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Abstract

Machine learning has become a fundamental tool for computersecurity since it
can rapidly evolve to changing and complex situations. Thatadaptability is also a
vulnerability: attackers can exploit machine learning systems. We present a taxonomy
identifying and analyzing attacks against machine learning systems. We show how
these classes influence the costs for the attacker and defender, and we give a formal
structure defining their interaction. We use our framework to survey and analyze the
literature of attacks against machine learning systems. Wealso illustrate our taxonomy
by showing how it can guide attacks against SpamBayes, a popular statistical spam
filter. Finally, we discuss how our taxonomy suggests new lines of defenses.

1 Introduction

If we hope to use machine learning as a general tool for computer applications, it is incum-
bent on us to investigate how well machine learning performs under adversarial conditions.
When a learning algorithm performs well in adversarial conditions, we sayit is an algorithm
for secure learning.The question we face is: how do we evaluate the quality of a learning
system and determine whether it satisfies requirements for secure learning?

Machine learning advocates have proposed learning-based systems for a variety of se-
curity applications, including spam detection and network intrusion detection.Their vision
is that machine learning will allow a system to respond to evolving real-world inputs, both
hostile and benign, and learn to reject undesirable behavior. The danger is that an attacker
will attempt to exploit the adaptive aspect of a machine learning system to cause it to fail.
Failure consists of causing the learning system to produce errors: if it misidentifies hostile
input as benign, hostile input is permitted through the security barrier; if it misidentifies
benign input as hostile, desired input is rejected. The adversarial opponent has a powerful
weapon: the ability to design training data that will cause the learning system to produce
rules that misidentify inputs. If users detect the failure, they may lose confidence in the
system and abandon it. If users do not detect the failure, then the risks can be even greater.

It is well established in computer security that evaluating a system involves a contin-
ual process of: first, determining classes of attacks on the system; second, evaluating the
resilience of the system against those attacks; and third, strengthening thesystem against
those classes of attacks. Our paper follows exactly this model in evaluatingsecure learning.

First, we identify different classes of attacks on machine learning systems (Section 2).
While many researchers have considered particular attacks on machine learning systems,
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previous research has not presented a comprehensive view of attacks. In particular, we
show that there are at least three interesting dimensions to potential attacks against learning
systems: (1) they may beCausativein their influence over the training process, or they
may beExploratoryand exploit existing weaknesses; (2) they may be attacks onIntegrity
aimed atfalse negatives(allowing hostile input into a system) or they may be attacks on
Availability aimed atfalse positives(preventing benign input from entering a system); and
(3) they may beTargetedat a particular input or they may beIndiscriminatein which
inputs fail. Each of these dimensions operates independently, so we have at least eight
distinct classes of attacks on machine learning system. We can view secure learning as a
game between anattackerand adefender; the taxonomy determines the structure of the
game and cost model.

Second, we consider how resilient existing systems are against these attacks (Section 3).
There has been a rich set of work in recent years on secure learningsystems, and we evaluate
many attacks against machine learning systems and proposals for making systems secure
against attacks. Our analysis describes these attacks in terms of our taxonomy and secure
learning game, demonstrating that our framework captures the salient aspects of each attack.

Third, we investigate some potential defenses against these attacks (Section 4). Here
the work is more tentative, and it is clear that much remains to be done, but we discuss a
variety of techniques that show promise for defending against different types of attacks.

Finally, we illustrate our different classes of attacks by considering a contemporary ma-
chine learning application, the SpamBayes spam detection system (Section 5). We construct
realistic, effective attacks by considering different aspects of the threat model according to
our taxonomy, and we discuss a defense that mitigates some of the attacks.

Our paper provides system designers with a framework for evaluating machine learn-
ing systems for security applications (illustrated with our evaluation of SpamBayes) and
suggests directions for developing highly robust secure learning systems. Our research not
only proposes a common language for thinking and writing about secure learning, but goes
beyond that to show how our framework works, both in algorithm design and in real system
evaluation. This is an essential first step if machine learning is to reach its potential as a
tool for use in real systems in potentially adversarial environments.

1.1 Notation and setup

We focus on binary classification for security applications, in which adefenderattempts
to separateinstancesof input (data points), some or all of which come from a malicious
attacker, into harmful and benign classes. This setting covers many interesting security
applications, such as host and network intrusion detection, virus and worm detection, and
spam filtering. In detecting malicious activity, thepositiveclass (label 1) indicates malicious
intrusion instances while thenegativeclass (label 0) indicates benignnormal instances. A
classification error is afalse positive (FP)if a normal instance is classified as positive and
a false negative (FN)if an intrusion instance is classified as negative.

In thesupervised classificationproblem, the learner trains on a dataset ofN instances,
X = {(x,y) | x∈X ,y∈ Y }N, given an instance spaceX and the label spaceY = {0,1}.
Given some hypothesis classΩ, the goal is to learn a classification hypothesis (classifier)
f ∗ ∈ Ω to minimize errors when predicting labels for new data, or if our model includes
a cost function over errors, to minimize the total cost of errors. The costfunction assigns
a numeric cost to each combination of data instance, true label, and classifierlabel. The
defender chooses aprocedure H, or learning algorithm, for selecting hypotheses. The clas-
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X Space of data instances
Y Space of data labels; for classificationY = {0,1}
D Space of distributions over(X ×Y )
Ω Space of hypothesesf : X 7→ Y

PT ∈D Training distribution
PE ∈D Evaluation distribution
P ∈D Distribution for training and evaluation (Section 4.2.2)
x∈X Data instance
y∈ Y Data label

X,E ∈ (X ×Y )N Datasets
H : (X ×Y )N 7→Ω Procedure for selecting hypothesis

AT ,AE : X N×Ω 7→D Procedures for selecting distribution
ℓ : Y ×Y 7→ R

0+ Loss function
C : X ×Y ×Y 7→ R Cost function

f : X 7→ Y Hypothesis (classifier)
f ∗ : X 7→ Y Best hypothesis

N Number of data points
K Number of repetitions of a game
M Number of experts (Section 4.2.2)

Table 1: Notation in this paper.

sifier may periodically interleavetraining steps with theevaluation, retraining on some or
all of the accumulated old and new data. In adversarial environments, the attacker controls
some of the data, which may be used for training.

