In Proceedings of the 1994 IEEE Symposium on Security and Privacy, May 1994, pp. 2-13

A Model for Secure Protocols
and Their Compositions
(extended abstract)

Nevin Heintze* and J. D. Tygar!
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890.

Email: nch@cs.cmu.edu, tygar@cs.cmu.edu

Abstract

We gwe a formal model of protocol security. QOur
model allows us to reason about the security of pro-
tocols, and considers issues of beliefs of agents, time,
and secrecy. We prove a composition theorem which
allows us to state sufficient conditions on two secure
protocols A and B such that they may be combined
to form a new secure protocol C. Moreover, we give
counter-examples to show that when the conditions are
not met, the protocol C may not be secure.

1 Introduction

What does it mean for a protocol to be secure? How
can we reason about secure protocols? If we combine
two existing protocols into a common protocol, what
can we say about the security of the new protocol?

This paper develops a family of tools for reasoning
about protocol security. We adopt a model-theoretic
approach to defining properties of protocol security.
This allows us to describe security properties in much
greater detail and precision than previous frameworks
for reasoning about protocol security.

One of the most advanced previous works in this
area is the paper by Burrows, Abadi, and Needham
[8], which presents a proof theoretic (or rule-based) ap-
proach to reasoning about security properties of pro-

*Supported in part by IBM through a graduate fellowship,
and in part by the Defense Advanced Research Projects Agency,
CSTO, under the title “The Fox Project: Advanced Develop-
ment of Systems Software”, ARPA Order No. 8313, issued by
ESD/AVS under Contract No. F19628-91-C-0168.

tSupported in part by ARPA contracts F33615-90-C-1465
and F33615-93-1-1330, NSF Presidential Young Investigator
Grant CCR-8858087, matching funds from Motorola and TRW,
a contract from the US Postal Service, and by an equipment
grant from IBM.

tocols. (See also [2].) In contrast, we develop a model
theoretic definition of security from first principals.
This model provides a comprehensive formal descrip-
tion of the possible actions and interactions among
agents, and includes notions of an agent’s beliefs and
knowledge about messages. (Messages include keys,
nonces, secrets, text, names, etc.) Given these basic
notions, we then define protocol security in term of
preservation of properties: first, we can define what
it means for a given state to be secure; next, we can
reason about protocols that maintain this property.

Our model allows us to reason about time in pro-
tocols in a concrete manner. This means that we do
not need to rely on a broad notion of “freshness”, but
that we can define freshness in terms of more primitive
concepts.

The highlight of the paper is an account of composi-
tions of protocols. Suppose that we have two protocols
A and B which we wish to use together to form a new
composite protocol C. For example, A may call B as a
sub-protocol, or A and B may be concatenated, or A
and B may run simultaneously as co-protocols. If A
and B are secure, under what conditions is C secure?
We state sufficient conditions on A and B guarantee-
ing the security of the composite protocol C. Moreover,
we give counter-examples to show that when the con-
ditions are not met, the protocol C may not be secure.

We split the notion of security into two parts: we
define the secret-security and the time-security of pro-
tocols. By secret-security, we mean that messages that
are believed to be secret are never revealed. By time-
security, we mean that stale messages can not be re-
played. Although these properties are easy to state in-
formally, a mathematical account has some subtleties
of the definition, and depends on the notion of time.
Our paper considers these properties in a wide frame-
work which makes them applicable to any reasonable

notion of time.

Time has received increasing attention in the lit-
erature on analysis of security protocols. One of the
first papers to include reasoning about time was [8§],
where one could reason about the freshness of nonces
and messages. However the notion of time here was
somewhat limited; protocols were static in the sense
that one could only consider a single “run” or a pro-
tocol. The idea of considering instances of protocols
and potential interactions between these different in-
stances has subsequently been addressed in a number
of works including [5, 18, 19]. In particular, [18, 19]
consider using a logic equipped with temporal opera-
tors to express and reason about the temporal prop-
erties of protocols. While some of these works use
model theoretic constructions to clarify and explain
their logic (see e.g. [2]), they have been essentially
proof theoretic in nature.

In contrast, this paper considers a purely model the-
oretic view. While model theoretic approaches have
been considered in the past (typical examples include
[9, 14, 16]), few have incorporated the issue of time.
An exception to this is [4], where agent histories are
used to record message sends and receives. However,
a number of key issues relating to time (such as replay
of stale message) are not addressed. To summarize,
the following aspects of our paper are new:

e A detailed development of an elementary model
theory of agent interaction that provides an inde-
pendent definition of security.

e A very general treatment of time (in particular,
there are no assumptions about global synchro-
nization of time).

e A composition theorem on secure protocols.

2 Messages, Keys and Encryption

We begin by considering the basic notions of mes-
sages and encryption. For this paper, we will only
consider security properties that are independent of
the underlying message representation and encryption
scheme. In essence we assume an idealized model of
message representation and encryption. Specifically,
we assume that messages are independent; that is,
having one message does not give any information
about another message. Second, we assume that the
only way to obtain any information from an encrypted
message 1s to have the appropriate key. This is often
referred to as “perfect encryption” in the literature

[6, 10).

Of course, in general, there may be important inter-
actions between a protocol and the underlying encryp-
tion scheme used in its implementation. In particular,
if an encryption scheme is amenable to a probabilis-
tic analysis, then it would be desirable to extend the
analysis to any protocols using the encryption scheme.
However, such an analysis of a protocol is likely to be
dependent on the specific properties of the encryption
scheme, and hence will have to be done on a case by
case basis.

