In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

DYNAMIC SECURITY SKINS 339

9.5 DYNAMIC SECURITY SKINS

Ractma Dhamija and J. D. Tygar :

Phishing is a model problem for illustrating usability concerns of privacy and security be-
cause both system designers and attackers battle with user interfaces to guide (or misguide)
users. Careful analysis of the phishing problem promises to shed light on a wide range of
security usability problems. In this chapter, we propose a new scheme, Dynamic Security
Skins, that allows a remote web server to prove its identity in a way that is easy for a human
user to verify and hard for an attacker to spoof.

We begin by examining security properties that make phishing a challenging design
problem in 9.5.1. In 9.5.2, we summarize the results of a usability study evaluating why
phishing attacks work. We present the design of a new authentication prototype in 9.5.3,
discuss the user interaction in 9.5.4 and present a security analysis in 9.5.5.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

340 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

9.5.1 Security Properties

Why is security design for phishing hard? Building on the work of Whitien and Tygar [51],
we identify eight properties of computer security that make usability difficult:

I. The limited human skills property. Humans are not general purpose computers.
They are limited by their inherent skills and abilities. This point appears obvious,
but itimplies a different approach to the design of security systems. Rather than only
approaching a problem from a traditional cryptography-based security framework
{c.g., "what can we secure?"), a usable design must take into account what humans
do well and what they do not do well. As an example, people often learn to screen out
commonly reoccurring notices [21]. Browsers often warn users when they submit
form data over an unencrypted connection. This warning is so common that most
users ignore it, and some turn the warning off entirely.

2. The general purpose graphics property. Operating systems and windowing plat-
forms that permit general purpose graphics also permit spoofing. The implications
of this property are important: If we are building a system that is designed to resist
spoofing we must assume that uniform graphic designs can be easily copied. Phishers
use this property 10 their advantage in crafting many types of attacks.

ot

- The golden arches property. Organizations invest a great deal to strengthen their
brand recognition and to evoke trust in those brands by consumers. Just as the phrase
“golden arches™ is evocative of a particular restaurant chain, so are distinct logos used
by banks. financial organizations, and other entities storing personal data. Because
of the massive investment in advertising designed to strengthen this connection, we
must go to extraordinary lengths to prevent people from automatically assigning trust
based on logos alone. This principle applies to the design of security indicators and
icons as well. For example, users often implicitly place trust in security icons (such
as the SSL closed lock icon), whether they are legitimate or not.

4. The unmotivated user property. Security is usually a secondary goal. Most users
prefer 1o focus on their primary tasks. and therefore designers cannot expect users to
be highly motivated to manage their security. For example, we cannot assume that
users will take the time to inspect a website certificate and learn how to interpret it
in order to protect themselves from rogue websites,

5. The barn door property. Once a secret has been left unprotected. even for a short
time, there is no way to guarantee that it cannot been exploited by an attacker. This
property encourages us to design systems that place a high priority on helping users
Lo protect sensitive data before it leaves their control.

While each of these properties by themselves seem self-evident, when combined, they
suggest a series of tests for proposed anti-phishing software. We argue that o be fully
effective, anti-phishing solutions must be designed with these properties in mind.

9.5.2 Why Phishing Works
The Anti-Phishing Working Group maintains a “Phishing Archive™ describing phishing

attacks dating back to September 2003 [3]. We performed a cognitive walkthrough on the
approximately 200 sample attacks within this archive to develop a set of hypotheses about

DYNAMIC SECURITY SKINS 3N

how users are deceived. We tested these hypotheses in a usability study: We showed 22
participants 20 websites and asked them to determine which ones were fraudulent, and why.
Details are available in [17, 18]. Our key findings are:

e Good phishing websites fooled 90% of participants.

 Existing antiphishing browsing cues are ineffective: 23% of participants in our study
did not Jook at the address bar, status bar, or any SSL indicators.

e On average, our participant group made mistakes on our test set 40% of the ume.

e Popup warnings about fraudulent certificates were singularly ineffective: 15 out of
22 participants proceeded without hesitation when presented with these warnings.

* The indicators of trust presented by the browser are trivial to spoof. By using very
simple spoofing attacks, such as copying images of browser chrome or the SSL
indicators in the address bar or status bar, we were able to fool even our most careful
and knowledgeable users. '

e Participants proved vulnerable across the board to phishing attacks. In our study,
neither education, age, sex, previous experience, nor hours of computer use showed
a statistically significant correlation with vulnerability to phishing.

