
cyberspace with no easily identifiable place of business
for the merchant or physical delivery site for the
customer. Transactions are subject to observation by
third parties sharing the network. And the use of
computers to support transactions makes record keeping
easier, exacerbating privacy problems arising from
transaction data collection by merchants.

Supporting transactions in cyberspace requires
electronic analogs for many familiar procedures from
face-to-face transactions. Parties need to know with
whom they are dealing, or at least verify their
creditworthiness. They need to be able to negotiate
prices, perhaps providing credentials entitling them to
special discounts, such as a student ID. Parents need
methods to control where their children shop in
cyberspace. In the case of information goods, the value
of an item may be as low as a few cents, requiring
transaction mechanisms which impose per-transaction
overheads much smaller than those for typical check
and credit card purchases. Merchants need to restrict the
class of customers they support based on their
credentials, to restrict distribution of sensitive materials.

We are building a system called NetBill which is
optimized for the selling and delivery of low-priced
network goods. A customer, represented by a client
computer, wishes to buy information from a merchant’s
server. An account server (the NetBill server), maintains
accounts for both customers and merchants, linked to
conventional financial institutions. A NetBill transaction
transfers information goods from merchant to customer,
debiting the customer’s NetBill account and crediting
the merchant’s account for the value of the goods. When
necessary, funds in a customer’s NetBill account can be
replenished from a bank or credit card; similarly, funds
in a merchant’s NetBill account are made available by
depositing them in the merchant’s bank account. NetBill
acts as an aggregator to combine many small
transactions into larger conventional transactions,
amortizing conventional overhead fees.

The transfer of an information good consists of
delivering bits to the customer. Users may be charged on
a per item basis, by a subscription allowing unlimited

NetBill Security and Transaction Protocol

Carnegie Mellon University
Pittsburgh, PA 15213–3890

Benjamin Cox J. D. Tygar Marvin Sirbu

thoth+@cmu.edu tygar@cmu.edu sirbu+@cmu.edu

Abstract
NetBill is a system for micropayments for information
goods on the Internet. This paper presents the NetBill
protocol and describes its security and transactional
features. Among our key innovations are:

• An atomic certified delivery method so that a cus-
tomer pays if and only if she receives her informa-
tion goods intact.

• Outsourcing access control: different users can use
different access control servers.

• A credential mechanism allowing users to prove
membership in groups. This supports discounts.

• A structure for constructing pseudonyms to protect
the identities of consumers.

1. Introduction and Overview

Buyers and sellers increasingly want to use the Internet
to conduct their business electronically. As a base for
commerce, the Internet poses special challenges due to
its lack of standard security mechanisms. At the same
time, the ease with which buyers can peruse catalogs
published via the World Wide Web makes the Internet
attractive for commerce. Consumers will want to use the
Internet as a means for multiple phases of the purchase
process: searching for suppliers, price negotiation,
ordering, and payment for goods. In the case of
information items, such as software or journal pages, the
Internet can deliver the items.

Using the Internet for commerce poses new
variations on traditional issues. Transactions occur in

Sponsored by the Air Force Materiel Command, under Advanced
Research Projects Agency contract No. F19628–95–C–0018, “Elec-
tronic Commerce: The NetBill Project.” Additional support was
received from the National Science Foundation under Cooperative
Agreement No. IRI–9411299, and from Visa International.
The views and conclusion contained in this document are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Advanced Research Projects
Agency, the National Science Foundation, or the U.S. Government.

Proceedings of the 1st USENIX Workshop on Electronic Commerce, July 1995, pp. 77-88

access, or by a number of other pricing models. A more
detailed examination of the NetBill model may be found
in [10].

NetBill requires an efficient set of protocols to
support price negotiation, goods delivery and payment.
This paper outlines our protocols.

Among our key innovations are:

• A method of (atomic) certified delivery so that a
customer pays if and only if she receives her infor-
mation goods intact.

• A system for allowing access control to be out-
sourced—so that different users may use different
access control servers. (For example, some chil-
dren’s accesses may be governed by a PTA access
control server, while other children may be under
the domain of access control servers set up by a
church group.)

• A credential mechanism for allowing users to easily
prove membership in groups, to qualify for dis-
counts or for other purposes.

• A structure for easily constructing pseudonyms so
that buyers of information can protect their identi-
ties.

2. The NetBill Transaction Model

The NetBill transaction model involves three parties:
the customer, the merchant and the NetBill transaction
server. A transaction involves three phases: price
negotiation, goods delivery, and payment. For
information goods which can be delivered over the
network, the NetBill protocol links goods delivery and
payment into a single atomic transaction.

In a NetBill transaction, the customer and merchant
interact with each other in the first two phases; the
NetBill server is not involved until the payment phase,
when the merchant submits a transaction request. The
customer contacts the NetBill server directly only in the
case of communications failure or when requesting
administrative functions. Figure 1 shows the
relationships among parties in a NetBill transaction.