A more abstract notion of security can be obtained
by assuming that the underlying encryption scheme
1s “perfect”. This assumption essentially leads to a
lower bound analysis: if a protocol is not secure un-
der the perfect encryption assumption, then it will be
insecure regardless of the encryption scheme used. In
practice, this has lead to the discovery of a number
of problems in published protocols. Another view of
the perfect encryption assumption is that it provides a
way to decompose the problem of analyzing a protocol
into two sub-problems: (a) an analysis of the protocol
that focuses on the intrinsic security properties of the
protocol by ignoring details of the encryption scheme
used, and (b) an analysis of how the encryption scheme
interacts with the protocol. This paper is concerned
with the former problem.

To understand the perfect encryption assumption,
first let B denote a set of basic messages, which
shall represent the keys, the nonces, and the non-
decomposable! message of the model?. Notationally,
we shall use K to denote elements of 5 that are used
as keys, and N to denote those used as nonces. Mes-
sages are defined to be the result of composing and
encrypting basic messages. Specifically, a message M
is either

e a basic message;
o {M}k, the encryption of M with K, or

o (My,..., My), the composition of My,..., M,.

where M, My, ..., M, are messages, n > 2, and K € B
is a key. Now, given a set of message S, an agent
has a limited ability to decrypt and de-compose these
messages into their constituents and also built up new
messages by encryption and composition. Specifically,
define S*, the set of messages deducible from S, to be
either (i) any element of S, (ii)> M such that {M} g

1 That is, messages that are not encryptions or compositions of
other messages.

2We will assume that each agent A has a publically known name
(also denoted A) which is a basic message.

3For a public key system, this clause would be modified. Specif-
ically, where K¢ denotes the key which is the complement of K, we

would have: M such that {M}x and K€ are in S*.

and K are in S, (iii) M; such that (My,..., M,) is
in 5%, (iv) {M}x such that M and K are in S*, and
(v) (My, ..., My) such that each M; is in 5.
The construction presented here can also be viewed

as a free algebra construction over the generators B,
tupling and encryption, with auxiliary operations, call
them decrypt and decompose,, ¢ > 1, which satisfy the
following equations:

decompose;(My, ..., Mp) = M;

decrypt (K, {M}g)=M

1<i:<n

3 Traces and Some Basic Assumptions

Let A be the (finite) set of all agents of interest
(that is, A includes not only the principals of the
protocol at hand, but also any adversaries). Fach
agent shall be viewed as an automaton, with a no-
tion of “state” (including information about beliefs
and nonces), and a set of legal transitions (for the
principals of a protocol, these transitions must be in
accordance with the protocol; for adversaries, the pos-
sible transitions are more permissive).

As a first step towards formalizing such a view of
agents, we define a trace, which 1s a record of agent
interactions (message sends and receives) as well as
other agent actions such as the generation and expiry
of nonces, keys and secrets. These basic interactions
are modeled by events, which take one of the following
forms: send (M), indicating that message M is sent by
an agent; receive(M), indicating that message M is re-
ceived by an agent; generate(M), indicating that the
basic message M is generated by an agent (M may
be either a nonce or a key); and ezpire(M), indicating
that the message M has become stale. Events can be
subscripted if necessary to indicated different occur-
rences of the same event. This is needed, for example,
if an agent resends a message.

Intuitively, a trace can now be defined as a specifi-
cation of a set of events for each agent A in A. How-
ever, we have omitted a crucial element — time. The
simplest way of introducing time is to associate a time
(for example, a real number) with each event. Un-
fortunately, such an approach assumes the existence
of a global clock. In an insecure networked environ-
ment, such an assumption is at best restrictive, and
at worst unrealistic. Instead, we shall use a more ab-
stract time that 1s compatible with systems of unsyn-
chronized clocks, as well as non-standard notions of
time such as Lamport clocks [15]. This is based on a
very minimal assumption about time: each agent has
a local notion of “before” and “after” that defines a
total order on each agent’s events. Then:

Definition 1 (Traces) A trace T is an A indezved
collection of sets of events such that each set 1s
equipped with a total order. |:[

We use T}y to denote the set corresponding to the agent
A, and T to denote the union of all of the Ty. The
total order on T4 is denoted by <4; if e <4 ¢’ then
we say that e precedes e¢/. We write e <4 € if either
e <4 € ore=c¢. For any event e € Ty, we write
suce(e) to denote the successor of e if it exists; that
is succ(e) is the earliest event in {e’ : e <4 €e'}. Note
that a trace says nothing about the ordering of events
between agents.

The above definition does not admit traces in which
two events happen simultaneously. Such a possibil-
ity could be accommodated by replacing the notion
of total order by the more general notion of a total
pre-order. However, 1t can be shown that the extra
structure afforded by simultaneous events i1s inconse-
quential for the security properties identified in this
paper, and so, for simplicity, we shall use total orders.
(This bears a superficial resemblance to the treatment
of time in the model theory of temporal logic [3, 7, 1].)

We remark that an agent typically sends a message
to some designated recipient (such information may
be implicit in a protocol, or explicit in the plaintext
or encrypted parts of messages). However, we shall
assume that the communication medium is insecure,
and so we shall not guarantee that a message is re-
ceived only by its intended receiver. Rather, we shall
treat messages sends as broadcasts to the world; any
agent can receive any message that is sent. Further,
we make no assumptions about the correct behavior
of the network — messages may be completely lost,
received by only some agents, or even duplicated due
to network failures and errors.

The above sketch of the definition of trace is overly
permissive: it admits traces of agent interactions that
are not physically possible. We now address three as-
pects of this issue.

First, between any two events there lie only a finite
number of events. This can be justified on physical
grounds; it is also necessary for technical reasons.