The procedure can be any method of selecting a hypothesis; in statistical machine learn-
ing, the most common type of procedure is(regularized) empirical risk minimization. This
procedure is an optimization problem where the objective function has anempirical risk
term and aregularization term. Since true cost is often not representable precisely and
efficiently, we calculate risk as the expectedlossgiven by aloss functionℓ that approxi-
mates true cost; the regularization termρ captures some notion of hypothesis complexity
to preventoverfittingthe training data. This procedure finds the hypothesis minimizing:

f ∗ = argmin
f∈Ω

∑
(x,y)∈X

ℓ(y, f (x)) + λρ( f ) (1)

Many learning methods make astationarityassumption: training data and evaluation
data are drawn from the same distribution. This assumption allows us to minimize the risk
on the training set as a surrogate for risk on the evaluation data, since evaluation data are
not known at training time. However, real-world sources of data often are not stationary
and, even worse, attackers can easily break the stationarity assumption withsome control
of either training or evaluation instances. Analyzing and strengthening learning methods in
the face of a broken stationarity assumption is the crux of thesecure learningproblem.

We model attacks on machine learning systems as a game between two players, the
attackerand thedefender. The game consists of a series ofmoves, or steps. Each move
encapsulates a choice by one of the players: the attacker alters or selectsdata; the defender
chooses a training procedure for selecting the classification hypothesis.

Table 1 summarizes the notation we use in this paper.
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2 Framework

2.1 Security analysis

Properly analyzing the security of a system requires identifyingsecurity goalsand athreat
model. Security is concerned with protecting assets from attackers. A security goal is a
requirement that, if violated, results in the partial or total compromise of an asset. A threat
model is a profile of attackers, describing motivation and capabilities. Here we analyze the
security goals and threat model for machine learning systems.

We assume the use of a classifier for a security goal. For example, a virus detection
system has the goal of preventing virus infection, and an intrusion detection system has the
goal of preventing malicious intrusion. A virus infection or a successful intrusion has high
cost relative to other outcomes. In this section we describe security goals and a threat model
that are specific to machine learning systems.

2.1.1 Security goals

In a security context the classifier’s purpose is to classify malicious eventsand prevent them
from interfering with system operations. We split this general learning goal into two goals:

• Integrity goal: To prevent attackers from reaching system assets.

• Availability goal: To prevent attackers from interfering with normal operation.

There is a clear connection between false negatives and violation of the integrity goal: ma-
licious instances that pass through the classifier can wreak havoc. Likewise, false positives
tend to violate the availability goal because the learner itself denies benign instances.

2.1.2 Threat model

Attacker goal/incentives. In general the attacker wants to access system assets (with
false negatives) or deny normal operation (usually with false positives). For example, a
virus author wants viruses to pass through the filter and take control of theprotected system
(a false negative). On the other hand, an unscrupulous merchant may want sales traffic to a
competitor’s web store to be blocked as intrusions (false positives).

We assume that the attacker and defender each have acost functionthat assigns a cost
to each labeling for any given instance. Cost can be positive or negative; a negative cost
is a benefit. It is usually the case that low cost for the attacker parallels highcost for the
defender and vice-versa; the attacker and defender would not be adversaries if their goals
aligned. An important special case is azero-sum game, in which the sum of the attacker’s
cost and the defender’s cost is zero (or any other fixed value) for each possible outcome. In
this paper, we assume that games are zero-sum. We take the defender’s point of view, so
we use “high-cost” to mean high positive cost for the defender.

Attacker capabilities. We assume that the attacker has knowledge of the training algo-
rithm, and in many cases partial or complete information about the training set, such as
its distribution. The attacker may be able to modify or generate data used in training; we
consider cases in which the attacker can and cannot control some of the learner’s training
data.
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In general we assume the attacker can generate arbitrary instances; however, many spe-
cific problems impose reasonable restrictions on the attacker’s ability to generate instances.
For example, when the learner trains on data from the attacker, sometimes it is safe to as-
sume that the attacker cannot choose the label for training. As another example, an attacker
may have complete control over data packets being sent from the attack source, but routers
in transit may add to or alter the packets as well as affect their timing and arrival order.

When the attacker controls training data, an important limitation to consider is what
fraction of the training data the attacker can control and to what extent. If the attacker has
arbitrary control over 100% of the training data, it is difficult to see how thelearner can learn
anything useful; however, even in such cases there are learning strategies that can make the
attacker’s task more difficult (see Section 4.2.2). We primarily examine intermediate cases
and explore how much influence is required for the attacker to defeat the learning procedure.

2.2 Taxonomy

We present a taxonomy categorizing attacks against learning systems alongthree axes:

I NFLUENCE

• Causativeattacks influence learning with control over training data.

• Exploratoryattacks exploit misclassifications but do not affect training.

SECURITY VIOLATION

• Integrityattacks compromise assets via false negatives.

• Availability attacks cause denial of service, usually via false positives.

SPECIFICITY

• Targetedattacks focus on a particular instance.

• Indiscriminateattacks encompass a wide class of instances.