2.1. Transaction Objectives

For a NetBill transaction, we have the following set of
objectives. (Similar versions of objectives (a)–(d) below
can be found in [2].)

a) Only authorized customers can charge against a
NetBill account.

b) The customer and merchant must agree on the item
to be purchased and the price to be charged.

c) A customer can optionally protect her identity from
merchants.

d) Customers and merchants are provided with proof
of transaction results from NetBill.

In addition, we have the following objectives to support
price negotiation and goods delivery.

e) There is an offer and acceptance negotiation phase
between customer and merchant.

f) A customer may present credentials identifying her
as entitled to special pricing or treatment.

g) A customer receives the information goods she pur-
chases if and only if she is charged (and thus the
merchant is paid) for the goods.

h) A customer may need approval from a fourth
(access control) party before the NetBill server will
allow a transaction.

Finally, we add as a general objective for all phases of
the purchase process:

i) The privacy and integrity of communications is
protected from observation or alteration by external
parties.

To achieve these goals, the NetBill protocol provides for
strong authentication and privacy, atomic payment and
delivery protocols, and a flexible access control system.

In the price negotiation phase, the customer
presents evidence of her identity, and (optionally)
supplemental credentials, and requests a price quote on
an item. The customer may also include a bid for the
item. The merchant responds with a price offer.

Customer Merchant

NetBill

Figure 1: Parties in a NetBill Transaction.

Transaction Protocol

Auxiliary Messages

In the second phase, the customer accepts or
declines the offer. In the case of information goods,
acceptance constitutes an order for network delivery.
The merchant provisionally delivers the goods, under
encryption, but withholds the key.

Key delivery is linked to completion of the third
phase, the payment protocol. In this phase, the customer
constructs, and digitally signs, an electronic payment
order (or EPO) and sends it to the merchant. The
merchant appends the key to the EPO and endorses
(digitally signs) the EPO, forwarding it to the NetBill
server. The NetBill server returns a digitally signed
receipt, which includes the key, to the merchant, who
forwards a copy to the customer.

3. The Transaction Protocol

We use the notation “X ⇒ Y” to indicate that X sends
the specified message to Y. The basic protocol consists
of eight steps, which are:

Objective (a) from Section 2.1 is realized because
the customer must be authenticated to NetBill before the
EPO (generated in step 5) will be accepted (in step 6).

Objective (b) is achieved because the relevant
information is included in the EPO which must be
signed by the customer in step 5 and endorsed by the
merchant in step 6.

Section 4.2 presents a mechanism implementing
objective (c).

Objective (d) is realized through the digitally
signed receipt from NetBill in step 7.

Objective (e) is achieved by the exchange in steps 1
and 2 of the protocol.

Section 5.1 presents a solution implementing
objective (f).

Objective (g) is realized by the exchange in steps 4–
8, which we call certified delivery. The customer first
gets a version of the goods encrypted with a key K. The

1. C ⇒ M Price request

2. M ⇒ C Price quote

3. C ⇒ M Goods request

4. M ⇒ C Goods, encrypted with a key K

5. C ⇒ M Signed Electronic Payment Order

6. M ⇒ N Endorsed EPO (including K)

7. N ⇒ M Signed result (including K)

8. M ⇒ C Signed result (including K)

goods are also cryptographically checksummed. In this
way, the customer uses the checksum to confirm that she
received the goods without transmission error. The
customer returns the checksum to the merchant together
with other information, and that message is forwarded to
the NetBill server. The key K that is needed to decrypt
the goods is registered with the NetBill server and also
sent to the customer (step 8). The exchange in steps 4–8
provides protection to the customer against fraud by the
merchant. For example, suppose there is a discrepancy
between what the customer ordered and what the
merchant delivered. The customer can easily
demonstrate the discrepancy to a third party (such as a
judge). The customer has NetBill’s receipt (step 7,
forwarded in step 8) indicating what was ordered, the
amount charged and the key K reported to NetBill by the
merchant. The customer also has registered with NetBill
the checksum of the encrypted goods. Thus if the goods
are faulty (e.g., purchased software doesn’t run), it is
easy to demonstrate that the problem lies with the goods
as sent and not with any subsequent alteration. This
certified delivery technique also protects the merchant
by requiring the customer to pay and the payment to
clear through the NetBill server before the customer
gets the use of the goods. (A more general discussion of
the role of certified delivery and atomicity in general for
electronic commerce can be found in [13].)

Section 5.2 presents a solution for objective (h).
Objective (i) is realized by encrypting

communications between all pairs of parties and
providing integrity checks on those messages.

3.1. Notation

We use the following notation to denote cryptographic
operations. X and Y always represent communicating
parties. K always represents a cipher key. The protocol
is a sequence of messages exchanged among three
parties: C, the customer; M, the merchant; and N, the
NetBill server.