Definition 2 (Bounded) A {race T is bounded if
for all agents A and all pairs of events e; and es n
Ty, the set {e :e1 <4 e <g ea} is finite. []

Second, 1t is clear that if a message M is received by
an agent, then some agent must have previously sent
M. Clearly there must be some consistent way of in-
terleaving the message traces from the various agents
such that each message receive is preceded by a mes-
sage send. Moreover, we require that this interleaving
must be “fair”.

Definition 3 (Serializable Traces) A trace T is
serializable if there ts a total order < on T such that

(a) the ordering < conservatively extends the order-
ings <4, A €A, in the sense that if e <4 €’ then
e<e,

(b) each event receive(M) in T is preceded by an event
send(M), and

(¢) for all pairs of events e1 and e, the set {e:e; <
e < e} is finite.]

Third, we require that each event of the form
generate(M) creates a new basic message.

Definition 4 (Message Generation) A trace T
respects message generation if, for all distinct events
of the form generate(My) and generate(Msz), the mes-
sages My and M5 are distinct. |:[

In what follows, we use the term trace to mean a
trace that is serializable, bounded and respects mes-
sage generation.

4 Protocols and the Untimed Model

The definition of trace (and its associated assump-
tions) captures a notion of agent interaction in which
agents are completely free to send and receive mes-
sages. This notion does not take into account the con-
straints on interaction imposed by protocols. A pro-
tocol typically identifies a subset of agents (the prin-
cipals of the protocol), and specifies how these agents
should interact with other agents. Such a specification
is usually described as a sequence of message sends and
receives. For example, the following is a description of
variant of the Otway-Rees protocol [17].

A— B: A,B,{NA,B}KA

B —S: {NA’B}KAa{NBaA}KB

S — B:{Na,B,Kap}rk,, AN, A, KaB} iy
B — A: {NA,B,[(AB}KA

Although this description gives explicit information
about the form of messages to be sent, a number of
side conditions are either implicit or unspecified. First,
it 1s implicitly specified that the nonces used must be
fresh. Second, 1t is implicitly specified that the keys
used are appropriate secret keys. Third, the protocol
is a collection of rules describing how an agent should
send and respond to messages; that is, the protocol is
not just the sequence of four messages, but rather a
specification that:

e to establish a session key with B, A should send
the first message of the protocol,

e if B receives this message, then B should respond
with the second message;

o if the server S receives the second message, then S
should send out a new secure key using the third
message;

e if B receives the third message, then B should
accept the new key as a secure key for A-B con-
versations and also repond with fourth message,
and

e if A receives the fourth message, then the protocol
is complete and A should use the new key for
conversations with B.

Moreover, the variables Ny, Ng, K4, Kpg, ... arereally
parameters ranging over nonces and keys etc. That
is, a protocol is really a template for “transactions”
between agents. In general, this template will be in-
voked many times. It is therefore important to model
multiple (and possibly interleaved) invocations of the
protocol; each instance will typically involve different
values for the parameters.

In summary, a protocol specifies what an agent
should do next, based on (i) what the agent currently
believes (about keys and nonces) and (ii) an event
(such as the receipt of a message).

We first formalize the notion of beliefs. A beliefis of
the form shared(S, M) where S is a set of agents and
M is a message, or of the form fresh(M) where M
is a basic message. The first belief indicates that the
agent considers M to be a message that is only known
by the agents in S. The second belief indicates that
the agent considers M to be fresh. Next, we define the
messages that an agent knows about: 1t is from this
set that an agent can send messages and construct
new beliefs. Let STATE be a set of beliefs and events
(intuitively, this represents an agent’s current set of
beliefs, and the events that it has experienced thus
far). Define known(STATE), the messages that can be
constructed from the information present in STATE, to
be the following set:

. R *
STATE contains either

M fresh(M), shared (S, M), UA
generate(M), or receive(M)
That is, known(STATE) consists of messages that ap-
pear in beliefs, messages that have been received or
generated, messages used for naming agents, and all
messages that can be derived from the above messages.
Now, given an agent A, a set of beliefs and a set
of events, a protocol specifies a set of possible actions

that an agent can take. Such actions include sending
messages and adding new beliefs to the agent’s cur-
rent beliefs (for example, adding beliefs about newly
established keys). More formally:

Definition 5 (Protocol) A protocol is a pair (P,§)
where P C A 1s a set of agents indicating the princi-
pals of the protocol, and 6 is a collection of functions
(64, A€ P). Each function 64 maps any set consist-
ing of receive events, send events®, and beliefs (these
represent the current state of the principal A) into a
set of allowed actions for A. Specifically, if STATE s
the set input to 64, then 64 (STATE) is a set consisting
of the following two kinds of elements:

(a) beliefs of the form shared

(S, M)
where M € known(STATE)

, or

(b) events of the form send(M)
where M € known(STATE). []

Elements of the form (a) in 64(STATE) indicate new
beliefs that A should add to its set of current beliefs.
Elements of the form (b) indicate messages that A
should send. In this paper, we shall assume that each
function 64 1s monotonic. Note that we have not in-
cluded generate and expiry messages in the notion of
“state” used in the above definition. The meaning of
these events shall be defined explicitly in the model,
and shall be independent of the protocol at hand.