The first axis describes the capability of the attacker: whether (a) the attacker has the
ability to influence the training data that is used to construct the classifier (aCausativeat-
tack) or (b) the attacker does not influence the learned classifier, but can send new instances
to the classifier and possibly observe its decisions on these carefully crafted instances (an
Exploratoryattack). In one sense,Causativeattacks are more fundamentally learning at-
tacks thanExploratoryattacks are: while many types of systems perform poorly on cleverly
modified instances, only systems that learn from data can be misled by an attacker to form
incorrect models, choosing poor hypotheses. On the other hand, the hypotheses produced
by learning algorithms have certain regularities and structures that an attacker may be able
to exploit in anExploratoryattack, so it is certainly worthwhile to consider them carefully
alongsideCausativeattacks.

The second axis indicates the type of security violation the attacker causes:(a) to create
false negatives, in which harmful instances slip through the filter (anIntegrity violation);
or (b) to create a denial of service, usually by inducing false positives,in which benign
instances are incorrectly filtered (anAvailability violation).

The third axis refers to how specific the attacker’s intention is: whether (a)the attack
is highly Targetedto degrade the classifier’s performance on one particular instance or (b)
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Integrity Availability
Causative:

Targeted The intrusion foretold: mis-train a par-
ticular intrusion

The rogue IDS: mis-train IDS to block
certain traffic

Indiscriminate The intrusion foretold: mis-train any
of several intrusions

The rogue IDS: mis-train IDS to
broadly block traffic

Exploratory:

Targeted The shifty intruder: obfuscate a chosen
intrusion

The mistaken identity: censor a partic-
ular host

Indiscriminate The shifty intruder: obfuscate any in-
trusion

The mistaken identity: interfere with
traffic generally

Table 2: Our taxonomy of attacks against machine learning systems, with examples from
Section 2.3.

the attack aims to cause the classifier to fail in anIndiscriminatefashion on a broad class of
instances. Each axis, especially this one, is actually a spectrum of choices.

A preliminary version of this taxonomy appears in previous work [Barrenoet al., 2006].
Here we extend the framework and show how the taxonomy shapes the game played by the
attacker and defender (see Section 2.4). TheINFLUENCE axis of the taxonomy determines
the structure of the game and the move sequence. TheSPECIFICITY andSECURITY VIO-
LATION axes of the taxonomy determine the general shape of the cost function: anIntegrity
attack benefits the attacker on false negatives, and therefore focuseshigh cost (to the de-
fender) on false negatives, and anAvailability attack focuses high cost on false positives; a
Targetedattack focuses high cost only on a small number of instances, while anIndiscrim-
inateattack spreads high cost over a broad range of instances.

2.3 Examples

Here we give four hypothetical attack scenarios, each with two variants,against an intrusion
detection system (IDS) that uses machine learning. Table 2 summarizes the taxonomy and
shows where these examples fit within it. This section gives the reader an intuition for
how the taxonomy organizes attacks against machine learning systems; Section 3 presents
a similar table categorizing attacks published in the literature.

2.3.1 Causative Integrity attack: The intrusion foretold

In aCausative Integrityattack, the attacker uses control over training to cause intrusions to
slip past the classifier as false negatives.

Example: an attacker wants the defender’s IDS not to block a novel virus. The de-
fender trains periodically on network traffic, so the attacker sends non-intrusion traffic that
is carefully chosen to look like the virus and mis-train the learner to fail to blockit.

This example might beTargetedif the attacker already has a particular virus executable
to send and needs to cause the learner to miss that particular instance. It might beIndiscrim-
inate, on the other hand, if the attacker has a certain payload but could use anyof a large

6



number of existing exploit mechanisms to transmit the payload, in which case the attack
need only fool the learner on any one of the usable executables.

2.3.2 Causative Availability attack: The rogue IDS

In a Causative Availabilityattack, the attacker uses control over training instances to inter-
fere with operation of the system, such as by blocking legitimate traffic.

Example: an attacker wants traffic to be blocked so the destination doesn’t receive it.
The attacker generates attack traffic similar to benign traffic when the defender is collecting
training data to train the IDS. When the learner re-trains on the attack data, theIDS will
start to filter away benign instances as if they were intrusions.

This attack could beTargetedat a particular protocol or destination. On the other hand,
it might beIndiscriminateand attempt to block a significant portion of all legitimate traffic.

2.3.3 Exploratory Integrity attack: The shifty intruder

In anExploratory Integrityattack, the attacker crafts intrusions so as to evade the classifier
without direct influence over the classifier itself.

Example: an attacker modifies and obfuscates intrusions, such as by changing network
headers and reordering or encrypting contents. If successful, these modifications prevent
the IDS from recognizing the altered intrusions as malicious, so it allows them into the
system.

In theTargetedversion of this attack, the attacker has a particular intrusion to get past
the filter. In theIndiscriminateversion, the attacker has no particular preference and can
search for any intrusion that succeeds, such as by modifying a large number of different
exploits to see which modifications evade the filter.

2.3.4 Exploratory Availability attack: The mistaken identity

In anExploratory Availabilityattack, the attacker interferes without influence over training.
Example: an attacker sends intrusions that appear to come from the IP address of a le-

gitimate machine. The IDS, which has learned to recognize intrusions, blocksthat machine.
In theTargetedversion, the attacker has a particular machine to target. In theIndiscrim-

inateversion, the attacker may select any convenient machine or may switch IP addresses
among many machines to induce greater disruption.

2.4 The adversarial learning game

This section models attacks on learning systems as games where moves represent strategic
choices. The choices and computations in a move depend on information produced by
previous moves (when a game is repeated, this includes previous iterations).