TXY(Identity) A Kerberos ticket proving to Y
that X is named by Identity, and
establishing a session key XY
shared between them.

CC(Message) A cryptographic checksum of
Message, using an algorithm
such as the Secure Hash Algo-
rithm (SHA) hash function pre-
sented in [5].

3.2. The Price Request Phase

This section assumes possession of tickets; the method
for obtaining tickets is shown in Section 4. The Identity
item may actually be a pseudonym, as shown in Section
4.2.

EK(Message) Message, encrypted by a sym-
metric cipher using key K. The
key K may be denoted as XY,
meaning that it is known only to
parties X and Y. The encrypted
message implicitly includes a
nonce.

EX-PUB(Message) Message, encrypted in party X’s
public key using the RSA cryp-
tosystem as presented in [8].

EX-PRI(Message) Message, encrypted in party
Y’s private key using RSA.

[Message]X Message, clearsigned by X
using RSA public key cryptog-
raphy. Clearsigning is imple-
mented by forming Message,
Timestamp, EX-PRI(CC(Mes-
sage, Timestamp)). This is com-
putationally efficient and allows
any party to read the Message
text without needing X’s public
key. The clearsigned item
implicitly includes a nonce.

[Message]X-DSA Message, signed and times-
tamped by X using the Digital
Signature Algorithm (DSA) as
described in [6].

{Message}X Message, encrypted for X using
RSA public key cryptography.
For computational efficiency,
this is implemented by forming
EK(Message), EX-PUB(K). The
encrypted message implicitly
includes a nonce.

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2. M ⇒ C ECM(ProductID, Price, Request-
Flags, TID)

These two steps represent a request/response
message pair in which the customer requests a price
quote of the merchant. The customer presents an
identifying ticket (the identity presented may be a
pseudonym; see Section 4.2 for details on pseudonyms)
to the merchant, along with some optional credentials
establishing her membership in groups which may make
her eligible for a discount. (We discuss these credentials
in Section 5.1.)

The customer passes parameters indicating Product
Request Data (PRD, an arbitrary stream of application-
specific data which the customer and merchant use to
specify the goods) and some flags. These RequestFlags
are the customer’s indication of her request for the
disposition of the transaction (i.e., delivery instructions;
see Section 3.6 for different transaction options).

The customer may also optionally include a Bid,
indicating to the merchant a price she may be willing to
pay for the item.

The Transaction ID, TID, is optional in step 1. Steps
1 and 2 may be repeated as needed until the customer
and merchant can agree on a price; the TID is present to
indicate to the merchant that this is a repeated request.

The merchant stores the PRD for later use in
delivering the goods, generates a new set of
RequestFlags based on its response to the customer’s
RequestFlags, and generates a price quote and a TID (if
one was not supplied in step 1) to identify this
transaction in later steps. The TID is not globally
unique; it is used only by the customer and merchant to
maintain context between them.

The ProductID returned by the merchant in step 2 is
a human-readable product description that will appear
on the customer’s NetBill statement.

3.3. The Goods Delivery Phase

Once the customer and merchant have negotiated a price
for the goods in question, the customer directs the
merchant to deliver the goods by supplying the TID that
was used in the price request phase:

The merchant generates a unique symmetric cipher
key K, encrypts the goods using this key and sends the
encrypted goods to the customer, along with a
cryptographic checksum computed on the encrypted
goods, so that the customer will immediately detect any
discrepancy before proceeding. The merchant also sends

3. C ⇒ M TCM(Identity), ECM(TID)

4. M ⇒ C EK(Goods),
ECM(CC(EK(Goods)), EPOID)

an Electronic Payment Order ID, or EPOID, with the
goods.

The EPOID is a globally unique identifier which
will be used in the NetBill server’s database to uniquely
identify this transaction. It consists of three fields: a field
identifying the merchant, a timestamp marking the time
at the end of goods delivery, and a serial number to
guarantee uniqueness.

The specification that the EPOID must be globally
unique is used to prevent replay attacks, in which
unscrupulous merchants reuse customers’ old signed
payment instructions. The timestamp portion of the
EPOID is used to expire stale transactions; it must be
generated at the end of goods delivery because the
delivery (especially for very large goods) may take
longer than the payment expiration time.

Because the goods are delivered encrypted in step
4, the customer cannot use them. The key K needed to
decrypt the goods will be delivered in the payment
phase, which follows.

3.4. The Payment Phase

After the encrypted goods are delivered, the customer
submits payment to the merchant in the form of a signed
Electronic Payment Order, or EPO. At any time before
the signed EPO is submitted, a customer may abort the
transaction and be in no danger of its being completed
against her will. The submission of the signed EPO
marks the “point of no return” for the customer.