A trace 1s faithful to a protocol if each principal
behaves in accordance with the protocol. Now, the
behavior of an agent includes message sends as well as
the way an agent manages its beliefs. The manage-
ment of beliefs not only includes the establishment of
new beliefs (as specified by the protocol), but also the
expiry of “stale” beliefs (as indicated by events of the
form expiry(M) in the trace). To formalize this, we
must track the beliefs of an agent at each “point in
time”. In general, an agent’s beliefs are essentially an
arbitrary function of time. However, we have thus far
strived to avoid introducing an explicit notion of time.
To maintain this level of abstraction, we observe that
it 1s only necessary to know an agent’s beliefs at each
event (we shall return to this point later). Hence, in
the context of a protocol (P, §), we define:

Definition 6 A belief function for a trace T is a
mapping from T nto finite sets of beliefs. If e € Ty,
then beliefs(e) is the (finite) set of beliefs held by agent

A at event e.

4The functions §4 are usually independent of the send elements
in STATE, since protocol actions rarely depend on previous message
sends.

Before presenting the definition of model, we need
some additional notation, in the context of a belief
function belief and some event e in Ty. Define state(e),
the “state” of agent A at event e, to consist of the
beliefs in beliefs(e) as well as the send and receive
events that appear in {e/ € Ty : ¢ <4 e}. De-
fine BELIEFSs, the set of beliefs involving M, to be
{fresh(M)} U {shared(S,M) : S C A}

Definition 7 (Model) A model for a protocol (P, §)
is a pair (T, beliefs) where T is a trace and beliefs is a
belief function for T'. Moreover, for each agent A and
each ecvent e €Ty, if A€ P then

(al) if e is expire(M) then:
beliefs(suce(e)) = beliefs(e) — BELIEFS py
otherwise

beliefs(suce(e)) D beliefs(e);
(a2) if e is generate(M) then, for some set S C A,

beliefs(suce(e)) C beliefs(e) U {S}Zijz((g?\b };
(a3) if e is send(M) or receive(M) then
beliefs(suce(e)) C beliefs(e) U ba(statea(e)), and

(af) if e is send(M) then e € 64(state4(e)).
and if A& P then:

(b) For all e € T, if e is send(M) then M €
known(stateq(e)) []

In items (al), (a2) and (a3), if succ(e) does not ex-
ist, then the condition is vacuously true. Ttem (b) of
the definition 1s the only condition that must be true
for non-principals. It specifies that a non-principal
can only send messages that it knows about® — in
particular an adversary cannot “guess” other agent’s
secrets. Items (al-ad) are only required to hold for
principals of the protocol. Ttem (al) states that dele-
tion of beliefs must correspond to an expiry message.
Ttem (a2) states that the only possible effects of a gen-
eration event are that beliefs of the form fresh(M)
or shared(S, M) are added to the agent’s belief set.
Moreover, only one belief of the form shared(S, M)
may be added. Ttem (a3) states that for the remain-
ing events (message sends and receives), agent beliefs
are updated according the protocol. Finally, item (a4)
states that the messages sent by a protocol principal
must be in accordance with the protocol. Note that, in
a particular model, an agent is not forced to do every
action outlined by the protocol. Rather, the protocol

5The corresponding restriction for principals is imposed via a
combination of (a4) and the definition of protocol.

sets a boundary on what an agent can do. Within this
boundary, an agent is free to choose what actions it
will perform — this choice is typically dictated by fac-
tors such as agent workload, the need to communicate,
how recently a message has been sent (for example, at
some stage a message may have to be resent because
it has been lost).

We now consider the validity of beliefs. The truth of
beliefs of the form fresh(M) is tied up with the notion
of the ezpiry of beliefs, and this shall be considered
in the next section. For the remainder of this section,
such beliefs shall be considered universally valid. The
truth of beliefs of the form shared(S, M) is dependent
on which agents know about M. In essence, such a
belief is true if M € known 4(e) implies that A € S.

Definition 8 (Valid Beliefs) Let (T, beliefs) be a
model for protocol (P,8). A belief b is valid at some
event e € Ty if it is either of the form fresh(M), or
of the form shared (S, M) such that if M € known 4(e)
then Ae S, []

This defines a notion of pointwise validity of beliefs,
and this provides a basic element of our definition of
protocol security. However, to obtain a meaningful
notion of protocol security, we cannot just define that
all beliefs must be valid at all events in all models for
the protocol. This is inappropriate for a number of
reasons. First, we are only interested in the beliefs of
principals, since a protocol does not give any assur-
ances about what happens to non-principals. Second,
no protocol can provide any guarantees about security
when security has already been compromised. Instead,
we shall define protocol security in terms of preserva-
tion of properties: a protocol shall be considered se-
cure if, whenever it started in an “initially” secure con-
figuration, all subsequent behavior is secure. To for-
malize this, we first define what 1t means for the model
to be secure at some “time”. This is achieved using
snapshots, which define cross-sections of the model.

Definition 9 (Snapshots) In the context of a model
(T, beliefs), a snapshot s is a subset of T that contains
exactly one event (denoted s(A)) from each set Ty. A
snapshot s 1s secure if, for all principals A of P, each
element of beliefs(s(A)) is valid at each event in s.

Next we formalize what 1t means for a model to be
initialized in a secure state. In the context of a model
M a belief b 18 an wnitial belief if, for some agent A
and event e € Ty, it is the case that b € beliefs(e),
and for each event ¢/ <4 e, it is also the case that
b € beliefs(e’). Intuitively, an initial belief is one that

an agent 1s given at the start of time, as opposed to a
belief that is established by some action of the pro-
tocol. Initial beliefs include the starting keys that
agents use for talking to servers. Now, the notion
of a model being started in an initially secure state
shall be realized by placing properties on the set of
initial beliefs. Clearly the initial beliefs must be “ini-
tially valid”. Furthermore, they must also be consis-
tent in the sense that beliefs about a message must
not conflict. For example, if for some message M, an
agent Ay has the initial belief shared(Ay, By, M) and
the agent Ao has the initial belief shared(As, Ba, M),
then problems will arise when A; shares M with By
and A, shares M with Bs. In essence, we prevent this
situation by requiring that there is at most one kind
of initial belief about each message. However, in the
case of beliefs involving messages made up from other
messages, this requirement is problematic to specify.
We therefore require that initial beliefs must not con-
tain other messages; that is, initial beliefs must only
involve basic messages.®

Definition 10 (Initially-Secure Models)

A model (T, beliefs) is initially-secure if (a) there is
a snapshot s such that all initial beliefs of principals
are valid al all evenis in {e : e < ¢’ for some ¢’ € s};
(b) all initial beliefs are of the form shared(S, M) or
fresh(M) where M is a basic message that is not gen-
erated by some event in T, and (¢) if shared(S1, M)
and shared(Sz, M) are both initial beliefs then Sy =
Ss.