2.4.1 Exploratory game

We first present the game forExploratoryattacks:

1. Defender Choose procedureH for selecting hypothesis

2. Attacker Choose procedureAE for selecting distribution
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3. Evaluation:

• Reveal distributionPT

• Sample datasetX from PT

• Computef ← H(X)

• ComputePE← AE(X, f )

• Sample datasetE from PE

• Assess total cost:∑
(x,y)∈E

C(x, f (x),y)

The defender’s move is to choose a learning algorithm (procedure)H for creating hy-
potheses from datasets. For example, the defender may choose asupport vector machine
(SVM) with a particular kernel, loss, regularization, and cross-validationplan. The at-
tacker’s move is then to choose a procedureAE to produce a distribution on which to eval-
uate the hypothesis thatH generates. (The degree of control the attacker has in generating
the dataset is setting-specific.)

After the defender and attacker have both made their choices, the game is evaluated.
A training datasetX is drawn from some fixed and possibly unknown distributionPT, and
training producesf = H(X). The attacker’s procedureAE produces distributionPE, which
may be based onX and f , and an evaluation datasetE is drawn fromPE. Finally, the
attacker and defender incur cost based on the performance off evaluated onE.

In many cases, the procedureAE canquery the classifier, treating it as an oracle that
provides labels for query instances. Attacks that use this technique areprobing attacks.
Probing can reveal information about the classifier. On the other hand, with sufficient prior
knowledge about the training data and algorithm, the attacker may be able to findhigh-cost
instances without probing.

2.4.2 Causative game

The game forCausativeattacks is similar:

1. Defender Choose procedureH for selecting hypothesis

2. Attacker Choose proceduresAT andAE for selecting distributions

3. Evaluation:

• ComputePT← AT

• Sample datasetX from PT

• Computef ← H(X)

• ComputePE← AE(X, f )

• Sample datasetE from PE

• Assess total cost:∑
(x,y)∈E

C(x, f (x),y)

This game is very similar to theExploratorygame, but the attacker can chooseAT to
affect the training dataX. The attacker may have various types of influence over the data,
ranging from arbitrary control over some fraction of instances to a small biasing influence
on some aspect of data production; details depend on the setting.
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Integrity Availability
Causative:

Targeted Kearns and Li [1993], Newsome et al.
[2006]

Kearns and Li [1993], Newsome et al.
[2006], Chung and Mok [2007], Nel-
son et al. [2008]

Indiscriminate Kearns and Li [1993], Newsome et al.
[2006]

Kearns and Li [1993], Newsome et al.
[2006], Chung and Mok [2007], Nel-
son et al. [2008]

Exploratory:

Targeted
Tan et al. [2002], Lowd and Meek
[2005a], Wittel and Wu [2004], Lowd
and Meek [2005b]

Moore et al. [2006]

Indiscriminate Fogla and Lee [2006], Lowd and Meek
[2005a], Wittel and Wu [2004]

Moore et al. [2006]

Table 3: Related work in the taxonomy.

Control over data used for training opens up new strategies to the attacker. Cost is based
on the interaction off andE. In theExploratorygame the attacker choosesE while the
defender controlsf ; in theCausativegame the attacker also has influence onf . With this
influence, the attacker can proactively cause the learner to produce bad classifiers.

2.4.3 Iteration

We have analyzed these games asone-shot games, in which players minimize cost when
each move happens only once. We can also consider aniterated game, in which the game
repeats several times and players minimize total accumulated cost. In this setting,we as-
sume players have access to all information from previous iterations of the game.

3 Attacks: Categorizing Related Work

This section surveys examples of learning in adversarial environments from the literature.
Our taxonomy provides a basis for evaluating the resilience of the systems described, ana-
lyzing the attacks against them in preparation for constructing defenses.

3.1 Causative Integrity attacks

Contamination in PAC learning. Kearns and Li [1993] extend Valiant’sprobably ap-
proximately correct(PAC) learning framework [Valiant, 1984, 1985] to prove bounds for
maliciously chosen errors in the training data. In PAC learning, an algorithm succeeds if
it can, with probability at least 1− δ , learn a hypothesis that has at most probabilityε of
making an incorrect prediction on an example drawn from the same distribution. Kearns
and Li examine the case where an attacker has arbitrary control over some fractionβ of
the training examples. They prove that in general the attacker can prevent the learner from
succeeding ifβ ≥ ε/(1+ε), and for some classes of learners they show this bound is tight.

This work provides an interesting and useful bound on the ability to succeed at PAC-
learning. The analysis broadly concerns bothIntegrity andAvailability attacks as well as
both Targetedand Indiscriminate. However, not all learning systems fall into the PAC-
learning model.
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Red herring attack. Newsome, Karp, and Song [2006] presentCausative Integrityand
Causative Availabilityattacks against Polygraph [Newsome, Karp, and Song, 2005], a poly-
morphic virus detector that learns virus signatures using both a conjunctionlearner and a
naive-Bayes-like learner. They presentred herringattacks against conjunction learners that
exploit certain weaknesses not present in other learning algorithms (these areCausative
Integrityattacks, bothTargetedandIndiscriminate).

3.2 Causative Availability attacks

Correlated outlier attack. Newsome et al. [2006] also suggest acorrelated outlierat-
tack, which attacks a naive-Bayes-like learner by adding spurious features to positive train-
ing instances, causing the filter to block benign traffic with those features (an Availability
attack).

Allergy attack. Chung and Mok [2006, 2007] presentCausative Availabilityattacks against
the Autograph worm signature generation system [Kim and Karp, 2004].Autograph oper-
ates in two phases. First, it identifies infected nodes based on behavioralpatterns, in par-
ticular scanning behavior. Second, it observes traffic from the identified nodes and infers
blocking rules based on observed patterns. Chung and Mok describe an attack that targets
traffic to a particular resource. In the first phase, an attack node convinces Autograph that
it is infected by scanning the network. In the second phase, the attack node sends crafted
packets mimicking targeted traffic, causing Autograph to learn rules that block legitimate
access and create a denial of service.