Our study suggests that a different approach is needed in the design of security systems.
In the next section, we propose a new approach, that allows a remote web server to prove
its identity in a way that is easy for a human user to verify (exploiting the ability of users
to recognize and match images), but hard for an attacker to spoof.

9.5.3 Dynamic Security Skins

9.5.3.1 Design Requirements With the security properties and usability study in
mind, our goal was to develop an authentication scheme that does not impose undue burden
on the user, in terms of effort or time. In particular, we strive to minimize user memory
requirements. Our interface has the following properties:

¢ To authenticate himself, the user has to recognize only one image and remember one
low entropy password, no matter how many servers he wishes to interact with.

e To authenticate content from a server. the user only needs to perform one visual
matching operation to compare two images.

o [t is hard for an attacker to spoof the indicators of a successful authentication.
We use an underlying authentication protocol to achieve the following security properties:

e Atthe end of an interaction, the server authenticates the user, and the user authenticates
the server.

e No personally identifiable information is sent over the network.

e An attacker cannot masquerade as the user or the server, even after observing any
number of successful authentications.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

342 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

Username:

Figure 9.15 The trusted password window uses a background image o prevent spooting of the
window and textboxes,

9.5.3.2 Overview We developed a prototype of our scheme as an extension for the
Morzilla Firefox browser. We chose the Mozilla platform for its openness and ease of
modification. The standard Mozilla browser interface and our extension are built using
Mozilla's XML-based User interface Language (XUL), a mark-up language for describing
user interface elements. [In this section, we provide an overview of our solution before
describing each component in depth.

First, our extension provides the user with a trusted password window. This is a dedicated
window for the user to enter usernames and passwords and for the browser to display security
information. We present a technique to establish a trusted path between the user and this
window that requires the user to recognize a photographic image.

Next. we present a technique for a user to distinguish authenticated web pages from
"unscFure“ or “'spoofed” web pages. Our technique does not require the user to recognize
a static security indicator or a secret shared with the server. Instead. the remote server
generates an abstract image that is unique for each user and each transaction. This image
is used to create a “skin,” which customizes the appearance of the server’s web page. The
browser computes the image that it expects to receive from the server and displays it in the
user’s trusted window. To authenticate content from the server, the user can visually verify
that the images maich.

We made use of the use of the Secure Remote Password protocol (SRP) [55]. to achieve
mutual authentication of the user and the server. We propose an adaptation of the SRP
protocol to allow the user and the server to independently generate the skins described
above. We note that all of interface techniques we propose can be used with other underlying
authentication protocols. We also note that simply changing the underlying protocol is
not enough to prevent spoofing, without also providing a mechanism for users to reliably
distinguish trusted and untrusted windows.

9.5.3.3 Verifier-Based Protocols It is well known that users have difficulty in re-
membering secure passwords. Users choose passwords that are meaningful and memorable
and that as a result. tend to be “low entropy™ or predictable. Because human memory is
faulty, many users will often use the same password for multiple purposes. In our authen-

DYNAMIC SECURITY SKINS 343

tication prototype, our goal is to achieve authentication of the user and the server. without
significantly altering user password behavior or increasing user memory burden. We chose
to implement a verifier-based protocol. These protocols differ from conventional shared-
secrel authentication protocols in that they do not require two parties to share a secret
password to authenticate each other. Instead, the user chooses a secret password and then
applies a one-way function to that secret to generate a verifier, which is exchanged once
with the other party. After the first exchange, the user and the server must only engage in a
series of steps that prove to each other that they hold the verifier, without needing to reveal
it.

We made use of an existing protocol, the Secure Remote Password protocol (SRP).
developed by Tom Wu [55]. SRP allows a user and server to authenticate each other over
an untrusted network. We chose SRP because it is lightweight, well analyzed and has many
useful properties. Namely, it allows us to preserve the familiar use of passwords. without
requiring the user to send his password to the server. Furthermore, it does not require the
user (or his browser) to store or manage any keys. The only secret that must be available
to the browser is the user’s password (which can be memorized by the user and can be low
entropy). The protocol resists dictionary attacks on the verifier from both passive and active
attackers, which allows users to use weak passwords safely.