Note that the notion of “initially-secure” is defined
not by considering security at a specific snapshot, but
rather security at events in and preceding the snap-
shot. This is required because there may be messages
in “transit” that are not represented by a single snap-
shot — and such messages may clearly influence secu-
rity properties. Finally, we can define protocol security
in terms of the preservation of security:

Definition 11 (Secret-Security)

A model (T, beliefs) is secret-secure if, for all prin-
cipals A of P and for all ¢ € Ty, each element of
beliefs(e) is valid at each event in T. A protocol (P,6)
is secret-secure if all initially-secure models for (P, 6)
are secret-secure. |[]

This definition provides a very rudimentary notion
of protocol security: in essence, a protocol is secure
according to this definition if agents do not reveal se-
crets. In the next section, we enrich this definition

8This restriction can be weakened somewhat; however since ini-
tial beliefs are typically used only to establish starting keys, this
does not appear to be necessary.

with a mechanism to reason about the freshness of
nonces. In doing so, we obtain a definition of pro-
tocol security that supports reasoning about security
compromises that are based on the replay of stale mes-
sages. We conclude this section with a discussion of
the definitions given thus far.

First, consider the definition of traces. In general,
the sets T4 that make up a trace T' are unbounded in
both directions. That is, there is no requirement for
an agent to have a “start” or “end” event. In many
contexts however, a protocol is started in some initial
state. In this case, it is reasonable to restrict traces so
that each set T4 has an initial event that precedes all
other events. Models that are constructed from such
traces shall be called directed models. This subclass
of models gives rise to a modified definition of secret-
security:

Definition 12 (Directed Secret-Security)

A protocol s directed secret-secure if all initially-
secure directed models for the protocol are universally
secure. []

This alternative definition turns out to be strictly
weaker” than the previous definition (Definition 11).
It also has certain technical advantages, which shall be
employed when we consider composition of protocols.

Second, consider belief functions. Recall that their
purpose is to capture the beliefs of each agent at each
point in time. However, instead of using a concrete
notion of time, we chose to just describe the beliefs at
each event. In essence, we use events themselves to
reason about time. We now argue that this results in
no loss of generality. The main simplification afforded
by the use of events to index an agent’s belief sets is
that all information about what happens to an agent’s
beliefs between two events is ignored. Now, such in-
formation does not affect what messages an agent can
send, because the only beliefs that are relevant to mes-
sage sending are those current at the time of the send
event. Hence, the only possible impact of the new
structure is that there may be new beliefs that appear
after one event and disappear before the next event.
However, this cannot happen, because the only mech-
anism for an agent to drop a belief is via an event of
the form expire(M).

Third, consider the behavior of beliefs of the form
shared(S, M). If such a belief is held by a principal A4
at some event e in an initially secure model. In the
context of a secure protocol, shared(S, M) is valid at
all events in the model. Now, for each agent A" # A,
and for each event ¢/ € Ty, there is a snapshot s that

7However, the two definitions coincide for most “reasonable”
protocols.

includes both e and ¢’. Since s must be secure, it
follows that shared(S, M) must be valid at ¢’. Hence,
shared (S, M) is valid at all events in T—T4. Moreover,
since shared(S, M) is valid at e and M € knowna(e),
it must be the case that A € S. Hence shared(S, M) is
valid at all events in Ty4. Tt follows that shared(S, M)
must be valid at all events in 7. To summarize, given
an initially-secure model of a secure protocol, all be-
liefs held by principals of the protocol are true at all
events in the model. In other words, beliefs of princi-
pals are universally valid.

One implication of this property is that if a prin-
cipal holds a belief shared(S, M) at some event in
the model, then only agents in S can ever see the
message M. In other words, when holding a belief
about secrecy, an agent must know all of the agents
that will share the secret. While this seems like a
useful property to require, it is arguably restrictive.
For example, it is not possible to add a mechanism
to the model that allows an agent to hold a belief
of the form shared({A}, M) and then share the se-
cret M with another agent B and update its belief to
shared({A, B}, M'). We remark that the main feature
of our model that is responsible for the “universal va-
lidity” property is the abstract treatment of time. In
particular, no assumptions are made about synchro-
nization between agents.

5 Beliefs and Time

The treatment of time is one of the most impor-
tant aspects of the analysis of a protocol. Typically
the security properties of a protocol rely on the gener-
ation and expiration of nonces to insure that certain
information is fresh. Furthermore, it is expected that
propositions such as “this key is a secure key” do not
hold forever, but are at some time considered to expire
when the key becomes stale.