Attacking SpamBayes. Nelson et al. [2008] demonstrateCausative Availabilityattacks
(both Targetedand Indiscriminate) against the SpamBayes statistical spam classifier. We
examine these attacks in Section 5.

3.3 Exploratory Integrity attacks

SomeExploratory Integrityattacks mimic statistical properties of the normal traffic to cam-
ouflage intrusions. In theExploratorygame, the attacker’s move produces instancesE that
statistically resemble normal traffic in the training dataX as measured by the learning pro-
cedureH.

Polymorphic blending attack. Polymorphic blending attacksencrypt attack traffic in
such a way that it appears statistically identical to normal traffic. Fogla and Lee [2006]
present a formalism for reasoning about and generatingpolymorphic blending attackin-
stances to evade intrusion detection systems.

Attacking stide. Tan, Killourhy, and Maxion [2002] describe a mimicry attack against
the stide anomaly-based intrusion detection system (IDS). They modify exploits of the
passwd andtraceroute programs to accomplish the same ends using different sequences
of system calls: the shortest subsequence in attack traffic that does notappear in normal
traffic is longer than the IDS window size, evading detection.
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Good word attacks. Several authors demonstrateExploratory integrityattacks using sim-
ilar principles against spam filters. Lowd and Meek [2005a] and Wittel andWu [2004]
develop attacks against statistical spam filters that addgood words, or words the filter con-
siders indicative of non-spam, to spam emails. This type of modification can make spam
emails appear innocuous to the filter, especially if the words are chosen to beones that
appear often in non-spam email and rarely in spam email.

Reverse engineering classifiers.Lowd and Meek [2005b] approach theExploratory In-
tegrity attack problem from a different angle: they give an algorithm for an attacker to re-
verse engineer a classifier. The attacker seeks the highest cost (lowest cost for the attacker)
instance that the classifier labelsnegative. This work is interesting in its use of a cost func-
tion over instances for the attacker rather than simple positive/negative classification. We
explore this work in more detail in Section 4.1.2.

3.4 Exploratory Availability attacks

Exploratory Availabilityattacks against non-learning systems abound in the literature: al-
most anydenial of service(DoS) attack falls into this category, such as those described by
Moore, Shannon, Brown, Voelker, and Savage [2006].

However,Exploratory Availabilityattacks against the learning components of systems
are not common. We describe one possibility in Section 2.3.4: if a learning IDS has trained
on intrusion traffic and has the policy of blocking hosts that originate intrusions, an at-
tacker could send intrusions that appear to originate from a legitimate host, convincing the
IDS to block that host. Another possibility is to take advantage of a computationally ex-
pensive learning component: for example, spam filters that use image processing to detect
advertisements in graphical attachments can take significantly more time than text-based fil-
tering [Dredze et al., 2007, Wang et al., 2007]. An attacker could exploitsuch overhead by
sending many emails with images, causing the expensive processing to delay and perhaps
even block messages.

4 Defenses: Applying Our Framework

We discuss several defense strategies against broad classes of attacks. The game between at-
tacker and defender and the taxonomy that we introduce in Section 3 provides a foundation
on which to construct defenses. We addressExploratoryandCausativeattacks separately,
and we also discuss the broader setting of an iterated game. In all cases, we must expect a
trade-off: changing the algorithms to make them more robust against (worst-case) attacks
will generally make themlesseffective on average. Analyzing and addressing this trade-off
is an important part of developing defenses.

4.1 Defending againstExploratory attacks

Exploratoryattacks do not corrupt the training data but attempt to find vulnerabilities in
the learned hypothesis. The attacker attempts to construct anunfavorable evaluation distri-
butionconcentrating probability mass on high-cost instances; in other words, theattacker
tries to find an evaluation distribution on which the learner predicts poorly (violating sta-
tionarity). This section examines defender strategies that make it difficult for the attacker
to construct such a distribution.
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In the Exploratorygame, the defender makes a move before observing contaminated
data. The defender can impede the attacker’s ability to reverse engineer the classifier by
limiting access to information about the training procedure and data. With less information,
the attacker has difficulty producing an unfavorable evaluation distribution. Nonetheless,
even with incomplete information, the attacker may be able to construct an unfavorable
evaluation distribution using a combination ofprior knowledgeandprobing.

4.1.1 Defenses against attacks without probing

Part of our security analysis involves identifying aspects of the system that should be kept
secret. In securing a learner, we limit information to make it difficult for an attacker to
conduct an attack.

Training data. Preventing the attacker from knowing the training data limits the at-
tacker’s ability to reconstruct internal states of the classifier. There is a tension between
collecting training data that fairly represents the real world instances and keeping all as-
pects of that data secret. In most situations, it is difficult to use completely secret training
data, though the attacker may have only partial information about it.

Feature selection. We can make classifiers hard to reverse engineer through feature selec-
tion. Feature selection is the process of choosing a feature map that maps raw measurements
into a new feature space on which a hypothesis is selected. Keeping secret which features
are selected in learning, or choosing a secret mapping to a different feature space entirely,
may hinder an attacker in finding high-cost instances.

Globerson and Roweis [2006] present a defense for theExploratoryattack offeature
deletionon the evaluation data: features present in the training data, and perhapshighly
predictive of an instance’s class, are removed from the evaluation data by the attacker.
For example, words present in training emails may not occur in evaluation messages, and
network packets in training data may contain values for optional fields that are missing from
future traffic. Globerson and Roweis formulate a modified support vectormachine classifier
robust against deletion of high-value features.

Obfuscation of spam-indicating words (an attack on the feature set) is a common Tar-
geted Exploratory Integrityattack. Sculley, Wachman, and Brodley [2006] use inexact
string matching to defeat obfuscations of words in spam emails. The use features based on
character subsequences that are robust to character addition, deletion, and substitution.