An EPO consists of two sections, a clear part
containing transaction information which is readable by
the merchant and the NetBill server, and an encrypted
part containing payment instructions which is readable
only by the NetBill server. The clear part of the EPO
includes:

• The customer’s (possibly pseudonymous) identity

• The human-readable Product ID (from step 2)

• The negotiated price (from step 2)

• The merchant’s identity

• The cryptographic checksum of the encrypted
goods, to forestall debate over the content of the
goods or whether they were received completely
and correctly

• The cryptographic checksum of the Product
Request Data (from step 1), to forestall debate over
the details of the order

• The cryptographic checksum of the customer’s
account number with an account verification nonce,
so that the merchant may verify that any supplied
credentials (see Section 5.1) were used correctly

• The globally-unique EPOID

The encrypted part of the EPO includes:

• A ticket proving the customer’s true identity

• Any required authorization tokens (see Section 5.2)

• The customer’s NetBill account number

• The account verification nonce

• A customer memo field

The EPO is a tuple:

Identity,
ProductID,
Price,
M,
CC(EK(Goods)),
CC(PRD),
CC(CAcct, AcctVN),
EPOID,
TCN(TrueIdentity),
ECN(Authorization,

CAcct,
AcctVN,
CMemo)

Henceforth, we use the terminology EPO to denote
this tuple.

After the customer presents the signed EPO to the
merchant, the merchant endorses it and forwards the
endorsed EPO to the NetBill server. The endorsed EPO
adds the merchant’s account number, the merchant’s
memo field, and the goods decryption key, as well as the
merchant’s signature:

[[EPO]C, MAcct, MMemo, K]M

At any time before the endorsed EPO is submitted
to the NetBill server, the merchant may abort the
transaction and be in no danger of its being completed
against his will. The submission of the endorsed EPO
marks the “point of no return” for the merchant.

The phase containing the submission and
endorsement of the EPO is denoted:

Upon receipt of the signed and endorsed EPO, the
NetBill server makes a decision about the transaction
and returns the result to the merchant, who in turn
forwards it to the customer.

5. C ⇒ M TCM(Identity), ECM([EPO]C)

6. M ⇒ N TMN(M), EMN([[EPO]C, MAcct,
MMemo, K]M)

The NetBill server makes its decision based on
verification of the signatures, the privileges of the users
involved, the customer’s account balance, and the
uniqueness and freshness of the EPOID. It then issues a
receipt containing the result code, the identities of the
parties, the price and description of the goods, the
EPOID, and the key K needed to decrypt the goods. The
receipt is digitally signed by the NetBill server, using
the Digital Signature Algorithm (DSA). The receipt is
denoted:

Result, Identity, Price, ProductID, M, K, EPOID

For this step, DSA is used rather than RSA because
of its relative performance. While RSA signatures may
be verified quickly, they are time-consuming to create;
DSA signatures, on the other hand, may be created
quickly. By using RSA for customer and merchant
signatures and DSA for NetBill signatures, we may shift
some computing load away from the NetBill server.

Some of the resulting burden on the merchant can
be lifted by recognizing that, from a business risk
perspective, it may be sufficient for a merchant to verify
only a random sample of receipts signed by the NetBill
server. Since integrity and authenticity are assured by
the symmetric key encryption protocol, only
accountability is at stake.

This receipt is returned to the merchant, along with
an indication of the customer’s new account balance
(encrypted so that only she may read it). The EPO ID is
repeated in the customer-specific data to ensure that the
merchant cannot replay data from an earlier transaction.

The Flags included in the customer-specific data
indicate simple messages from the NetBill server to the
customer; for example, that the account balance has
reached a “low-water mark” and should be replenished
soon.

In step 8, the merchant responds to the request from
the customer in step 5, forwarding the messages
returned by the NetBill server in step 7.

3.5. Status Query Exchange

In the event of communications failure after step 5 of
the protocol, the customer or merchant may be unaware
of the transaction’s status. (Before step 5, the transaction

7. N ⇒ M EMN([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

8. M ⇒ C ECM([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

may be aborted with no difficulty, as no parties have yet
signaled their commitment.) The system supports a
status query exchange for delivery of this information.

The request and response proceed as one of the
following exchanges, assuming the information is
available. In each case, an alternate response is possible,
indicating that the queried party does not have the
requested information (possibly indicating why).

• The merchant requests the transaction status from
the NetBill server:

• The customer requests the transaction status from
the merchant:

• The customer requests the transaction status from
the NetBill server:

• The customer requests the transaction status from
the merchant for a Non-NetBill transaction (see
Section 3.6):

3.6. Handling Zero-Priced Goods

We anticipate that many NetBill transactions will be for
subscription goods; i.e., goods for which the customer’s
marginal price is zero. With zero-priced goods, fraud is
less important, and so we make several refinements to
make our protocol more efficient in these cases.