First, consider the behavior of nonces. Once gener-
ated, nonces typically have some pre-determined finite
lifetime. For example, a finite life 6 may be specified
so that if a nonce is generated at some time ¢, then
it 1s only considered fresh until time ¢ + 6. Of course,
6 may vary from nonce to nonce. Instead of commit-
ting to such a specific mechanism, we shall employ a
very simple and abstract characterization: each nonce
eventually expires. This is formalized by requiring
that if an agent holds a belief of the form fresh(M) at
some event, then there exists a later event of the form
expire(M). Since the only mechanism for an agent to
add fresh(M) to its set of beliefs is via an event of the
form generate(M), and each such event is guaranteed

to generate a new basic message, it follows that each
nonce eventually expires and is never again considered
fresh.

Now consider beliefs held by agents. Again, an im-
portant aspect of their behavior is that they have a
limited life. One difference between nonces and beliefs
is that a nonce is believed to be fresh simply on the
basis of when it was generated. On the other hand,
beliefs are established on the basis of the protocol and
the messages that have been received. This means
that a belief may be established at some time, con-
sidered to be stale at some later time, and then be
re-established at yet another later time. An appropri-
ate expiry condition for beliefs is: if an agent holds
a belief of the form shared(S, M) at some event, then
there exists a later event of the form expire(M). In
particular, this implies that the only way for an agent
to maintain a belief indefinitely is for the belief to be
enabled indefinitely. These ideas lead to the definition
of time-secure.

Definition 13 (Time-Secure) A model for a proto-
col P is a timed model if for each principal A of P and
event e € Ty, if belicfs(e) contains a belief of the form
shared(S, M) or fresh(M) then there exists an event
e’ > e such that e is expire(M). A timed model is
time-secure if, for all principals A of P, if b 1s a belief
that is held by A at some event, then there is an cvent
e € Ty such that b is not held at any event following
e. A protocol P 1s time-secure if each initially secure
timed model for P is time-secure. |:[

We now discuss why this captures an important notion
of security. An important failure mode of a protocol is
where an adversary replays sequences of old messages
to attempt to convince a principal of the validity of
a belief. However, in certain circumstances, this may
not be considered insecure. For example, suppose an
agent A sends a message M to another agent B that is
intercepted by an adversary Z and does not reach B.
Soon afterwards Z resends M to B. Now, from B’s
point of view, there is no essential difference between
this situation and a situation where network latency is
abnormally high. In other words, that fact the Z was
able to replay a previous message to convince B of a
certain belief b was not significant in this case.

As another example, consider a modification of the
above scenario. Suppose this time that B receives the
message the first time and then believes b. At some
later time B then discards the belief 5. Then sup-
pose that Z resends M, and on receiving M, B re-
establishes its belief in 6. (This may happen for exam-
ple if the time-out interval for the belief b was signifi-
cantly shorter than the time-out interval for nonces).

This situation does not differ in an essential way from
the situation where network problems result in two
copies of M being received by B, one significantly be-
fore the other, and so again this does not indicate pro-
tocol insecurity.

Contrast these two examples with the situation
where 7 is able to replay M indefinitely to convince
B of b (as would be the case if M did not contain any
nonces). It is exactly the distinction between these two
kinds of behavior that the above definition of security
1s seeking.

Protocol security can now be defined by combining
the definitions of secret-secure and time-secure:

Definition 14 (Protocol Security)
A protocol is secure if it is both secret-secure and time-
secure. []

We now provide some justification for our use of a
very abstract notion of time. Clearly, from the point
of view of generality, it is desirable to avoid includ-
ing a specific time framework in the definition model.
However in doing so, we must then address the issue
of whether the resulting definition is of general appli-
cability, because the notion of security itself may be
dependent on the notion of time. In other words, we
must consider the relationships between an appropri-
ate notion of security in the context of a specific time
framework and the definition of security obtained by
our more abstract definition of model.

We believe that our definition of security is essen-
tially equivalent to any reasonable definition in the
context of a specific notion of time. In other words,
we claim that our definition captures the essence of
what it means for a protocol to be secure. In an ear-
lier report [13], we provided evidence for this assertion
by comparing three models with different notions of
time: one was an early version of the model presented
in this paper, and the other two differed only in that
they incorporated specific notions of time.

We conclude this section by proving that a number
of security properties are undecidable. We conjecture
that this result extends to cover all models with similar
features to our model. However, it appears likely that
there are interesting sub-classes of protocols that can
be defined by syntactic restrictions on the definition
of protocol, for which security is decidable.

Theorem 1 Given a protocol P, the following ques-
tions are undecidable:

(a) Is P secret-secure?

(b) Is P time-secure?

. A
b B:

shared({A, B}, K), shared({A, B}, M) — send({(A, M)} k)
shared({A, B}, K), receive({(A, M)} k) — shared({A, B}, M)

A: shared({A, B}, K) — send({(A, M)}x)
pa B: receive({(A, M)}k), shared({A, B}, K), shared({A, B}, M') — send({(B, M)} k)
A: shared({A, B}, K), (receive{(B, M)} k) — shared({A, B}, M)

Figure 1: Non-compositional Protocols I: messages of the form {(A, M)}k have incompatible uses.

Proof: A protocol can essentially be viewed as a
rewriting system. In fact it is easy to code Post’s cor-
respondence problem as a protocol such that a belief
of the form shared a1 (M) is held by an agent A if
and only if there is a solution to the correspondence
problem. Moreover, we can arrange for M to be some
message which is not secret (that is, M may be know
to agents other than A). Hence the protocol is semi-
secure secure if and only if the correspondence problem
has a solution. This outline proves (a). The remaining
parts can be proved by similar methods. D

6 Composition of Protocols

Consider the problem of combining protocols. That
is given protocols p; = (P1,6') and py = (P2, 8?%), we
wish to obtain their composition p; U py defined by
(Py U Py, 61 U6?%), where 61 U 6? denotes the pointwise
union of 8! and 62. Ideally, we would like the individ-
ual security properties of p; and ps to carry over to
p1 Upa.