Here, we present a simple overview of the protocol to give an intuition for how it works.
To begin, Carol chooses a password, picks a random salt, and applies a one-way function
to the password Lo generate a verifier. Her client sends this verifier and the salt to the server
as o one-lime operation. The server will store the verifier as Carol’s “password™. To login
to the server, the only data that she needs to provide is her username, and the server will
look up her salt and verifier. Next, Carol’s client sends a random value to the server chosen
by her client. The server in turn sends Carol’s client its own random values. Each party,
using their knowledge of the verifier and the random values, can reach the same session
key. a common value that is never shared. Carol’s client sends a proof to the server that she
knows the session key (this proof consists of a hash of the session key and the random values
exchanged earlier). In the last step, the server sends its proof to Carol’s client (this proof
consists of a hash of the session key with Carol’s proof and the random values generated
earlier). At the end of this interaction, Carol is able to prove to the server that she knows
the password without revealing it. Similarly, the server is able to prove that it holds the
verifier without revealing it.

The protocol is simple to implement and fast. Furthermore, it does not require significant
computational burden, especially on the client end. A drawback is that this scheme docs
require changes to the web server, and any changes required (however large or small),
represent an obstacle to widespread deployment. However, there is work on integrating
SRP with existing protocols (in particular, there is an IETF standards effort to integrate
SRP with SSL/TLS), which may make widespread deployment more feasible.

One enhancement is to only require the user to remember a single password that can be
used for any server. Instead of forcing the user to remember many passwords, the browser
can use a single password to generate a custom verifier for every remote server. This can be
accomplished, for example, by adding the domain name (or some other information) to the
password before hashing it to create the verifier [42]. This reduces memory requirements
on the user, however it also increases the value of this password to attackers.

We note that simply designing a browser that can negotiate a mutual authentication
protocol is not enough to stop phishing attacks, because it does not address the problem
of spoofing. In particular, we must provide interaction mechanisms to protect password

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

344 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

entry and to help the user to distinguish content from authenticated and non-authenticated
SCTVErs.

9.5.3.4 Trusted Path to the Password Window In order 1o authenticate, Carol
must correctly supply her password to her client (the browser) and not to a rogue third
party. How can a user trust the client display when every user interface element in that
display can be spoofed? We propose a solution in which the user shares a secrel with the
display. one that cannot be known or predicted by any third party. To create a trusted path
between the user and the display. the display must first prove to the user that it knows this
secret.

Our approach is based on window customization [48]. If user interfuace elements are
customized in a way that is recognizable to the user but very difficult to predict by others,
attackers cannot mimic those aspects that are unknown to them.

Our extension provides the user with a trusted password window that is dedicated to
password entry and display of security information. We establish a trusted path to this
window by assigning each user a random photographic image that will always appear in
that window. We refer to this as the user’s personal image. The user should easily be able
to recognize the personal image and should only enter his password when this image is
displayed. As shown in Figure 9.15. the personal image serves as the backeround of the
window. The personal image is also transparently overlaid onto the textboxes. This ensures
that user focus 1s on the image at the point of text entry and makes it more difficult to spoof
the password entry boxes {e.g.. by using a pop-up window over that area).

As discussed below, the security of this scheme will depend on the number of image
choices that are available. For higher security. the window is designed so that users can
also choose their own personal images.

We chose photographic images as the secret to be recognized because photographic
images are more easily recognized than abstract images or text |44, 22, 45. 23, 15. 16] and
because users preferred to recognize images over text in our early prototypes. However, any
type of image or text could potentially be used to create a trusted path, as long as the user
can recognize it. For example, a myriad of user interface elements, such as the background
color, position of textboxes. and font. could be randomly altered at first use to change the
appearance of the window. The user can also be allowed to make further changes. however
security should never rely on users being willing to customize this window themselves.

The choice of window style will also have an impact on security. In this example, the
trusted window is presented as a toolbar, which can be “docked™ to any location on the
browser. Having a movable. rather than fixed window has advantages (because an attacker
will not know where to place a spoofed window), but can also have disadvantages (because
naive users might be fooled by false windows in alternate locations). We are currently
experimenting with representing the trusted window as a fixed toolbar, a modal window,
and a side bar.

This scheme requires the user to share a secret with himself (or his browser) rather than
with the server he wishes to authenticate. This scheme requires no effort on the part of the
user (or 4 one-time customization for users who use their own images), and it only requires
that the user recognize one image. This is in contrast to other solutions that require users to
make customizations for each server that they interact with and where the memory burden
increases linearly with each additional server [48, 39, 49, 50].

DYNAMIC SECURITY SKINS 345

Figure 9.16 An example of a visual hash that is generated by browser.

9.5.3.5 Distinguishing Secure Web Pages Assuming that a successl'yl authen-
tication has taken place, how can a user distinguish authenticated web pages trom th_osc
that are not “secure™? In this section we explore a number of possible solutions before
presenting our own.