Hypothesis space/learning procedures. A complex hypothesis space may make it dif-
ficult for the attacker to infer precise information about the learned hypothesis. However,
hypothesis complexity must be balanced with capacity to generalize, such as through regu-
larization.

Wang, Parekh, and Stolfo [2006] presentAnagram, an anomaly detection system using
n-grammodels of bytes to detect intrusions. They incorporate two techniques to defeat
Exploratoryattacks that mimic normal traffic (mimicry attacks): (1) they use high-order
n-grams (withn typically between 3 and 7), which capture differences in intrusion traffic
even when that traffic has been crafted to mimic normal traffic on the single-byte level; and
(2) they randomize feature selection by randomly choosing several (possibly overlapping)
subsequences of bytes in the packet and testing them separately, so the attack will fail unless
the attacker makes not only the whole packet but also any subsequence mimicnormal traffic.
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Dalvi, Domingos, Mausam, Sanghai, and Verma [2004] develop a cost-sensitive game-
theoretic classification defense to counterExploratory Integrityattacks. In their model,
the attacker can alter instance features but incurs a known cost for each change. The de-
fender can measure each feature at a different known cost. Each has a known cost func-
tion over classification/true label pairs (not zero-sum). The classifier is acost-sensitive
naive Bayes learner that classifies instances to minimize its expected cost, while the at-
tacker modifies features to minimize its own expected cost. Their defense constructs an
adversary-aware classifier by altering the likelihood function of the learner to anticipate the
attacker’s changes. They adjust the likelihood that an instance is malicious by consider-
ing that the observed instance may be the result of an attacker’s optimal transformation of
another instance. This defense relies on two assumptions: (1) the defender’s strategy is a
step ahead of the attacker’s strategy, and (2) the attacker plays optimally against the orig-
inal cost-sensitive classifier. It is worth noting that while their approach defends against
optimal attacks, it doesn’t account for non-optimal attacks. For example,if the attacker
doesn’t modify any data, the adversary-aware classifier misclassifies some instances that
the original classifier correctly classifies.

4.1.2 Defenses against probing attacks

The ability to query a classifier gives an attacker powerful additional attack options.

Analysis of reverse engineering. Lowd and Meek [2005b] observe that the attacker need
not model the classifier explicitly, but only find lowest-attacker-cost instances as in the
Dalvi et al. setting. They formalize a notion of reverse engineering as theadversarial clas-
sifier reverse engineering(ACRE) problem. Given an attacker cost function, they analyze
the complexity of finding a lowest-attacker-cost instance that the classifier labels as nega-
tive. They assume no general knowledge of training data, though the attacker does know the
feature space and also must have one positive example and one negativeexample. A clas-
sifier is ACRE-learnableif there exists a polynomial-query algorithm that finds a lowest-
attacker-cost negative instance. They show that linear classifiers areACRE-learnable with
linear attacker cost functions and some other minor restrictions.

The ACRE-learning problem provides a means of qualifying how difficult itis to use
queries to reverse engineer a classifier from a particular hypothesis class using a particular
feature space. We now suggest defense techniques that can increase the difficulty of reverse
engineering a learner.

Randomization. A randomized hypothesis may decrease the value of feedback to an at-
tacker. Instead of choosing a hypothesisf : X → {0,1}, we generalize to hypotheses that
predict a real value on[0,1]. This generalized hypothesis returns a probability of classify-
ing x as 1. By randomizing, the expected performance of the hypothesis may decrease on
regular data drawn from a non-adversarial distribution, but it also may decrease the value
of the queries for the attacker.

Randomization in this fashion does not reduce the information available in principle
to the attacker, but merely requires more work from the attacker for the information. It is
likely that this defense is appropriate in only a small number of scenarios.

Limiting/misleading feedback. Another potential defense is to limit the feedback given
to an attacker. For example, common techniques in the spam domain include eliminating
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bounce emails, remote image loading, and other potential feedback channels. It is impos-
sible to remove all feedback channels; however, limiting feedback increases work for the
attacker. In some settings, it may be possible to mislead the attacker by sending fraudulent
feedback.

Actively misleading the attacker by fabricating feedback suggests an interesting battle
of information between attacker and defender. In some scenarios the defender may be able
to give the attacker no information via feedback, and in others the defender may even be
able to return feedback that causes the attacker to come to incorrect conclusions.

4.2 Defending againstCausative attacks

In Causativeattacks, the attacker has a degree of control over not only the evaluationdis-
tribution but also the training distribution. Therefore the learning procedures we consider
must be resilient against contaminated training data, as well as to the evaluationconsidera-
tions discussed in the previous section. We consider two different approaches.

4.2.1 Robustness

The field of Robust Statistics explores procedures that limit the impact of a small fraction of
deviant (adversarial) training data. In the setting of Robust Statistics, it is assumed that the
bulk of the data is generated from a known model, but a small fraction of the data is selected
adversarially. A number of tools exist for assessing robustness:qualitative robustness, the
breakdown pointof a procedure (how much data the attacker needs for arbitrary control),
and theinfluence functionof a procedure (to measure the impact of contamination on the
procedure). These tools can be used to design procedures that are robust against adversarial
contamination of the training data. For a full treatment, see the books by Huber[1981],
Hampel et al. [1986], and Maronna et al. [2006].

Recent research has highlighted the importance of robust proceduresin security and
learning tasks. Wagner [2004] observes that common sensor net aggregation procedures,
such as computing a mean, are not robust to adversarial point contamination, and he iden-
tifies robust replacements. Christmann and Steinwart [2004] study robustness for learning
methods that can be expressed as regularized convex risk minimization on a Hilbert space.
Their results suggest that certain commonly used loss functions, along with regularization,
lead to robust procedures in the sense of bounded influence. These results suggest such
procedures have desirable properties for secure learning.