First, we include a flag in the RequestFlags field of
the price request (step 1) informing the merchant “If the
price for this product is zero, treat this message as an
automatic request for the goods.”

1. M ⇒ N TMN(M), EMN(EPOID)

2. N ⇒ M EMN([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

1. C ⇒ M TCM(Identity), ECM(EPOID)

2. M ⇒ C ECM([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

1. C ⇒ N TCN(TrueIdentity), ECN(EPOID)

2. N ⇒ C ECN([Receipt]N-DSA,
EPOID, CAcct, Bal, Flags)

1. C ⇒ M TCM(Identity), ECM(EPOID)

2. M ⇒ C ECM(Result, K)

Zero-priced transactions do not need to go through
the NetBill server, as long as both parties agree. We can
put another flag in the RequestFlags that informs the
merchant “I require a NetBill receipt for this
transaction.” If this flag is present, the merchant must
submit the transaction to the NetBill server, even if the
price is zero. (The merchant may also decide to submit a
zero-price transaction to the NetBill server.)

A customer or merchant may want to use the
NetBill server on a zero-priced transaction if they
require a signed receipt from a third party confirming
the transaction. While subscription goods may not
require a receipt, a merchant may decide to put a zero-
priced purchase through NetBill in a “buy ten, get one
free” situation so as to be able to prove that he actually
provided the free item.

The merchant may change his price quote
depending on this flag; if NetBill charges the merchant
for billing services, the merchant may want to recover
this cost if the customer requests a NetBill receipt for
what might otherwise be a zero-priced transaction.

Combinations of these flags allow us to support
four basic types of zero-price delivery:

3.6.1. Type I: Zero-Price Certified Delivery

This protocol eliminates the separate product request
phase. Because steps 2 and 4 from the original protocol
are combined, we indicate that by making steps 2 and 4
into a single step labeled 2/4.

3.6.2. Type II: Certified Delivery without
NetBill Server

This protocol improves on Type I by further eliminating
the call to the NetBill server. With this modification, the

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID), EK(Goods),
ECM(CC(EK(Goods)), EPOID)

5. C ⇒ M TCM(Identity), ECM([EPO]C)

6. M ⇒ N TMN(M), EMN([[EPO]C, MAcct,
MMemo, K]M)

7. N ⇒ M EMN([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

8. M ⇒ C ECM([Receipt]N-DSA,
ECN(EPOID, CAcct, Bal, Flags))

payment phase becomes little more than an
acknowledgment.

3.6.3. Type III: Verified Delivery

This protocol is nearly the same as the Type II protocol,
except that the goods are encrypted in the shared session
key CM. This bypasses the certified delivery
mechanism, allowing the customer’s software to begin
streaming the goods to a viewer rather than being
obliged to wait until all the goods have been delivered
before receiving the key.

3.6.4. Type IV: Unverified Delivery

This protocol improves on Type III by eliminating the
acknowledgment of goods delivery in the payment
phase if the merchant does not need it.

4. Identities and Authentication

When a customer creates a NetBill account, she receives
a unique User ID and generates the RSA public key pair

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID), EK(Goods),
ECM(CC(EK(Goods)), EPOID)

5. C ⇒ M TCM(Identity), ECM(EPOID,
CC(EK(Goods)))

8. M ⇒ C ECM(Result, K)

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID, Goods,
CC(Goods), EPOID)

5. C ⇒ M TCM(Identity), ECM(EPOID,
CC(Goods))

8. M ⇒ C ECM(Result)

1. C ⇒ M TCM(Identity), ECM(Credentials,
PRD, Bid, RequestFlags, TID)

2/4. M ⇒ C ECM(ProductID, Price(=0),
RequestFlags, TID, Goods,
CC(Goods))

associated with that User ID. This key pair is certified
by NetBill, and is used for signatures and authentication
within the system. (See [4] for a discussion of public
key certification.)

Section 3.4 showed how these signatures will be
used in the payment phase of the protocol. However, our
protocol also uses Kerberos tickets. The NetBill
transaction protocol involves several phases, for price
negotiation, goods delivery, and payment; only the last
of these phases requires nonrepudiable signatures.
Instead of using public key cryptography for message
authentication and encryption throughout the NetBill
system, we use symmetric cryptography because it
offers significant performance advantages.

We use the public key cryptography infrastructure
to alleviate problems with traditional symmetric-key
Kerberos (see [12]):

Kerberos uses a two-level ticket scheme; to
authenticate oneself to a Kerberos service, one must
obtain a service ticket, which establishes a shared
symmetric session key between the client and server,
and establishes that the Kerberos Ticket Granting Server
believes the client’s identity. To obtain a service ticket, a
client must first obtain a ticket-granting ticket (or TGT),
which proves the client’s identity to the Ticket Granting
Server. A client obtains a TGT via request from a Key
Distribution Center, or KDC.

