, 18].)

In classical statistics, one assumes that all data is gener-
ated by a common model or distribution, but outliers defy
that assumption. Robust statistics augments classical mod-
els by assuming that the data comes from two sources: a
known distribution and an unknown adversarial distribu-
tion. Under this setting, robust variants exist for parameter
estimation, testing, linear models, and other classic statisti-
cal techniques. A well-known example is that the median is
robust to contamination whereas the mean is not.

The robust statistics framework also provides tools to as-
sess robustness against contamination. Two especially use-
ful tools are the breakdown point and the influence function.
The breakdown point of a procedure determines what per-
cent of the data can be contaminated before the adversary
can arbitrarily control the procedure. The influence func-
tion of a procedure assesses how sensitive a procedure is
to adversarial contamination. These tools allow one to com-
pare the robustness of procedures and even design optimally
robust procedures.

Question 10. The breakdown point and influence
function are useful first-order measures of robustness
against contamination, but can they be computed for
practical learning procedures? Further, are there more
fine-grained measures of a procedure’s robustness that
would provide a better understanding of its behavior
under adversarial contamination?

Question 11. If the adversarial contamination is
assumed to be limited, can we use robustness measures
such as the influence function to design a practical
learner that is efficient and secure?

Relatively few learning systems are designed explicitly
with statistical robustness in mind. The breakdown point
and influence function can provide quantitative measure-
ments of robustness; designers of learning systems may be
able to use these tools to improve the security of learners in
security sensitive tasks. They can assess the vulnerability
of existing learning systems to contamination and compare
existing techniques as candidates for a particular task. We
believe that these tools will be useful; the challenge remains
to integrate them into learning for security sensitive domains
and use them to design learners resilient to attacks.

4.3 Orthogonal experts
A final element of defenses for security-sensitive settings

is addressed by the game-theoretic online learning setting
described in Section 3.2. In this setting, the learner re-
ceives advice from a set of experts and makes a prediction
by weighting the experts’ advice based on their past perfor-
mance. Techniques for learning within this framework have
been developed to perform well with respect to the best ex-
pert in hindsight.

Question 12. How can one design a set of experts
(learners) so that their aggregate is resilient to attacks
in the on-line learning framework? Can this design
itself be accomplished in an automated fashion?

The ideal case is that even if the experts may be indi-
vidually vulnerable, they are difficult to attack as a group.
We informally refer to such a set of experts as being or-
thogonal. Orthogonal learners have several advantages in a
security sensitive environment. They allow us to combine
learners designed to capture different aspects of the task.
These learners may use different feature sets and different
learning algorithms to reduce common vulnerabilities; e.g.,
making them more difficult to reverse engineer. Finally, on-
line prediction techniques are flexible, so we can improve
existing experts or add new ones as new vulnerabilities in
the system are identified.

Example. Spam filters such as SpamAssassin decide
whether or not a message is a spam by combining pre-
dictions made by a set of rules—simple heuristics hu-
mans use to identify spam messages. Such a rule could
be whether any words in the message are “Viagra”,
“Cialis” or any of their common obfuscations. Other
rules may be designed to catch penny stock scams, fake
watch retailers, and so forth. These rules capture dif-
ferent aspects of spam and while the individual rules
are not perfect, together they filter messages with a
high degree of accuracy. Moreover, when spammers
change their tactics to avoid these rules, the rules can
be reconfigured or new ones can be added to the fil-
ter. Thus, SpamAssassin is an example of a classifier
that combines experts and its rules are orthogonal by
design.

The experts in the previous example are fixed rules rather
than learners, but boosting shows that this can be done with
learners as well.

Example. A popular learning technique known
as boosting [26] exemplifies how a set of orthogonal
learners could be constructed. In boosting techniques
such as AdaBoost [9], weak learners are sequentially
trained to improve classification performance by focus-
ing on training instances that previous learners per-
formed poorly on. In this way, the ensemble learner is
composed of a set of orthogonal learners and generally
has better performance than the individual learners.

Boosting techniques exemplify how orthogonal learners
can be constructed in an ensemble method although the se-
curity properties of boosting have not been fully explored.

To properly design orthogonal experts for secure learning,
one must first assess the vulnerability of several candidate
learners. With that analysis, one should then choose a base
set of learners and sets of features for them to learn on.
Finally, as the aggregate is used, one should identify new
security threats and patch the learners appropriately. This
patching could be done by adjusting the algorithms, chang-
ing their feature sets, or even adding new learners to the
aggregate. Ideally, this process could itself be automated or
learned.
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5. CONCLUSION
We have presented a broad program of research with the

goal of securing machine learning against attack. We iden-
tify three research directions as particularly important: find-
ing bounds on adversarial influence, understanding the value
of adversarial capabilities, and developing technologies for
secure learning. We believe these directions represent the
most significant steps to take towards truly secure learning,
and we have discussed many open questions within each di-
rection. We intend this paper to help focus research efforts
within the area on the problems that are most important
for the ultimate goal of securing machine learning against
attacks by an adversary.
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