4.2.2 Online prediction with experts

When the attacker has arbitrary control of the training data, the situation is more dire for
the defender. Iff minimizes risk on the training set, the attacker could chooseAT andAE

to make the evaluation risk approach its maximum. However, with a slight change tothe
defender’s objective, a variant of the iteratedCausativegame yields interesting results.

Consider the case where the attacker has complete control over training data but the de-
fender receives the advice ofM expertswho provide predictions. For example, the defender
may haveM different classifiers, each of which is designed to be robust in a different way.
Each classifier is an expert in this model. We construct a composite classifierthat predicts
based on theadviceof the experts. We make no assumptions about how the experts per-
form, but we evaluate our learner’s performance relative to the best expert in hindsight. The
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intuition is that the attacker must design attacks that are successful not onlyagainst a single
expert, but uniformly against the set of experts. The composite learner can perform almost
as well as the best one without knowing ahead of time which expert is best.

The learner forms a prediction from theM expert predictions and adapts the hypothesis
based on their performance duringK repetitions. At each stepk of the game, the defender
receives a predictiong(k)

m from each expert; this may be based on the data but we make no
assumptions about its behavior. More formally, thek-th round of the expert-based predic-
tion game is:

1. Defender Update functionh(k) : Y M→ Y

2. Attacker Choose distributionP(k)

3. Evaluation:

• Sample an instance(x(k),y(k))∼ P
(k)

• Compute expert advice{g(k)
m }Mm=1

• Predictŷ(k) = h(k)
(

g(k)
1 , . . . ,g(k)

M

)

.

• Assess costC
(

x(k), ŷ(k),y(k)
)

This game has a slightly different structure from the games we present in Section 2.4—
here the defender chooses one strategy at the beginning of the game andthen in each itera-
tion updates the functionh(k) according to that strategy. The attacker, however, may select
a new strategy at each iteration.

The setting of online expert-based prediction allows us to split risk minimization into
two subproblems: (1) minimizing the average loss of each expert and (2) minimizing the
averageregret—the difference between the loss of our composite learner and the loss of
the best overall expert in hindsight. The other defenses we have discussed approach the
first problem. Online game theory addresses the second problem: the defender chooses a
strategy for updatingh(k) to minimize regret based only on the experts’s past performance.
For certain variants of the game, there exist composite predictors whose regret iso(K)—
that is, the average regret approaches 0 as theK increases. A full description of this setting
and several results appear in Cesa-Bianchi and Lugosi [2006].

5 Case Study: Attacking SpamBayes

We have put our framework to use studying attacks against the SpamBayesstatistical spam
filter [Nelson et al., 2008]. Here we review that work and demonstrate howour framework
informs and structures the analysis.

SpamBayes is a content-based statistical spam filter that classifies email usingtoken
counts in a model proposed by Robinson [2003] and inspired by Graham[2002]. Meyer
and Whateley [2004] describe the system in detail. SpamBayes computes a score for each
token in the training corpus; this score resembles a smoothed estimate of the posterior
probability that an email containing that token is spam. It computes a message’sspam score
by assuming token scores are independent and applying Fisher’s methodfor combining
significance tests [Fisher, 1948]. The message score is compared against two thresholds to
select the labelspam, ham(non-spam), orunsure.
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5.1 Causative Availability attacks on SpamBayes

We present twoCausative Availabilityattacks against SpamBayes.

Dictionary attack. Our first attack is anIndiscriminateattack—the attacker wants to
cause a large number of false positives so that the user loses confidencein the filter and
must manually sort through spam and ham emails. There are three variants of this attack.
In the first, the attacker maximizes the expected spam score of any future message in an
optimalattack by simply includingall possible tokens(words, symbols, misspellings, etc.)
in attack emails, causing SpamBayes to learn that all tokens are indicative of spam. In
practice this optimal attack is intractable, but we approximate its effect by usinga large set
of common words such as a dictionary—hence these aredictionary attacks. The two other
variants of the dictionary attack use theAspelldictionary and a dictionary compiled from
the most common tokens observed in aUsenetcorpus.

Focused attack. Our second attack is aTargetedattack—the attacker has some knowl-
edge of a specific legitimate email to target. If the attacker has exact knowledge of the
target email, placing all of its tokens in attack emails produces an optimal attack. Realis-
tically, the attacker has partial knowledge about the target email and can guess only some
of its tokens to include in attack emails. We model this knowledge by letting the attacker
probabilistically guess tokens from the target email. This is thefocused attack.

5.2 Experiments with SpamBayes

We have constructedCausative Availabilityattacks on SpamBayes; here we summarize
results of our attack experiments, described in full in our earlier paper [Nelson et al., 2008].
We use the Text Retrieval Conference (TREC) 2005 spam corpus [Cormack and Lynam,
2005], which is based on the Enron email corpus [Klimt and Yang, 2004] and contains
92,189 emails (52,790 spam and 39,399 ham). From this dataset, we construct sample
inboxes and measure the effect of injecting our attacks into them.

Figure 1 shows the average effect of our dictionary and focused attacks. In both graphs,
the x-axis is the contamination percent of the training set. For the dictionary attack,the
y-axis is the percent of test ham messages misclassified. For the focused attack, they-
axis is the percent misclassification of the target message, averaged over200 random target
messages. Although the graphs do not include error bars, we observethat the variation is
small.

The optimal attack quickly causes the filter to mislabel all legitimate emails as spam.
The Usenet dictionary attack (90,000 top-ranked words from the Usenet corpus) causes
significantly more misclassifications than the Aspell dictionary attack, since it contains
common tokens, such as misspellings and slang terms, that are not present inan English
dictionary. The focused attack (where each token in the target message isguessed with 50%
probability) has an effect on its target comparable to the Usenet dictionary attack.