Static Security Indicators. One solution is for the browser to display all “secure™ wir!—
dows in a way that is distinct from windows that are not secure. Most browsers do this
today by displ'uying a closed lock icon on the status bar or by altering the Iocali‘nn bar {e.g..
MU'{.‘i"EI Firefox uses a yellow background for the address bar) to indicate SSL protected
sites. For example, we could display the borders of authenticated windows in one Fnl(?r. ;Imd
insecure windows in another color. We rejected this idea because our analysis of phishing
attacks sugeests that almost all security indicators commonly used by browsers to imlica_tc. a
Tsecure C&;Jncction" will be spoofed. Previous research suggests that itis almost impossible
to desien a static indicator that cannot be copied [58].

In our case. because we have established a trusted window, we could use that window to
display a security indicator (such as an open or closed lock icon) or a message that indicates
that the current site has been authenticated. However, this approach is also vulm:ralb}e
to spoofing if the user cannot easily correlate the security indicator with the appropriate
window.

User Customized Security Indicators. Another possibility is for the user to create a
custom security indicator for each authenticated site, or one custom indicator to be used _lor
all sites. A number of proposals require users to make per site customizations by creating
custom images or text that can be recognized later [48, 39, 49, 50]. In our case. the user
could personalize his trusted window, for example by choosing a border slylt_:, and th_c
browser could display authenticated windows using this custom scheme. We rejected this
idea because it requires mandatory effort on the part of the user, and we believe that only a
small number of users are willing to expend this effort. Instead, we chose to automate this
process as described in the next section.

Automated Custom Security Indicators. We chose to automatically identify a_ulhcn-
ticated web pages and their content using randomly generated images. In this section we
describe two approaches. _
Browser-Generated Random Images. Ye and Smith proposed that browsers display
trusted content within a synchronized-random-dynamic boundary [58]. In their schcrpt:. the
borders of trusted windows blink at a certain frequency in concert with a reference window.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

346 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

crname

Passwofd: ..

Figure 9.17 In Dynamic Security Skins, the trusted password window displays the visual hash
pattern that matches the pattern displayed in the website window border. '

888 Credu Card Form

“Cred
" oard [Pease choose . =
“Cardhoiders
Hame.
fo8 & appanrs |
| wgaclly o0
| your card)
|
| “Card [i1
W ber G

Figure 9.]3 In D)-nulmic Security Skins. the browser displays the visual hash as a border around
the authenticated website. 11 this pattern matches the pattern shown in the trusted window. the user
can trust that this is the correct website. I

CYNAMIC SECURITY SKINS 347

Figure 9.19 Visual hash generated independently by browser and server.

We suggest another approach in which we randomly generate images using visual hashes.
As 2 visual hash algorithm, we use Random Art [2]. which has previously been proposed
for use in graphical password user authentication [40, 16]. Given an initial seed, Random
Art generates a random mathematical formula that defines a color value for each pixel in
an image. The image generation process is deterministic and the image depends only on
the initial seed.

Suppose that the browser generates a random number at the start of every authentication
transaction. This number is known only to the browser, and is used to generate 4 unigue
image that will only be used for that transaction. The generated image is used by the
browser to create a patterned window border. Once a server is successfully authenticated,
the browser presents each web page that is generated by that server using its own unique
window border. The pattern of the window border is simultaneously displayed in the user’s
trusted window. To authenticate a particular server window, the user only needs to ensure
that two patterns match. All non-authenticated windows are displayed by the browser using
a dramatically different, solid, non-patterned border, so that they cannot be mistaken for
authenticated windows.

The approach of displaying the visual hash in the window border has some weaknesses.
First. there are several ways for servers to override the display of window borders. For
example. it is possible for a server to open windows without any window borders. Servers
can instruct the Mozilla browser to open a web page without the browser chrome (a web
page that is not wrapped in a browser window) by issuing a simple Javascript command.
Another way for servers to override the display of borders is to use “remote XUL". Remote
XUL was designed to allow developers to run server based applications that do not need to
be installed on the user’s local machine. Normally, Mozilla uses local XUL files to build
the browser interface. However, the Mozilla layout engine can also use XUL files supplied
by a server to build the user interface, including content and chrome that is specified by the
Server.