First suppose that p; and ps are both secret-secure;
we would like to show that this implies p; Ups is secret
secure. This 1s clearly not possible in general because
one protocol may interfere with the other. For exam-
ple, consider the two (rather nonsensical) protocols in
Figure 1. In the first protocol, agent A shares its se-
crets with B by encrypting them with a shared key and
sending them to B. The second protocol is very simi-
lar, but here agent B shares secrets with agent A; the
first message of the protocol is sent by A to indicate
that it 18 “ready” to accept B’s secrets. While neither
protocol is really secure (in particular, nonces are not
used to protect secrets, and as a result the protocols
are not time-secure), they do preserve each other’s se-
crets and can be shown to be secret-secure. However,
the union of these two protocols is not secret-secure.
This is because the first step of the second protocol
may send a message of the form {M}g such that M
is some arbitrary message, and the second step of the

first protocol may use this message to deduce that M
is a shared A — B secret, which is obviously not true
in general. In essence, the problem is what is meant
by the “sending” of a message of the form {(A, M)}x.
In the first protocol it indicates that A believes M is
a shared secret between A and B. In the second, this
message indicates nothing about the secrecy of M.
Now, at an intuitive level, if protocols (P, é') and
(P2,6%) do not “interfere” in this sense, then we may
expect composition to preserve security properties.
First, define for a protocol p, that sends(p) is the set
of all messages sent in all secure models of p. More
specifically, sends(p) is the set of all events of the
form send(M) that appear in T', in some secure model
(T, beliefs) of p. A form of non-interference can now

be defined as follows:

Definition 15 Let p; = (P1,6') and py = (P2, 8?)
be protocols. Protocol p1 is message independent with
respect to a protocol po if, for all sets STATE, and A €
P17

64 (STATE) = 6} (STATE — sends(p2)) []

Unfortunately this definition is not sufficient to prove
preservation of secret-security. The failure is due to
technical reasons that relate to the unbounded nature
However, by restricting attention to di-
rected models we can obtain a compositionality the-
orem. The following result shall additionally use the
following two conditions: if (T, beliefs) is a universally
secure model of p; U py then

of models.

(a) all beliefs held by principals in the model have the
form shared(S, M) where M is a basic message,
and

(b) for all secure directed models (7', beliefs) of py Upa,
there exists a secure directed model (77, beliefs’)
of p1 U ps such that:

(b1) adversaries do not send any messages in 77,
and

(b2) for each event e in T4, there exists an event
¢ in T such that known(e) C known(e),
beliefs(e) C beliefs'(e’) and all beliefs in
8(state(e)) also appear in é(state’(e’)).

The first condition says that, in all secure models,
there are no beliefs involving compound messages or
non-principals. This condition simplifies part of the
proof; although it 1s likely that this condition could be
weakened (or perhaps eliminated), it is already satis-
fied by typical protocols. The second states that, un-
less security is violated, the messages from adversaries
do not have a significant effect on the behavior of a
protocol. Specifically, it specifies that for any secure
model, there is a secure model where adversaries do
not send messages that is “equivalent” to the original
model in the following sense: for each event e in the
original event, there is an event e the new model with
essentially the same behavior. These conditions in-
volve reasoning only about secure models, and as such
are typically much easier to verify than checking the
security of the combined protocol p; U ps.

Theorem 2 Let py and ps be protocols that are mu-
tually message independent and satisfy conditions (a)
and (b). If p1 and ps are directed secret-secure then
their composition py Ups 1s also directed secret-secure.

I

Proof Sketch: Suppose that p; U ps is not secure.
Then there exists a directed model of p; Ups, call it m,
that is initially secure, but not universally secure. The
proof now proceeds by using the model m to construct
a model showing that either p; or p» is not secret-
secure. This construction proceeds in three steps.

The first step uses condition (b) to show that there
exists a model m’ of p; U ps such that

e m’ Is initially secure but not universally secure;
e there are only a finite number of events in m/’;
e adversaries do not send any messages in m’.

The second step uses the model m’ to construct a
model m/ that satisfies the same conditions as m’ and
in addition does not contain any message generation
or expiry events. The purpose of this step is to sim-
plify the cases that must be considered in the following
constructions.

The final step and most intricate step uses the
model m” to construct either (i) a model of p; that
is initially secure but not universally secure or (ii) a
model of py that is initially secure but not universally
secure. This part proceeds by incrementally construct-
ing a model my of protocol p; and my of protocol ps.

In essence, each event from m” is considered in turn
(using the total ordering on events in m' that is re-
quired to exist by the serializability assumption), and
either adding it to my (if the event corresponds to pro-
tocol p1) or to my (if the event corresponds to protocol
p2). Additional constructions are required at each step
to ensure that my and ms are maintained as legal, ini-
tially secure models of p; and ps. Importantly, when
all events from m’’ have been considered, it is the case
that either my or ms is not universally secure. It fol-
lows that either p; or ps is not secret-secure. The key
assumption used in this final step is the message inde-
pendence assumption. We remark that condition (a)
is used throughout the proof. []

To conclude this section, consider the case where
p1 and ps are timed-secure. The compositionality re-
sults attainable in this case appear to be much weaker
than for secret-security. One of the key problems is
illustrated by the two protocols in Figure 2. In the
first protocol, agent A shares its secrets with B by
encrypting them with a shared key and sending them
to B. The second protocol is just the converse of the
first. The combined protocol p; U ps i1s not timed-
secure because of the following type of scenario: agent
A gives secret M to B; the secret M then expires at
A; B gives M back to A; the secret M then expires
at B; A gives secret M to B, and so on. Any compo-
sitionality results involving time-security must clearly
involve conditions to prevent the types of circularity
that are illustrated in the above example. We leave
further details to future work.