All of our attacks require relatively few attack emails to significantly degradeSpam-
Bayes’s accuracy; even the 10% false positive rate induced by the Aspell dictionary attack
renders a spam filter unusable.

Each of the panels in Figure 2 represents the tokens from a single target email: the
upper-left email is a ham message misclassified asspam, the upper-right email is a ham
message misclassified asunsure, and the bottom-middle email is a ham message correctly
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Figure 1: Effect of the dictionary and focused attacks. We plot percentof ham classified as
spam(dashed lines) and asunsureor spam(solid lines) against percent of the training set
contaminated.Left: Three dictionary attacks on an initial training set of 10,000 messages
(50% spam). We show the optimal attack (black△), the Usenet dictionary attack (blue
�), and the Aspell dictionary attack (green©). Right: The average effect of 200 focused
attacks on their targets when the attacker guesses each target token with 50% probability.
The initial inbox contains 5000 emails (50% spam).

classified asham. Each point in the graph represents the before/after score of a token;
a point above the liney = x increases (is more indicative of spam) due to the attack and
any point below the line decreases. The scores of tokens included in the attack messages
typically increase significantly while those not included decrease slightly. Theincrease in
score for included tokens is more significant than the decrease in score for excluded tokens,
so the attack has substantial impact even when the attacker guesses only a fraction of the
tokens.

5.3 Defenses

We propose theReject On Negative Impact (RONI) defense, a technique that measures
the empirical effect of each training instance and eliminates from training those points that
negatively affect classification. To measure the effect of a query email,we train two learners
with identical training sets except that only one includes the query email. If that model
performs significantly worse on a test set than the one without, we exclude the query email
from our training set.

Preliminary experiments show that the RONI defense is extremely successful against
Aspell dictionary attacks, able to identify 100% of the attack emails without a single mis-
take on non-attack emails. However, the RONI defense fails to differentiatefocused attack
emails from non-attack emails. The explanation is simple: the dictionary attack broadly
affects emails, including training emails, while the focused attack is targeted at afuture
email, so its effects may not be evident on the training set alone.

The RONI defense shows potential to successfully identify a broad range of attacks with
further refinement.
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Figure 2: Effect of the focused attack on three representative emails. Each point is a token.
Thex-axis is the token spam score before the attack (0 means ham and 1 means spam); the
y-axis is the spam score after the attack. The red×’s are tokens included in the attack and
the blue©’s are tokens that were not in the attack. Histograms show the distribution of
token scores before the attack (at bottom) and after the attack (at right).
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6 Discussion

6.1 A theory of information for security

Our framework opens a number of new research directions. One of the most promising
research directions is measuring the amount of information leaked from a learning system
to an attacker. An adversary may try to gain information about the internal state of a ma-
chine learning system to: (a) extract personal information encoded in theinternal state (for
example, in a machine learning anti-spam system, knowledge about how certain keywords
are handled may leak information about the contents or senders of typical email messages
handled by that system); or (b) derive information that will allow the adversary to more
effectively attack the system in the future.

We can measure the amount of information leaked in terms of the number of bits of
the information, but note that different bits carry different amounts of useful information.
As an extreme example, if the learning system leaks a random bit, the adversary gains no
useful information. This suggests an open problem: is it possible to developa “theory of
information for security” that can measure the value of leaked information? An answer to
this question is likely to build on Shannon’s classical theory of information [Shannon, 1948]
as well as computationally-based variants of it due to Kolmogorov [1993] and Yao [1988].
A “theory of information for security” could have wide applicability, not onlyin the context
of understanding adversarial attacks on machine learning system, but also in quantifying the
risk associated with variousside channel attacksthat exploit leaked information.

6.2 Evaluating defenses

In Section 4, we introduce several promising ideas for defenses against learning attacks.
The next step is to explore general defenses against larger classes of attack.

Developing a general framework for constructing and evaluating defenses would be a
valuable contribution. Measuring the adversarial effort required to perform an attack as well
as the effectiveness of the defense could help design secure learningsystems. The ACRE-
learning framework of Lowd and Meek [2005b] provides a computationalanalysis of the
complexity of reverse engineering a hypothesis using queries in anExploratoryattack. The
problem ofCausativeattacks may be more difficult; here the fields of robust statistics and
online prediction games provide a foundation on which to build new defenses.

6.3 Complexity and attacks

In some cases, greater model complexity seems to confer advantage: text generated by a
bigram model cannot be distinguished from its source material by a unigrammodel, but a
trigram model can differentiate them. Wang et al. [2006] demonstrate that anincrease in
model complexity can defend against some attacks. Does this indicate a general trend? Can
the advantages gained from a more complex model offset the chance of overfitting, the need
for more training data, and other downsides of model complexity?

7 Conclusion

We have presented a framework for articulating a comprehensive view ofdifferent classes
of attacks on machine learning systems in terms of three independent dimensions, and de-
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veloped the notion of a secure learning game. Guided by our framework and the learning
game, we identify where relevant prior research fits into the framework. Specifically, we
explore the effects of different types of attacks on the systems and their defenses against
these attacks.

We have provided a concrete example by applying our framework to a machine learning-
based application, the SpamBayes spam detection system, and show how the attacks de-
scribed by our framework can successfully cause SpamBayes to fail. Wedemonstrate a
concrete defense that reduces the effects of the dictionary attack on SpamBayes.

We believe that our framework opens a number of new research directions. In particu-
lar, from the framework, we can generalize to the idea that many of the classes of attacks
are dependent upon knowledge that the attacker has gained about the internal states of the
learner. Thus, one potentially interesting avenue for future exploration is the idea of secur-
ing learning systems by measuring and bounding the amount of information leaked from a
learning system to an attacker.
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