Another disadvantage of using window borders to mark trusted content is that the border
is often “far away,” in terms of distance and perception, from the content of the web page
that 2 user must trust. In some cases, it may be desirable to identify individual elements
within a web page as trusted. One possibility is for the browser to modify the display of
elements within a web page (e.g., by modifying the Cascading Style Sheet file that is applied
to the web page). However, this approach interferes with website design and will require
web designers to designate standard locations where the visual hash patterns should appear
on their web pages.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

348 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

atitlarie

Figure 9.20 in Dynamic Security Skins. the trusted password window displays the visual hash that
matches the website background.

-~ e
R, Credit Cand barm [

- e v ' S
Gl ﬁ' i" @ earchisecury skin/webjform i v | °

Enter Your Credit Card Details:

cuaT nvlﬁ(m—g

CAEDIT CARD #

EXPIRATION DATE

SuBMIT

Figure 9.21 In Dynamic Security Skins, the browser displays the visual hash as the background of
a form element. If the pattern matches the pattern in the trusted window, the user can veri fy that the
reguest for information is from a known party.

DYNAMIC SECURITY SKINS 349

Server-Generated Random Images. We now describe an approach for the server to
generate images that can be used to mark trusted content.

To accomplish this, we take advantage of some properties of the SRP protocol (use of
this specific protocol is not a requirement for our approach). In the last step of the protocol,
the server presents a hash value to the user, which proves that the server holds the user’s
verifier. In our scheme, the server uses this value to generate an abstract image, using
the visual hash algorithm described above. The user’s browser can independently reach
the same value as the server and can compute the same image (because it also knows the
values of the verifier and the random values supplied by each party). The browser presents
the user with the image that it expects to receive from the server in the trusted password
window. Neither the user nor the server has to store any images in advance, since images
are computed quickly from the seed.

The server can use the generated image to modify the content of its web page in many
ways. The remote server can create a border around the entire web page or can embed the
image within particular elements of the web page. For example, when requesting sensitive
personal information from a user, a website can embed the image in the background of
a form, as shown in Figure 9.21. This provides the user with a means to verity that the
information request originates from a known party.

Websites must be carefully designed to use images in a way that does not clutter the
design or create confusion for the user. User testing is required to determine the actual
entropy of the image generation process, that is, how distinguishable patterns are between
the images that are generated.

9.5.4 User Interaction

In this section we describe the process of a user logging in to his bank website. The first time
the browser is launched, it displays the user’s trusted password window with a randomly
chosen photographic image. The user can choose to keep the assigned image or can select
another image.

During a setup phase, the user chooses an easy to memorize password (it may be low
entropy). The browser computes a one-way function on this password to generate a verifier,
which is sent to the bank as a one-time operation. The verifier can be sent to the bank
online, in the same manner that user passwords are supplied today, or through an out of
band transaction, depending on security requirements. If the verifier is sent online, the
process must be carefully designed so that the user cannot be tricked into providing it to a
roguc site.

At each login, the bank website will trigger the browser to launch the trusted window.
The user must recognize his personal image and enter his username and password into
the trusted window. The password is used 1o generate the verifier; however, neither the
password nor the verifier is sent to the bank. The only personal data that the bank requires
at each login is the username. In the background, the client then negotiates the SRP protocol
with the bank server. If authentication is successful, the user is able to connect to the bank,
and the trusted window will display the pattern image that it expects to receive from the
bank.

The bunk can use the pattern as a security indicator to help the user distinguish pages
that have been authenticated and where extra caution is required (e.g., where sensitive
information is being requested). For this to be an effective security technique. websites
must establish standard practices for displaying the visual hashes and habituate users to
expect their presence during security critical operations.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

350 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

Importantly, our browser extension also sets some simple browser window display pref-
erences to prevent and detect spoofed windows. For example. the browser does not allow
any windows to be placed on top of the trusted password window. Additionally, all windows
not generated by the authenticated server can have a drumatically different appearance that
users can specify (c.g.. they will be greyed out).

The advantage from the user’s point of view is that only one check (a visual match of two
images) is required to establish the identity of the server (or more specifically. to establish
that this is an entity that she has communicated with before). The disadvantage to the
user is that the action of matching two images is more cumbersome than guickly scanning
for the presence of a static binary “yes/no” security indicator. However. we expect image
matching to be less cumbersome and more intuitive to users than inspecting a certificate,
tor example. We will perform user testing to discover how cumbersome this interaction
technique is for users. if users are able to perform verification through image matching and
if users can detect spoofed windows.

9.5.5 Security Analysis

We now discuss the vulnerability of our scheme to various attacks.

Leak of the Verifier. The user’s verifier is sent to the bank only once during account
setup. Thereafter. the user must only supply his password to the browser and his usernume
to the server to login.