The Kerberos KDC/TGT arrangement introduces
two significant problems that we may alleviate using
public key cryptography. First, because it maintains a
shared symmetric cipher key with every principal in the
system, it is an attractive target for attack; recovering
from compromise of the KDC requires establishing new
shared keys with all users of the system. Second, a KDC
and TGT will be a communications or processing
bottleneck if a large number of users present a heavy
traffic load.

To eliminate the Ticket Granting Server, we replace
the TGT with a public key certificate, allowing each
service to act as its own Ticket Granting Server. That is,
a user presents a service ticket request encrypted with a
certified public key (we call this a Public Key-based
TGT, or PKTGT), and receives in response a symmetric-
cipher-based service ticket. This service ticket is
identical in form to a Kerberos service ticket. The Key
Distribution Center is replaced by a key repository. The
protocol for a customer to obtain a service ticket for a
merchant M is as follows (before this step occurs, the
customer requests the merchant’s public key certificate

over any available channel—such as an unsecured
remote procedure call):

This model preserves the efficiency of symmetric
ciphers for most communication and repeated
authentication, and isolates the computational expense
of public key cryptography to initial authentication
between parties. We refer to this model as “Public Key
Kerberos,” or “PK Kerberos.”

In the NetBill system, a customer obtains Kerberos
tickets for the NetBill transaction server at the
beginning of a session and obtains Kerberos tickets for
merchants as she needs them. Merchant servers will
continually maintain their own tickets for the NetBill
transaction server.

4.1. Key Repository

Private keys are large, so users cannot be expected to
remember them. Permanently storing private keys at a
user’s workstation poses security risks and restricts the
user’s electronic commerce activities to a single
workstation. NetBill uses a key repository to optionally
store customers’ private keys. These keys are encrypted
by a symmetric key derived from a passphrase known
only to the customer.

4.1.1. Key Validation and Revocation Cer-
tificates

We use a public key certificate scheme (like that
presented in [4]) to bind User IDs to keys, with NetBill
as the certifying authority. NetBill generates a certificate
when a customer first proves her identity and begins
using NetBill.

However, allowing merchants, as services, to grant
their own tickets based on these certificates poses a
problem: NetBill is no longer involved in ticket-
granting, and cannot prevent a ticket from being issued
to a user with a compromised key. NetBill needs to
invalidate compromised keys as quickly as possible.

NetBill maintains a Certificate Revocation List
(CRL) at its server. When a key is compromised, the
owner creates a Revocation Certificate and places it in
the key repository along with her key. Any party can
check that a given key has not been compromised by
examining the revocation list.

Initially, it would seem that it is necessary for the
customer and merchant to contact the server to check
CRLs on each transaction. However, it is possible to

1. C ⇒ M [{Identity, M, Timestamp, K}M]C

2. M ⇒ C EK(TCM(Identity), CM)

eliminate this check by allowing the NetBill transaction
server to do it when it processes the payment
transaction. By delaying the CRL check to late in the
protocol, we introduce some minor risks. Customers and
merchants may disclose information such as their
preference for particular items or special prices to bogus
peers, but there is no financial risk.

4.2. Pseudonyms

Some customers want to disguise their identities.
NetBill provides two pseudonym methods to protect the
privacy of the customer’s identity: a per-transaction
method that uses a unique pseudonym for each
transaction, and a per-merchant method that uses a
unique pseudonym for each customer-merchant pair.
(See [3] for a full discussion of privacy protection with
pseudonyms.) The per-merchant pseudonym is useful
for customers who wish to maintain a consistent
pseudonymous identity to qualify for frequent-buyer
discounts.

These pseudonym schemes are implemented by
introducing a pseudonym-granting server, P, to create
pseudonymous PKTGTs for the customer. The protocol
for obtaining and using a pseudonymous PKTGT is as
follows. The customer obtains the pseudonymous
PKTGT in steps 1–2, and uses it with a merchant in
steps 3–4 exactly as she would use a normal PKTGT:

The protocol is the same for both kinds of
pseudonyms; the desired type of pseudonym (per-
merchant or per-transaction) is indicated in the Type
field in step 1. The extra message [TrueIdentity, M,
Pseudonym, Timestamp]P in step 2 is the customer’s
receipt proving that she was using the pseudonym
Pseudonym with the named merchant at the time
indicated. This may be useful to the customer in
conjunction with the receipt received in step 8 of the
transaction (which contains only the pseudonym) to
later prove that she was involved in the transaction.

1. C ⇒ P [{TrueIdentity, M, Timestamp, K1,
Type}P]C

2. P ⇒ C EK1(K2, [{Pseudonym, M, Times-
tamp, K2}M]P, [TrueIdentity, M,
Pseudonym, Timestamp]P)

3. C ⇒ M [{Pseudonym, M, Timestamp,
K2}M]P

4. M ⇒ C EK2(TCM(Pseudonym), CM)

5. Credentials and Authorizations

In [7], Neuman presents a system of using restricted
proxies for authorization. A restricted proxy is a ticket
giving the bearer authority to perform certain operations
named in the ticket. NetBill uses a similar construct to
implement credentials to prove group membership (to
allow merchants to provide discounts to special groups)
and to implement access control mechanisms.