7 Future Work: Model Checking

The model theoretic framework we have described
above opens a possible new line of attack for proving
security properties. In this paper, security is defined
in terms of properties that hold over a class of models.
In principle, one could check the security of a protocol
by constructing each model in the class, and check-
ing to see that the appropriate property hold. Clearly,
this procedure is not effective because there are an
infinite number of models that must be checked, and
these models themselves can be infinite. However, for
certain syntactic classes of protocols, the problem of
checking protocol security may be reduced to checking
a single universal model which can be finitely repre-
sented using set constraints [12]. The key property of
this universal model is that if the protocol is secure
in the universal model, then it is secure in all mod-
els. (For a general discussion of the model checking
versus other methods, see [11].) Thus, we can prove

shared({A, B}, K), shared({A, B}, M) — send({(A, M)} k)
shared({A, B}, K), receive({(A, M)} k) — shared({A, B}, M)

shared({A, B}, K), shared({A, B}, M) — send({(B, M)} k)
shared({A, B}, K), receive({(B, M)}k) — shared({A, B}, M)

Figure 2: Non-compositional Protocols II: beliefs are exchanged and can be perpetuated.

the security of protocols directly from the model the-
oretic definition rather than resorting to a rule-based
approach.

References

(1]

[2]

M. Abadi, “The Power of Temporal Proofs”,
Proceedings 2% IEEE Symposium on Logic in
Computer Science, pp. 123-130, June 1987.

M. Abadi and M. Tuttle, “A Semantics for a
Logic of Authentication”, Proceedings of ACM
Symposium on Principles of Distributed Com-
puting, August 1991.

J. van Benthem, “Time, Logic and Computa-
tion”, Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency,
J. W. de Bakker, W.-P. de Roever and G. Rozen-
berg Eds., Springer-Verlag, pp. 1-49, June 1988.

P. Bieber, “A Logic of Communication in Hostile
Environment” TEEE Computer Security Foun-
dations Workshop III, pp. 14-22, Los Alamitos,
California, June 1990.

R. Bird, I. Gobal, A. Herzberg, P. A. Janson,
S. Kutten, R. Molva, M. Yung, “Systematic De-
sign of a Family of Attack-Resistant Authenti-
cation Protocols” | Journal on Selected Areas in
Commaunications, Vol. 11, No. 5, pp. 679-693,
June 1993.

M. Blum and S. Goldwasser, “An Efficient
Probabilistic Public-Key FEncryption Scheme
which Hides All Partial Information”, Advances
wm Cryptology: Proceedings of CRYPTOS4,
Springer-Verlag LNCS No. 196, 1984.

J. Burgess, “Basic Tense Logic”, Handbook of
Philosophical Logic, Volume II: Extensions of
Classical Logic, F.. Gabbay and F. Guenthner
Eds., Kluwer Academic Publishers, pp. 89-133,
1986.

(8]

[10]

[13]

[15]

M. Burrows, M. Abadi and R. Needham, “A
Logic of Authentication”, ACM Transactions on
Computer Systems, Vol. 8, No. 1, pp. 18-36,
February 1990. (Also see Research Report No.
39, DEC SRC, 48 pages, 1989.)

D. Dolev and A. C. Yao, “On the Security of
Public Key Protocols” IEEE Transactions on
Information Theory, Vol. IT-29, No. 2, March
1983.

S. Goldwasser and S. Micali, “Probabilistic En-
cryption and How to Play Mental Poker Keep-
ing Secret All Private Information”, Proceedings
14" ACM Symposium on the Theory of Com-
puting, 1982.

J. Y. Halpern and M. Y. Vardi, “Model Check-
ing vs. Theorem Proving: A Manifesto”, Sys-
tems.” Principles of Knowledge Representation
and Reasoning: Proceedings of the Second Inter-
national Conference, February 1991.

N. Heintze and J. Jaffar, “A Decision Procedure
for a Class of Herbrand Set Constraints”, Pro-
ceedings 5% IEEE Symposium on Logic in Com-
puter Science, pp. 42-51, June 1990.

N. Heintze and J. D. Tygar, “Timed Models
for Protocol Security”, Carnegie Mellon Univer-
sity Technical Report CMU-CS-92-100, January
1992.

T. Kasami, S. Yamamura and K. Mori, “A Key
Management Scheme for End-to-End Encryp-
tion and a Formal Verification of Its Security”,
Systems, Computers, Control, Vol. 13, pp. 59-69,
1982.

L. Lamport, “Time, Clocks and the Ordering of
Events in a Distributed System”, Communica-
tions of the ACM, Vol. 21, No. 7, pp. 558-565,
July 1978.

[16]

[19]

C. A. Meadows, “Applying Formal Methods to
the Analysis of a Key Management Protocol”,
Technical Report No. 9265, Naval Research Lab-
oratory, Washington DC., September 1990.

D. Otway and O. Rees, “Efficient and Timely
Mutual Authentication”, Operating Systems Re-
view, Vol. 21, No. 1, pp. 8-10, January 1987.

P. Syverson and C. Meadows, “A Logical Lan-
guage for Specifying Cryptographic Protocol Re-
quirements”, Proceeding 1993 IEEE Symposium
on Research in Security and Privacy, May 1993.

P. Syverson “Adding Time to a Logic of Authen-
tication”, Proceeding 1** ACM Conference on
Computer and Communications Security, Fair-
fax, Virginia, November 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