The server stores the verifier, which is based on the user's password but which is not
password-equivalent (it cannot be used as a password). Servers are still required to guard
the verifier to prevent a dictionary attack. However, unlike passwords. if this verifier is
stolen (by breaking into the server database or by intercepting it the one time it is sent to
the bank). the attacker does not have sufficient information to impersonate the user, which
makes the verifier a less valuable target to phishers. If a verifier is captured. it can, however,
be used by an attacker to impersonate the bank to one particular user. Therefore, if the
verifier is sent online, the process must be carefully designed so that the user cannot be
tricked into providing it to a rogue site.

Leak of the Images. Our scheme requires two types of images, the personal image
{a photographic image assigned or chosen by the user) and the generated image used to
creale the security skin. The user’s personal image is never sent over the network and
only displayed to the user. Therefore. the attacker must be physically present (or must
compromise the browser) to observe or capture the personal image. If the generated image
is observed or captured, it cannot be replayed in subsequent transactions. Furthermore, it
would take an exhaustive dictionary attack to determine the value that was used to generate
the image, which itself could not be used to not reveal anything about the password.

Man-in-the-Middle Attacks. SRP prevents a classic man-in-the middle attack, however a
“visual man-in-the-middle™ attack is still possible if an attacker can carefully overlay rogue
windows on top of the trusted window or authenticated browser windows. As discussed
above, we have specifically designed our windows to make this type of attack very difficult
to execute.

351

Spoofing the Trusted Window. Because the user enters his password in the trusted
password window, it is crucial that the user be able to recognize his own customized window
and to detect spoofs. If the number of options for personalization is limited, phishers can
try to mimic any of the available choices, and a subset of the population will recognize
the spoofed setting as their own (especially if there is a default option that is sclgclcd by
many users). If an attacker has some knowledge of the user, and if the selection of images
is limited. the choice of image may be predictable [14]. In addition to a large number of
randomly assigned personal images, we will encourage unique personalization (e.g., allow
the users to use their own photos). User testing is needed to determine if users can be trained
to only enter their passwords when their own personal image shown.

Spoofing the Visual Hashes. If this system were widely adopted, we expect that phish-
ers will place false visual hashes on their web pages or webforms o make them appear
secure. Users who do not check their trusted window, or users who fail to recognize that
their personal image is absent in a spoofed trusted window, could be tricked by such an
attack. It is our hope that by simplifying the process of website verification, that more users
(especially unsophisticated users) will be able to perform this important step.

Public Terminals and Malware. A user can log in from any location with the browser
extension installed, by supplying his password. However, a user cannot ensure that the
password window can be trusted without also saving his personal image in the browser. In
future work, we will investigate how to protect users in locations where they are not able
to store the personal image (e.g.. public terminals).

This scheme provides protection against pharming attacks, where the users DNS huslls‘
file is altered or where cache poisoning is used to redirect users to rogue websites. Even if
users are misdirected to a rogue website and the user enters his password into the trusted
window. the rogue website will not be able to capture any useful information. However.
this scheme does not address phishing threats that arise from malware installed on the users
machine (e.g.. keylogging software). To prevent malware attacks, an area for future work
is to develop trusted paths between the user and the operating system.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

364 MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

REFERENCES

1. Microsoft Developers’ Network documentation. Platform SDK: Authentication. http://msdn.

[l

ad

n

microsoft.com/library/en-us/secauthn/security/gina.asp.

Andrej Bauer. Gallery of Random An. gs2.sp.cs.cmu.edu/art/random/.

- Anti-Phishing Working Group Phishing Archive. http://www.ant iphishing.org/phishing_

archive.html.

- M. Bellare and P. Rogaway. The AuthA protocol for password-based authenticated key exchange.

Contribution to IEEE P1363.2, March 2000.

+ Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing

;fhuem protocols. In ACM Conference on Computer and Communications Sec urity, pages
2-73. 1993,

. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols se-

cure against dictionary attacks. In Proceedings of the IEEE Symposium on Sec. uriry and Privacy,
pages 72-84. IEEE Press. May 1992,

- Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: a pussword-

based protocol secure against dictionary attacks and password file compromise. In CCS '93:
Proceedings of the 1st ACM Conference on Computer and C
244-250. New York. NY, USA, 1993. ACM Press.

ications Securitv, pages

20.
21.

22,

24

25.

26.

27.