5.1. Credentials for Group Membership

An organization can provide a credential server which
issues credential proxies proving membership in a
group. In this case, the credential server is asserting a
fact (membership in a group) about which it is
authoritative. For example, an auto club may provide a
credential server which issues credentials to the
members of the club; merchants who offer discounts to
the club’s members will accept these credentials as
proof of membership. The protocol for obtaining a
credential (assuming the customer has already obtained
a service ticket for the credential server) from a
credential server, G, is as follows:

Credentials obtained in this manner are presented to
merchants in the price request phase of the transaction
protocol, step 1.

A credential issued to a customer may be
unrestricted, or it may optionally be restricted for use on
a specific account (for example, in order to prevent
corporate employees from taking advantage of
corporate discounts for personal purchases). This is
accomplished by passing the account number to the
group server as part of the request. If the account
number is appropriate for this group, the credential will
be issued. The credential contains a cryptographic
checksum of the account number and an “Account
Verification Nonce,” which is also returned to the
customer along with the credential.

This nonce is a pseudorandom number ensuring
that merchants can neither determine which different
customers (or the same customer in repeated sessions)
are using the same account nor easily verify guesses of
the customer’s account number. The nonce is passed
along to the NetBill server in the encrypted part of the
EPO so that the NetBill server can verify that the
checksum passed to the merchant (for his comparison to

1. C ⇒ G TCG(Identity), ECG(Group, CAcct)

2. G ⇒ C ECG([Group, Detail, Identity,
CC(CAcct, AcctVN), Times-
tamp]G, AcctVN)

the credential) corresponds to the account number
actually being used.

The Detail field allows a credential server to
include additional information in a format specific to the
credential server. This would allow, for example, a
multiple-journal subscription credential server to issue a
single credential for all subscribers, using the Detail
field to specify which journal subscriptions the customer
holds.

Credentials can also be used by cooperating
merchants to restrict information access. In this way,
merchants only sell to approved customers: those who
can present a certain credential. This offers a solution
for merchants who, for example, can restrict distribution
of sensitive documents only to individuals whose
credentials verify a need-to-know.

5.2. Access Control Mechanism

As noted in [7], proxies can implement access control.
An account owner (such as a parent) may have a
restriction on the account such that no purchases can be
completed by a given customer (such as a child) without
approval from an access control server. This allows
different organizations to provide access control
services. For example, both the PTA and a church group
could offer competing access control services.

To obtain an access control authorization, a
customer C must present details of a specific transaction
to the access control server A, who grants a single-use
proxy authorizing the given transaction. The protocol is
as follows:

The item returned in step 2 is the Authorization
item used in step 5 of the transaction protocol (see
Section 3.4).

6. Complaints and Failure Analysis

The NetBill protocols are robust against failures, and
retain essential information to protect customers and
merchants against fraud. Our system can respond to
complaints made by either the customer or the
merchant. In this section, we examine those complaints
and discuss how they are handled. First, we look at

1. C ⇒ A TCA(Identity), ECA(M, ProductID,
Price, CC(EK(Goods)), EPOID,
CAcct)

2. A ⇒ C ECA(EA-PRI(CC(Identity, M, Pro-
ductID, Price, CC(EK(Goods),
EPOID, CAcct)))

potential customer complaints, and then at potential
merchant complaints.

6.1. Customer Complaints

6.1.1. Incorrect or Damaged Goods

• “This isn’t the product I specified.”

• “The goods arrived broken or incomplete.”

• “The decryption key I was given was wrong.”

In the event that the decrypted goods do not match
the product description as given by the merchant, the
dispute must be brought to the attention of a human
arbitrator, who will determine the validity of the
customer’s complaint and, if appropriate, direct the
merchant to provide a refund.

The arbitrator uses the registered copies at NetBill
of the customer’s signed EPO containing a
cryptographic checksum of the encrypted goods, and the
merchant’s signed endorsement indicating his
agreement with that cryptographic checksum and
attesting to the decryption key. The arbitrator compares
these registered values against the copy of the encrypted
goods and decryption key provided by the customer in
her complaint. The arbitrator can easily determine
whether the purported problem with the goods is the
fault of the merchant or an error by the customer.

• “The goods are not as advertised.”

The protocol can be used to demonstrate whether
the goods delivered are the goods ordered, as shown
above. However, if the customer was induced to buy the
goods by false advertising claims, this protocol provides
no help. The customer must lodge a complaint with the
Federal Trade Commission or other appropriate agency.
It is important for billing servers to monitor these
charges and assist with their resolution.