[
oc

REFERENCES 365

A. Brusilovsky. Password authenticated Diffie-Hellman exch ange {PAK). Internet Draft, October
2005.

. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. In

Proceedings of the 30th Annual Svmpasium on Theory Of Computing (STOC), pages 209-218,
Dallas, TX, USA, May 1998. ACM Press.

. Neil Chou, Robert Ledesma, Yuka Teraguchi. Dan Boneh, and John C. Mitchell. Client-side

defense against web-based identity theft. 2004. 11th Annual Network and Distributed System
Security Symposium (NDSS "04).

. Cloudmark. Cloudmark Anti-Fraud Toolbar. http://www.cloudmark.com/desktop/ie-

toolbar/.

. Core Street. Spoofstick. http://www.spoofstick.com/.
. Rohin Dabas, Adrian Perrig, Gaurav Sinha, Ting-Fang Yen, Chieh-Hao Yang. and Dawn Song.

Browser enhancement against phishing attacks. Poster at Symposium on Usable Privacy and
Security (SOUPS), luly 2005.

. Darren Davis, Fabian Monrose, and Michael Reiter. On user choice in graphical password

schemes. In Proceedings of the USENIX Security Symposiwh, 2004,

. Rachna Dhamija. Hash visualization in user authentication. In Proceedings of the Computer

Human Interaction Conference Short Papers, 2000.

. Rachna Dhamija and Adrian Perrig. Déja Vu: A User Study. Using images for authentication.

In Proceedings of the 9th USENIX Security Symposium, 2000.

. Rachna Dhamija and J. D. Tygar. The battle against phishing: Dynamic security skins. In

Proceedings of the Svmposium on Usable Privacy and Security, 2005.

. Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. In Proceedings of the

Conference on Human Factors in Computing Systems, 2006,

. Danny Dolev, Cynthia Dwork. and Moni Naor. Non-malleable cryptography (extended abstract).

In Proceedings of the Twenry Third Annual ACM Symposium on Theory of Computing. pages
542-552. New Orleans, Louisiana, 6-8May 1991,

Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.
Nathan Good. Rachna Dhamija. Jens Grossklags, David Thaw, Steven Aronowitz, Deirdre Mul-
ligan, and Jospeh Konstan, Stopping Spyware at the Gate: A User Study of Notice, Privacy and
Spyware. In Proceedings of the Symposium on Usable Privacy and Security, 2005.

Ralph Norman Haber. How we remember what we see. Scientific American, 222(5):104-112,
1970,

23. Helene Intraub. Presentation rate and the representation of briefly glimpsed pictures in memory.

Human Learning and Memory, 6(1):1-12, 1980.

D. P. Jablon. Strong password-only, authenticated key exchange. Submission to IEEE P1363.2,
September 1996.

Jonathan Katz. Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Birgit Pfitzmann, editor, Advances in Cryptology—
EUROCRYPT * 2001, volume 2045 of Lecture Notes in Computer Science, pages 473492,
Innshruck. Austria. 2001, Springer-Verlag, Berlin Germany.

Cynthia Kuo, Fritz Schneider, Collin Jackson, Donal Mountain, and Terry Winograd. Google
Safe Browsing. Project at Google, Inc., June-August 2005,

T. Kwon. Summary of AMP (authentication and key agreement via memorable passwords).
Submission to IEEE 1363.2, August 2003.

. Micheal Luby. Pseudorandomness and Cryptographic Applications. Princeton Computer Sci-

ence Notes. Pinceton University Press, 1996,

366

30.

3

33

34,

36.

a7,

38

39,

4.

41,

45.

46.

47.

48.

49.
50.

In Phishing and Countermeasures, eds. M. Jakobsson and S. Myers. Wiley-Interscience, 2007, pp. 339-351

MUTUAL AUTHENTICATION AND TRUSTED PATHWAYS

29. P. MacKenzie and R. Swaminathan. Secure network authentication with password identification,

Submission to [EEE 1363.2, July 1999,

Philip MacKenzie. On the security of the SPEKE pussword-authenticated key exchange protocol.
Technical Report 2001/057, 2001,

- A.J. Menezes, Paul C. Van Qorschot. and Scott A. Vanstone, Handbook of Applied Cryptography.

The CRC Press series on discrete mathematics and its applications. CRC Press. 2000 N.W.
Corporate Blvd.. Boca Raton, FL 334319868, USA. 1997,

- Microsoft. Erroncous VeriSign-issued digital certificates pose spoofing hazard. http://www.

microsoft.com/technet/security/bulletin/MS01-017.mspx. 2001,

Steven Myers und Markus Jakobsson. Delayed password disclosure. Submitted to Financia
Cryptography 2007. 2007.