• “I bought this but never got the decryption key.”

This complaint may be answered by directing the
customer to perform a status query (see Section 3.5) to
retrieve the key. In the event that the decryption key
does not yield a satisfactory decryption, the dispute will
change to one of the other complaints listed.

6.1.2. Transaction Disputes

• “I agreed to pay $X, but was charged $Y instead.”

• “I’ve only bought $X worth of goods, but my bal-
ance has gone down by $Y.”

Because the NetBill server has a signed EPO from
the customer, it can prove that the customer approved

the purchase(s) for $Y. In the event that the NetBill
server cannot provide the signed EPO(s), the customer’s
money is refunded. This protects customers against
fraud by the operators of the NetBill server.

• “I never bought this, but it appears on my state-
ment.”

• “I told the merchant no, but he put it through any-
way.”

Because the NetBill server has signed EPOs from
the customer, it can prove that the customer approved
the purchases. In the event that the NetBill server cannot
provide the signed EPOs, the customer’s money is
refunded.

• “You told me this transaction didn’t go through, but
I got charged anyway.”

Because the NetBill server provides signed receipts
even for failed transactions, the customer can present
these receipts to prove that the transactions were
declined. If the customer cannot produce these receipts
and the NetBill server claims to have approved the
transactions, it must provide the decryption keys for the
information goods (via status query exchange).

6.2. Merchant Complaints

6.2.1. Insufficient Payment

• “I sold $X worth of goods but only received $Y.”

• “You told me this transaction went through, but I
never got paid for it.”

In all transactions, the NetBill server provides a
signed receipt indicating the success or failure of a
transaction. In the event that a merchant is not properly
credited, he can prove the error by presenting these
signed receipts.

7. Conclusion

This paper has presented the NetBill protocols. These
protocols have introduced new methods for certified
delivery, access control, user certificates, pseudonyms,
and their integration. These protocols are designed to
provide very high degrees of security and flexibility
while still providing good efficiency. However, this
paper does not represent final work; it is a snapshot of
our current design. We plan to test our design in a major
wide-scale pre-commercial beta test of the NetBill
system beginning in 1996.

The NetBill project is committed to open protocols.
We are eager to work with others to make our protocols

as widely applicable and interoperable as possible, and
welcome comments.

For more information on the current state of the
NetBill project, we invite readers to consult our WWW
page at http://www.ini.cmu.edu/netbill/.

Acknowledgements
We received valuable contributions in technical
discussions of the protocol from Thomas Wagner.

References
[1] Alireza Bahreman and J.D. Tygar. “Certified

Electronic Mail.” In Proceedings of the Internet
Society Symposium on Network and Distributed
System Security, pages 3–19, San Diego, CA,
February 1994.

[2] M. Bellare, et al. iKP Family of Secure
Electronic Payment Protocols.
http://www.zurich.ibm.com/
Technology/security/extern/
ecommerce

[3] Benjamin Cox. Maintaining Privacy in
Electronic Transactions. Information Networking
Institute Technical Report TR 1994–8, Fall 1994.

[4] Stephen Kent. RFC 1422: Privacy Enhancement
for Electronic Mail: Part II: Certificate-Based
Key Management. Internet Activities Board
Request For Comments 1422, February 1993.

[5] National Institute of Standards and Technology.
FIPS 180: Federal Information Processing
Standard: Secure Hash Standard (SHS). April
1993.

[6] National Institute of Standards and Technology.
FIPS 186: Federal Information Processing
Standard: Digital Signature Standard (DSS).
May 1994.

[7] B. Clifford Neuman. “Proxy-Based
Authorization and Accounting for Distributed
Systems.” In Proceedings of the 13th
International Conference on Distributed
Computing Systems, pages 283–291, May 1993.

[8] R. Rivest, A. Shamir, L. Adleman. “A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems.” In Communications of the ACM,
21(2), February 1978.

[9] Bruce Schneier. Applied Cryptography:
Protocols, Algorithms, and Source Code in C.
New York: John Wiley & Sons, 1994.

[10] Marvin Sirbu and J.D. Tygar. “NetBill: An
Internet Commerce System Optimized for
Network Delivered Services.” In IEEE Personal
Communications, pages 6–11, August 1995.

[11] Alexander Somogyi, Thomas Wagner, et al.
NetBill. Information Networking Institute
Technical Report TR 1994–11, Fall 1994.

[12] Jennifer G. Steiner, B. Clifford Neuman and
Jeffrey I. Schiller. “Kerberos: An Authentication
Service for Open Network Systems.” In USENIX
Winter Conference, pages 191–202, February
1988.

[13] J. D. Tygar. “Atomicity in Electronic Commerce”
(invited paper), to appear in ACM/IEEE 21st
Conference on Principles of Distributed
Computation, 1996.