National Fraud Information Center. Telemarketing Scams: January-June 2005. http: //uww.
fraud.org/telemarketing/tele_scam_halfyear_2005.pdf. 2005.

. Neteraft. Neteraft Anu-Phishing Toolbar. http://toolbar.netcraft.com/.

Out-law.com. Phishing attack targets one-time passwords. http://www.theregister.co.
uk/2005/10/12/0utlaw_phishing/. October 2005.

Oxford Information Services Ltd. Scamreport. http://wuw.millersmiles. co.uk/report/
1722, December 2005,

Bryan Parno. Cynthia Kuo. and Adrian Perrig. Phoolproof phishing prevention, In Proceedings
of International Conference on Financial Cryptograpy and Data Security, February 2006,

Passmark Security. Protecting Your Customers from Phishing Attacks: An Introduction to
Passmarks. http: //www. passmarksecurity.com/.

Adrian Perrig und Dawn Song. Hash visualization: A new technigue (o improve real-world
security. In Proceedings of the 1999 International Workshop on Cryprographic Technigues and
E-Commerce (CrypTEC), July 1999,

Princeton Survey Rescarch Associates International. Leap of Faith: Using the Internet Despite
the Dangers (Results of a National Survey of Internet Users for Consumer Reports WebWatch).
http://www.consumervebvatch.org/pdfs/princeton.pdf, October 2005,

- Blake Ross, Collin Juckson. Nick Miyake, Dan Boneh. and John C. Mitchell. A browser plug-in

solution to the unique password problem. Technical Report Stanford-SecLab-TR-2005-1. 2005.

- R5A Secunty. RSA SccurlD Authentication. https://www.rsasecurity.com/node.asp?

id=1156, 2005.

- R. Shepard. Recognition memory for words, sentences and pictures. Journal of Verbal Learning

and Verbal Behaviar, 6:156-163. 1967,

L. Standing. J. Conezio. and R. Haber. Perception and memory for pictures: Single trial learning
of 2500 visual stimuli. Psychonomic Science, 19:73-74. 1970.

Hongxian Evelyn Tay. Visual validation of SSL centificates in the Mozilla browser using hash
images. May 2004. Undergraduate Honors Thesis, School of Computer Science. Carnegie
Mellon University.

Wade Trappe and Lawrence C. Washington. Inrroduction to Cryptography with Cuding Theory
{Second Edirion). Prentice Hall, 2002

J. D. Tygar and Alma Whitten. WWW Electronic commerce and Java Trojan horses. In Pro-
ceedings of the 2nd USENIX Workshop on Electronic Commerce, 1996.

Visa USA. Verified by Visa. https://usa.visa.com/personal/security/vbv/.

Waterken Inc. Waterken YURL Trust Management for Humans, http://www.waterken.
com/dev/YURL/Name/, 2004.

51

52.

54

56.

=

57,

58.

REFERENCES 367

Alma Whitten and J. D. Tygar, Why Johnny Can’t Encrypt: A usability evaluation of PGP 5.0.
In Proceedings of the USENIX Securiry Svmposium. 1999,

1. Woodward. Security requirements for high and compartmented mode workstations. Technical
report. MITRE Corp. MTR 9992, Defense Intelligence Agency Document DDS-2600-5502-87.
Nov 1987,

M. Wu. R. Miller. and S. Garfinkel. Secure web authentication with mobile phones. In DIMACS

Svmposium On Usable Privacy and Securiry, 2004,

Min Wu. Simson Garfinkel, and Rob Miller. Users are not dependable—how to make sccurill)r
indicators 10 better protect them, Talk presented at the Workshop for Trustworthy Intertaces for
Passwords and Personal Information, June 2005.

. Thomas Wu. The secure remote password protocol. In Proceedings of the 1998 Internet Society

Network and Distributed Svstem Securiry Symposium. pages 97-111, 1998.

E. Ye and S.W. Smith. Trusted paths for browsers. In Proceedings of the 11th USENIX Securiny
Svmposium. USENIX. Aug 2002.

Zishuang (Eileen) Ye and Sean Smith. Trusted paths for browsers. In Proceedings of fhf‘ ! 1th
USENIX Security Symposium, pages 263-279, Berkeley, CA, USA, 2002. USENIX Association.

Ye Zishuang and Sean Smith. Trusted paths for browsers. In Proceedings of the 11t/ USENIX
Securiry Symposium,. IEEE Computer Society Press, 2002,

